JP2001267384A - Measurement method of pseudo-mosfet - Google Patents

Measurement method of pseudo-mosfet

Info

Publication number
JP2001267384A
JP2001267384A JP2000071452A JP2000071452A JP2001267384A JP 2001267384 A JP2001267384 A JP 2001267384A JP 2000071452 A JP2000071452 A JP 2000071452A JP 2000071452 A JP2000071452 A JP 2000071452A JP 2001267384 A JP2001267384 A JP 2001267384A
Authority
JP
Japan
Prior art keywords
insulating film
soi
thin film
film
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000071452A
Other languages
Japanese (ja)
Inventor
Eiji Kamiyama
栄治 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP2000071452A priority Critical patent/JP2001267384A/en
Publication of JP2001267384A publication Critical patent/JP2001267384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure Id-Vg characteristic when using a pseudo MOSFET for evaluating an SOI substrate, and to minimize the influence over aging for obtaining a value with superior producibility. SOLUTION: When the Id-Vg characteristic of the SOI substrate are measured using a pseudo-MOSFET, an insulating film 16 with a thickness of 1 nm to 1 μm is formed on the surface of an SOI thin film 13, and drain and source probes 17 and 18 are pierced to the insulating film for coming into direct contact with the SOI thin film. Or the insulating film with a thickness of 2 nm to 1 μm is formed on the surface f the SOI thin film 13, a resist layer 29 is formed on the surface of the insulating film, the resist layer is used as a mask for etching the insulating film, metal is deposited onto the surface of the exposed SOI thin film for forming a pair of electrodes 34, and the electrodes are allowed to come into contact with the drain and source probes for measurement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、擬似MOSFET
を用いてSOI基板のId−Vg特性を測定する方法に
関する。
The present invention relates to a pseudo MOSFET.
And a method for measuring the Id-Vg characteristics of an SOI substrate using the method.

【0002】[0002]

【従来の技術】近年、低消費電力で高速処理性能に優れ
るSOI基板(Silicon-On-Insulator)を用いた様々な
デバイスが実用化されるに至り、そのSOI基板の品質
評価は重視されてきている。数あるSOI基板評価法の
中において、擬似MOSFET(Pseudo Metal-Oxide-S
emiconductor Field Effect Transistor、別称Point Co
ntact Transistor)を用いた評価方法は、擬似MOSF
ETが簡易な構造であるために、簡便な評価手段として
注目されている。
2. Description of the Related Art In recent years, various devices using an SOI substrate (Silicon-On-Insulator) having low power consumption and excellent high-speed processing performance have been put to practical use, and quality evaluation of the SOI substrate has been emphasized. I have. Among various SOI substrate evaluation methods, a pseudo MOSFET (Pseudo Metal-Oxide-S
emiconductor Field Effect Transistor, also known as Point Co
ntact Transistor) is a pseudo-MOSF
ET has attracted attention as a simple evaluation means because of its simple structure.

【0003】擬似MOSFETは、SOI基板構造をそ
のまま利用するので、図7に示すように通常MOSFE
Tとは構造が少し異なり、SOI基板1を金属板3上に
設置し電気的に金属板3とシリコン基板2を接触させる
ことでゲート電極の役割を果たすシリコン基板2と、ゲ
ート酸化膜の役割を果たす埋込絶縁膜4と、SOI薄膜
6の表面にそれぞれ接触させるドレインプローブ7とソ
ースプローブ8で構成される。擬似MOSFETを用い
てSOI基板を評価するときには、ソースプローブ8を
接地し、ドレインプローブ7に一定のドレイン電圧Vd
を印加し、金属板3に印加するゲート電圧Vgを変化さ
せる。このときのドレイン電流Idが変化するときの特
性(以下、この特性を「Id−Vg特性」という。)に
よりSOI基板が評価される。
Since the pseudo MOSFET uses the SOI substrate structure as it is, as shown in FIG.
The structure is slightly different from that of T. The SOI substrate 1 is placed on the metal plate 3, and the metal plate 3 and the silicon substrate 2 are electrically contacted to each other. And a drain probe 7 and a source probe 8 which are respectively in contact with the surface of the SOI thin film 6. When evaluating the SOI substrate using the pseudo MOSFET, the source probe 8 is grounded, and the drain probe 7 is supplied with a constant drain voltage Vd.
To change the gate voltage Vg applied to the metal plate 3. The SOI substrate is evaluated based on the characteristics when the drain current Id changes at this time (hereinafter, these characteristics are referred to as “Id-Vg characteristics”).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記擬似MO
SFETを用いた測定では、図6に示すように、繰返し
測定において、Id−Vg特性が徐々にシフトし再現性
の良い値が得られない不具合があった。この現象を鋭意
検討の結果、この不具合は測定回数が増えるに従ってS
OI薄膜6の表面に図8に示すような自然酸化膜9が形
成され、徐々に厚くなることで生じることがわかった。
またSOI薄膜6表面に汚れが付着することによっても
Id−Vg特性が変動することを見出した。
However, the above pseudo MO
In the measurement using the SFET, as shown in FIG. 6, in the repetitive measurement, the Id-Vg characteristics gradually shifted, and a value with good reproducibility was not obtained. As a result of diligent study of this phenomenon, this defect has been found to increase as the number of measurements increases.
It was found that a natural oxide film 9 as shown in FIG. 8 was formed on the surface of the OI thin film 6 and gradually increased in thickness.
Further, it has been found that the Id-Vg characteristics fluctuate even when dirt adheres to the surface of the SOI thin film 6.

【0005】本発明の目的は、擬似MOSFETを用い
てSOI基板を評価するときにId−Vg特性を精度良
く測定できる方法を提供することにある。本発明の別の
目的は、経時変化による影響を最小限にして再現性の良
い値が得られる擬似MOSFETの測定方法を提供する
ことにある。
An object of the present invention is to provide a method for accurately measuring the Id-Vg characteristic when evaluating an SOI substrate using a pseudo MOSFET. Another object of the present invention is to provide a method of measuring a pseudo MOSFET in which a value with good reproducibility can be obtained by minimizing the influence of a change over time.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、擬似MOSFETを用いてSOI基
板のId−Vg特性を測定する方法において、SOI基
板10のSOI薄膜13表面に厚さ1nm〜1μmの絶
縁膜16を形成した後、ドレインプローブ17及びソー
スプローブ18をそれぞれ絶縁膜16に突刺してSOI
薄膜13に直接接触した状態でId−Vg特性を測定す
ることを特徴とする擬似MOSFETの測定方法であ
る。請求項1に係る発明では、SOI基板10のSOI
薄膜13表面に厚さ1nm〜1μmの絶縁膜16を形成
した後、プローブ17,18を絶縁膜16に突刺し、直
接SOI薄膜13と接触させる。測定前にあらかじめ絶
縁膜16を形成することにより、SOI薄膜13中の絶
縁膜16近傍に形成されるチャネル中の電子及びホール
は、絶縁膜16がない時に比べて自然酸化の進行や汚れ
などの表面の電気的不安定要因の影響を受けないことか
ら、再現性の良い測定値が得られる。
The invention according to claim 1 is
As shown in FIG. 1, in a method for measuring the Id-Vg characteristics of an SOI substrate using a pseudo MOSFET, after forming an insulating film 16 having a thickness of 1 nm to 1 μm on the surface of an SOI thin film 13 of an SOI substrate 10, a drain probe is formed. 17 and the source probe 18 are pierced into the insulating film 16 respectively, and the SOI
This is a method for measuring a pseudo MOSFET, wherein the Id-Vg characteristic is measured in a state of being in direct contact with the thin film 13. According to the first aspect of the present invention, the SOI
After an insulating film 16 having a thickness of 1 nm to 1 μm is formed on the surface of the thin film 13, probes 17 and 18 are pierced into the insulating film 16 and directly contact the SOI thin film 13. By forming the insulating film 16 in advance before the measurement, electrons and holes in the channel formed near the insulating film 16 in the SOI thin film 13 are more likely to undergo natural oxidation and contamination than in the case where the insulating film 16 is not provided. Since it is not affected by the surface electrical instability factor, a measurement value with good reproducibility can be obtained.

【0007】請求項2に係る発明は、図3に示すよう
に、擬似MOSFETを用いてSOI基板のId−Vg
特性を測定する方法において、SOI基板10のSOI
薄膜13表面に厚さ2nm〜1μmの絶縁膜16を形成
し、絶縁膜16表面に所定のパターンのレジスト層29
を形成し、レジスト層29をマスクにして絶縁膜16を
エッチングし、レジスト層29を除去してSOI基板1
0を洗浄し、絶縁膜16をマスクにしてエッチングによ
り表出したSOI薄膜13表面に金属を堆積して一対の
電極34を形成した後、一対の電極34にドレインプロ
ーブ17及びソースプローブ18をそれぞれ接触した状
態でId−Vg特性を測定することを特徴とする擬似M
OSFETの測定方法である。請求項2に係る発明で
は、上記方法によりSOI薄膜13表面に金属を堆積さ
せて一対の電極34を形成することにより、SOI薄膜
13表面の自然酸化膜の形成に起因する経時変化による
影響を受けずに測定できる。請求項3に係る発明は、請
求項1又は2係る発明であって、絶縁膜が自然酸化膜、
化学酸化膜又は熱酸化膜である擬似MOSFETの測定
方法である。
According to a second aspect of the present invention, as shown in FIG. 3, the Id-Vg
In the method for measuring the characteristics, the SOI
An insulating film 16 having a thickness of 2 nm to 1 μm is formed on the surface of the thin film 13, and a resist pattern 29 having a predetermined pattern is formed on the surface of the insulating film 16.
Is formed, the insulating film 16 is etched using the resist layer 29 as a mask, the resist layer 29 is removed, and the SOI substrate 1 is removed.
Then, a metal is deposited on the surface of the SOI thin film 13 exposed by etching using the insulating film 16 as a mask to form a pair of electrodes 34, and then the drain probe 17 and the source probe 18 are respectively applied to the pair of electrodes 34. Pseudo M characterized by measuring the Id-Vg characteristic in a contact state
This is a method for measuring an OSFET. According to the second aspect of the present invention, by depositing a metal on the surface of the SOI thin film 13 by the above method to form a pair of electrodes 34, the metal is affected by a change with time due to the formation of a natural oxide film on the surface of the SOI thin film 13. Can be measured without The invention according to claim 3 is the invention according to claim 1 or 2, wherein the insulating film is a natural oxide film,
This is a method for measuring a pseudo MOSFET which is a chemical oxide film or a thermal oxide film.

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態について
説明する。本発明の第1の実施の形態を図1に基づいて
説明する。図1に示すように、SOI基板10は埋込絶
縁膜12をシリコン基板11と単結晶シリコン膜からな
るSOI薄膜13でサンドイッチ上に挟み込んだ構造を
有する。擬似MOSFETは、図1に示すように、SO
I基板10を金属板14上に設置し電気的に金属板14
とシリコン基板11を接触させることでゲート電極の役
割を果たすシリコン基板11と、ゲート酸化膜の役割を
果たす埋込絶縁膜12と、SOI薄膜13の表面にそれ
ぞれ接触させるドレインプローブ17とソースプローブ
18で構成される。
Next, an embodiment of the present invention will be described. A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the SOI substrate 10 has a structure in which a buried insulating film 12 is sandwiched between a silicon substrate 11 and an SOI thin film 13 made of a single crystal silicon film. The pseudo MOSFET is, as shown in FIG.
I substrate 10 is placed on a metal plate 14 and electrically
A silicon substrate 11 serving as a gate electrode by making contact with the silicon substrate 11, a buried insulating film 12 serving as a gate oxide film, and a drain probe 17 and a source probe 18 contacting the surface of the SOI thin film 13, respectively. It consists of.

【0009】この実施の形態における特徴ある構成は、
SOI基板10のSOI薄膜13表面に厚さ1nm〜1
μmの絶縁膜16を形成した後、ドレインプローブ17
及びソースプローブ18をそれぞれ絶縁膜16に突刺し
てSOI薄膜13に直接接触した状態で測定することに
ある。ベアな状態のSOI薄膜は活性なためId−Vg
特性を測定している間にも薄膜表面の酸化が進行した
り、薄膜表面が汚染され易い。このようなSOI薄膜は
その表面が電気的に不安定であるため、Id−Vg特性
を繰返し測定した場合、測定値の再現性が悪い。そこで
測定前にSOI薄膜13の表面に厚さ1nm〜1μmの
絶縁膜16を形成することでSOI薄膜13表面を安定
させ、更にプローブ17,18を絶縁膜16に突刺すの
でSOI薄膜13表面を表出することなく測定できる。
絶縁膜16の厚さが1nm未満であると自然酸化が進行
するためId−Vg特性変動を生じ、1μmを越えると
SOI薄膜13にプローブ17,18を突刺してもSO
I薄膜に接触させることが困難となる。絶縁膜16の好
ましい厚さは10〜100nmである。
The characteristic configuration of this embodiment is as follows.
The thickness of the SOI thin film 13 on the SOI substrate 10 is 1 nm to 1 nm.
After forming the insulating film 16 of μm, the drain probe 17 is formed.
And the source probe 18 is pierced into the insulating film 16 and is directly contacted with the SOI thin film 13 for measurement. Since the bare SOI thin film is active, Id-Vg
Oxidation of the thin film surface progresses during the measurement of the characteristics, and the thin film surface is easily contaminated. Since the surface of such an SOI thin film is electrically unstable, when the Id-Vg characteristics are repeatedly measured, the reproducibility of the measured values is poor. Therefore, the surface of the SOI thin film 13 is stabilized by forming an insulating film 16 having a thickness of 1 nm to 1 μm on the surface of the SOI thin film 13 before measurement. Can be measured without exposing.
If the thickness of the insulating film 16 is less than 1 nm, spontaneous oxidation proceeds, causing fluctuations in Id-Vg characteristics.
It is difficult to make contact with the I thin film. The preferred thickness of the insulating film 16 is 10 to 100 nm.

【0010】この実施の形態では図2に示されるId−
Vg特性の測定装置19が用いられる。基台21にはス
タンド22aが立設され、このスタンド22aには支柱
22bが上下動可能に挿入される。支柱22bはスタン
ド22aの側部に設けられたねじ22cにより所定の高
さに固定されるようになっている。支柱22bには腕部
23がピン24により回転可能に支持される。腕部23
の一端には一対のドレインプローブ17及びソースプロ
ーブ18が固定され、その他端には重り26が摺動可能
に設けられる。両プローブ17,18はそれぞれの先端
が同一高さになるように固定される。図2では便宜上、
1つのプローブのみ示している。腕部23の一端の上部
には分銅27を載せるための皿28が設けられる。図示
しないが、支柱に2本の腕部を回転可能に取付け、これ
らの腕部のそれぞれにドレインプローブ及びソースプロ
ーブを設けて、各腕部を互いに独立させてもよい。プロ
ーブ17と18の間及び金属板14とソースプローブ1
8の間には、図示しないが、電圧源、電流計及び電圧計
がそれぞれ接続される。
In this embodiment, Id- shown in FIG.
A Vg characteristic measuring device 19 is used. A stand 22a is erected on the base 21, and a column 22b is inserted into the stand 22a so as to be vertically movable. The support 22b is fixed at a predetermined height by screws 22c provided on the side of the stand 22a. The arm 23 is rotatably supported by the pin 22 on the support 22b. Arm 23
A pair of a drain probe 17 and a source probe 18 are fixed to one end, and a weight 26 is slidably provided at the other end. Both probes 17 and 18 are fixed so that their tips are at the same height. In FIG. 2, for convenience,
Only one probe is shown. A plate 28 on which a weight 27 is placed is provided above one end of the arm 23. Although not shown, two arms may be rotatably attached to the column, and a drain probe and a source probe may be provided for each of these arms so that the arms are independent of each other. Between the probes 17 and 18 and between the metal plate 14 and the source probe 1
Although not shown, a voltage source, an ammeter, and a voltmeter are connected between the terminals 8.

【0011】このような構造を有する測定装置19でド
レイン電流Id及びゲート電圧Vgを測定するには、先
ずねじ22cを弛めて支柱22bをスタンド22aから
引出し、仮に固定する。次いで分銅27を載せていない
状態で重り26を水平に移動して腕部23が水平になる
ように調節する。次に擬似MOSFETをプローブ17
及び18の下方に配置した後、ねじ22cを弛めて支柱
22bを少しずつ降下させ、プローブ17及び18の各
先端を絶縁膜16の表面に接触した状態でねじ22cを
締めて支柱22bを固定する。この状態で、絶縁膜16
の厚さに応じて適切な分銅27を選択し、皿28に載せ
る。分銅27の重さで腕部23が図2の矢印方向へ傾き
ドレインプローブ17及びソースプローブ18が絶縁膜
16に突刺さりSOI薄膜13に接触する。ドレイン電
流Id及びゲート電圧Vgの測定は、ソースプローブ1
8を接地し、ドレインプローブ17に一定のドレイン電
圧Vdを印加し、金属板14に印加するゲート電圧Vg
を変化させたときのドレイン電流Idの変化状況を記録
することにより行われる。
In order to measure the drain current Id and the gate voltage Vg with the measuring device 19 having such a structure, first, the screw 22c is loosened and the column 22b is pulled out from the stand 22a and temporarily fixed. Next, the weight 26 is moved horizontally without the weight 27 placed thereon, so that the arm 23 is adjusted to be horizontal. Next, the pseudo MOSFET is connected to the probe 17.
After disposing the lower end of the probes 22 and 18, the screws 22c are loosened to lower the support 22b little by little. The screws 22c are tightened while the tips of the probes 17 and 18 are in contact with the surface of the insulating film 16 to fix the support 22b. I do. In this state, the insulating film 16
An appropriate weight 27 is selected according to the thickness of the plate and placed on the plate 28. The arm 23 tilts in the direction of the arrow in FIG. 2 due to the weight of the weight 27, and the drain probe 17 and the source probe 18 pierce the insulating film 16 and come into contact with the SOI thin film 13. The measurement of the drain current Id and the gate voltage Vg is performed by using the source probe 1
8 is grounded, a constant drain voltage Vd is applied to the drain probe 17, and a gate voltage Vg applied to the metal plate 14 is applied.
This is performed by recording the state of change of the drain current Id when is changed.

【0012】次に、本発明の第2の実施の形態を図3に
基づいて説明する。図3において、図1と同一符号は同
一構成要素を示す。先ずSOI基板10(図3(a))
の表面に厚さ2〜5nmの絶縁膜16を形成し(図3
(b))、この絶縁膜16の表面にフォトリソグラフィ
によりパターニングしたレジスト層29を形成する(図
3(c)及び(d))。ここでレジスト層29は上記絶
縁膜16の表面にラミネータを用いて感光性ドライフィ
ルム31を積層した後に、このフィルム31上にフィル
ムマスク32を置き(図3(c))、中心波長254n
mの紫外線33を照射して露光することにより、所定の
パターンに形成される(図3(d))。絶縁膜16の厚
さが2nm未満であるとSOI薄膜表面の化学的安定化
が不十分なため、Id−Vg特性変動を生じ、1μmを
越えると表面酸化膜形成のために必要な時間がかかり過
ぎ、コストが増大する。絶縁膜16の好ましい厚さは1
0〜500nmである。
Next, a second embodiment of the present invention will be described with reference to FIG. 3, the same reference numerals as those in FIG. 1 denote the same components. First, the SOI substrate 10 (FIG. 3A)
An insulating film 16 having a thickness of 2 to 5 nm is formed on the surface of FIG.
(B)) A resist layer 29 patterned by photolithography is formed on the surface of the insulating film 16 (FIGS. 3C and 3D). Here, as for the resist layer 29, after laminating a photosensitive dry film 31 on the surface of the insulating film 16 using a laminator, a film mask 32 is placed on the film 31 (FIG. 3C), and the center wavelength 254n.
A predetermined pattern is formed by irradiating and irradiating m ultraviolet rays 33 (FIG. 3D). If the thickness of the insulating film 16 is less than 2 nm, the chemical stability of the surface of the SOI thin film is insufficient, so that the Id-Vg characteristic fluctuates. Cost increases. The preferred thickness of the insulating film 16 is 1
0 to 500 nm.

【0013】次いで絶縁膜を異方性エッチングによりパ
ターニングし(図3(e)及び(f))、レジスト層2
9を除去した後に(図3(g))、基板10を洗浄す
る。次に基板10の表面の垂直方向から金属(例えばA
lやNiなど)を基板10に堆積し(図3(h))、一
対の電極34を形成する(図3(i))。この堆積方法
としてはCVD法(Chemical Vapor Deposition)、ス
パッタリングなどのPVD法(Physical Vapor Deposit
ion)等が挙げられる。このように形成されたSOI基
板10を金属板14上に接地し、SOI薄膜13表面に
形成された一対の電極34にドレインプローブ17及び
ソースプローブ18をそれぞれ接触させて、第1の実施
の形態と同様にSOI基板10のId−Vg特性を測定
する(図3(j))。これによりSOI薄膜は表出せ
ず、かつ電極が確保されているため、再現性よく測定す
ることができる。なお、本発明の絶縁膜16はSOI基
板を空気中に放置して形成した自然酸化膜でも、硫酸化
過水のような酸化剤を用いて形成した化学酸化膜でも、
熱酸化によって形成した熱酸化膜でもよい。
Next, the insulating film is patterned by anisotropic etching (FIGS. 3E and 3F).
After removing 9 (FIG. 3G), the substrate 10 is washed. Next, a metal (for example, A
1 and Ni) are deposited on the substrate 10 (FIG. 3H) to form a pair of electrodes 34 (FIG. 3I). As this deposition method, a CVD method (Chemical Vapor Deposition), a PVD method such as a sputtering method (Physical Vapor Deposit) is used.
ion) and the like. The SOI substrate 10 thus formed is grounded on a metal plate 14, and the drain probe 17 and the source probe 18 are brought into contact with a pair of electrodes 34 formed on the surface of the SOI thin film 13, respectively, according to the first embodiment. Similarly, the Id-Vg characteristic of the SOI substrate 10 is measured (FIG. 3 (j)). Thus, the SOI thin film cannot be exposed and the electrodes are secured, so that the measurement can be performed with good reproducibility. The insulating film 16 of the present invention may be a natural oxide film formed by leaving the SOI substrate in the air or a chemical oxide film formed using an oxidizing agent such as sulfated peroxide.
A thermal oxide film formed by thermal oxidation may be used.

【0014】[0014]

【実施例】次に本発明の実施例を比較例とともに説明す
る。 <実施例1>擬似MOSFETとしてSOI薄膜がp型
であるSIMOX技術により作成されたSOI基板を用
意した。このSOI基板を炉内に入れ、5%酸素+窒素
混合ガス雰囲気中で温度850℃、27分保持してSO
I基板のSOI薄膜表面に厚さ3nmの熱酸化膜からな
る絶縁膜を形成した。次に図2に示す測定装置を用い、
太さφ1.0mm、先端加工R12.5μmのタングス
テン製のドレインプローブ及びソースプローブに1gの
分銅をそれぞれ載せて、両プローブを絶縁膜表面に突刺
し、プローブをSOI薄膜に直接接触させた状態で、I
d−Vg特性を測定した。この測定は大気雰囲気下で、
10分間隔で4回行った。
Next, examples of the present invention will be described together with comparative examples. <Example 1> An SOI substrate prepared by a SIMOX technique in which an SOI thin film is a p-type was prepared as a pseudo MOSFET. This SOI substrate was placed in a furnace and kept at a temperature of 850 ° C. for 27 minutes in a 5% oxygen + nitrogen mixed gas atmosphere.
An insulating film made of a thermal oxide film having a thickness of 3 nm was formed on the surface of the SOI thin film of the I substrate. Next, using the measuring device shown in FIG.
A 1 g weight is placed on each of a tungsten drain probe and a source probe having a diameter of 1.0 mm and a tip processing R of 12.5 μm, and both probes are pierced into the insulating film surface, and the probes are brought into direct contact with the SOI thin film. , I
The d-Vg characteristics were measured. This measurement was performed in an air atmosphere.
Performed 4 times at 10 minute intervals.

【0015】<実施例2>実施例1と同一のSOI基板
を用意し、このSOI基板を炉内に入れ、100%酸素
ガス雰囲気中で温度850℃、45分保持してSOI基
板のSOI薄膜表面に厚さ10nmの熱酸化膜からなる
絶縁膜を形成した。次に実施例1と同一の装置を用い
て、太さφ1.0mm、先端加工R2.5μmのタング
ステン製のドレインプローブ及びソースプローブに50
gの分銅をそれぞれ載せ、両プローブを絶縁膜表面に突
刺し、プローブをSOI薄膜に直接接触させた状態でI
d−Vg特性を測定した。この測定は大気雰囲気下、1
0分間隔で4回行った。
Example 2 An SOI substrate identical to that of Example 1 was prepared, and this SOI substrate was placed in a furnace and kept at a temperature of 850 ° C. for 45 minutes in a 100% oxygen gas atmosphere. An insulating film made of a thermal oxide film having a thickness of 10 nm was formed on the surface. Next, using the same apparatus as in Example 1, a drain probe and a source probe made of tungsten having a diameter of 1.0 mm and a tip end of 2.5 μm were used.
g of weight is placed on each, the probes are pierced into the surface of the insulating film, and the probes are directly contacted with the SOI thin film.
The d-Vg characteristics were measured. This measurement was performed in an air atmosphere.
Performed 4 times at 0 minute intervals.

【0016】<比較例1>実施例1と同一のSOI基板
を用意し、この基板を硫酸化過水で洗浄した後、フッ酸
で洗浄し、SOI薄膜表面の自然酸化膜を除去した。実
施例1と同一の装置を用いて、太さφ1.0mm、先端
加工R12.5μmのタングステン製のドレインプロー
ブ及びソースプローブに20gの分銅をそれぞれ載せ、
両プローブをベアなSOI薄膜表面に接触させた状態で
Id−Vg特性を測定した。この測定はフッ酸洗浄後、
1時間以内で大気雰囲気下、10分間隔で5回行った。
Comparative Example 1 The same SOI substrate as in Example 1 was prepared, and the substrate was washed with sulfated hydrogen peroxide and then with hydrofluoric acid to remove a natural oxide film on the surface of the SOI thin film. Using the same apparatus as in Example 1, a weight of 20 g was placed on each of a tungsten drain probe and a source probe each having a diameter of 1.0 mm and a tip processing R of 12.5 μm,
The Id-Vg characteristics were measured with both probes in contact with the bare SOI thin film surface. This measurement is performed after cleaning with hydrofluoric acid.
The test was performed five times at intervals of 10 minutes in an air atmosphere within one hour.

【0017】<比較評価>実施例1,2及び比較例1の
各測定はドレイン電圧を1.0ボルトに固定し、ゲート
電圧を−4ボルトから2ボルトに変化させたときのドレ
イン電流を求めることにより行った。実施例1のId−
Vg特性図を図4に、実施例2のId−Vg特性図を図
5に、比較例1のId−Vg特性図を図6にそれぞれ示
す。比較例1では図6より明らかなように測定値にばら
つきがあり、時間が経つにつれてSOI薄膜の表面に自
然酸化膜が形成されたことに伴うId−Vg特性の変動
が見られた。これに対して、実施例1及び2では図4及
び図5より明らかなように経時変化による影響は殆ど見
られず、Id−Vg特性はほぼ一定であった。
<Comparative Evaluation> In each measurement of Examples 1 and 2 and Comparative Example 1, the drain current is obtained when the drain voltage is fixed at 1.0 volt and the gate voltage is changed from -4 volts to 2 volts. It was done by doing. Id of Example 1
FIG. 4 shows a Vg characteristic diagram, FIG. 5 shows an Id-Vg characteristic diagram of Example 2, and FIG. 6 shows an Id-Vg characteristic diagram of Comparative Example 1. As is clear from FIG. 6, in Comparative Example 1, the measured values fluctuated, and the Id-Vg characteristics fluctuated over time due to the formation of a natural oxide film on the surface of the SOI thin film. On the other hand, in Examples 1 and 2, as is clear from FIGS. 4 and 5, almost no influence due to the change with time was observed, and the Id-Vg characteristics were almost constant.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、擬
似MOSFETを用いてのSOI基板のId−Vg特性
を、SOI薄膜表面に厚さ1nm〜1μmの絶縁膜を形
成した後、ドレインプローブ及びソースプローブをそれ
ぞれ絶縁膜に突刺してSOI薄膜に直接接触した状態で
測定するか、或いはSOI薄膜表面に厚さ2nm〜1μ
mの絶縁膜を形成し、絶縁膜表面に所定のパターンのレ
ジスト層を形成し、レジスト層をマスクにして絶縁膜を
エッチングし、レジスト層を除去してSOI基板を洗浄
し、絶縁膜をマスクにしてエッチングにより表出したS
OI薄膜表面に金属を堆積して一対の電極を形成した
後、一対の電極にドレインプローブ及びソースプローブ
をそれぞれ接触した状態で測定することにより、SOI
薄膜の表面状態の影響を受けずに測定できるため再現性
よくId−Vg特性を測定することができる。この結
果、Id−Vg特性における経時変化による影響を最小
限にすることができる。
As described above, according to the present invention, the Id-Vg characteristics of an SOI substrate using a pseudo MOSFET are measured by forming an insulating film having a thickness of 1 nm to 1 μm on the surface of an SOI thin film and then forming a drain. The probe and the source probe are respectively pierced into the insulating film and measured in a state of directly contacting the SOI thin film, or the thickness is 2 nm to 1 μm on the surface of the SOI thin film.
m, an insulating film having a predetermined pattern is formed on the surface of the insulating film, the insulating film is etched using the resist layer as a mask, the resist layer is removed, the SOI substrate is washed, and the insulating film is masked. S expressed by etching
After a metal is deposited on the surface of the OI thin film to form a pair of electrodes, measurement is performed with the drain probe and the source probe in contact with the pair of electrodes, respectively.
Since the measurement can be performed without being affected by the surface state of the thin film, the Id-Vg characteristics can be measured with good reproducibility. As a result, it is possible to minimize the influence of the change over time on the Id-Vg characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第1の実施の形態における擬似MOSF
ETの断面図。
FIG. 1 shows a pseudo MOSF according to a first embodiment of the present invention.
Sectional drawing of ET.

【図2】この実施の形態における測定装置の構成図。FIG. 2 is a configuration diagram of a measuring device according to the embodiment.

【図3】本第2の実施の形態における擬似MOSFET
の製造方法を工程順に示す断面図。
FIG. 3 is a pseudo MOSFET according to the second embodiment.
Sectional drawing which shows the manufacturing method of FIG.

【図4】実施例1におけるId−Vg特性図FIG. 4 is an Id-Vg characteristic diagram in Example 1.

【図5】実施例2におけるId−Vg特性図FIG. 5 is an Id-Vg characteristic diagram in Example 2.

【図6】比較例1におけるId−Vg特性図FIG. 6 is an Id-Vg characteristic diagram in Comparative Example 1.

【図7】従来例を示す図1に対応する断面図。FIG. 7 is a sectional view showing a conventional example and corresponding to FIG.

【図8】自然酸化膜が形成された図7に対応する断面
図。
FIG. 8 is a sectional view corresponding to FIG. 7 in which a natural oxide film is formed.

【符号の説明】[Explanation of symbols]

10 SOI基板 13 SOI薄膜 16 絶縁膜 17 ドレインプローブ 18 ソースプローブ 29 レジスト層 34 電極 Reference Signs List 10 SOI substrate 13 SOI thin film 16 Insulating film 17 Drain probe 18 Source probe 29 Resist layer 34 Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 擬似MOSFETを用いてSOI基板の
Id−Vg特性を測定する方法において、 前記SOI基板(10)のSOI薄膜(13)表面に厚さ1nm
〜1μmの絶縁膜(16)を形成した後、ドレインプローブ
(17)及びソースプローブ(18)をそれぞれ前記絶縁膜(16)
に突刺して前記SOI薄膜(13)に直接接触した状態で前
記Id−Vg特性を測定することを特徴とする擬似MO
SFETの測定方法。
1. A method for measuring the Id-Vg characteristics of an SOI substrate using a pseudo MOSFET, wherein the SOI thin film (13) of the SOI substrate (10) has a thickness of 1 nm.
After forming an insulating film (16) of ~ 1 μm, drain probe
(17) and the source probe (18) respectively the insulating film (16)
And measuring the Id-Vg characteristic in a state of directly contacting the SOI thin film (13) by piercing the SOI thin film (13).
SFET measurement method.
【請求項2】 擬似MOSFETを用いてSOI基板の
Id−Vg特性を測定する方法において、 前記SOI基板(10)のSOI薄膜(13)表面に厚さ2nm
〜1μmの絶縁膜(16)を形成し、 前記絶縁膜(16)表面に所定のパターンのレジスト層(29)
を形成し、 前記レジスト層(29)をマスクにして前記絶縁膜(16)をエ
ッチングし、 前記レジスト層(29)を除去して前記SOI基板(10)を洗
浄し、 前記絶縁膜(16)をマスクにしてエッチングにより表出し
た前記SOI薄膜(13)表面に金属を堆積して一対の電極
(34)を形成した後、 前記一対の電極(34)にドレインプローブ(17)及びソース
プローブ(18)をそれぞれ接触した状態で前記Id−Vg
特性を測定することを特徴とする擬似MOSFETの測
定方法。
2. A method for measuring the Id-Vg characteristics of an SOI substrate using a pseudo MOSFET, wherein the SOI thin film (13) of the SOI substrate (10) has a thickness of 2 nm.
Forming an insulating film (16) of about 1 μm, a resist pattern (29) having a predetermined pattern on the surface of the insulating film (16);
The insulating film (16) is etched using the resist layer (29) as a mask, the resist layer (29) is removed and the SOI substrate (10) is washed, and the insulating film (16) is formed. A metal is deposited on the surface of the SOI thin film (13) exposed by etching using
After forming (34), the Id-Vg in a state where the drain probe (17) and the source probe (18) are in contact with the pair of electrodes (34), respectively.
A method for measuring a pseudo MOSFET, comprising measuring characteristics.
【請求項3】 絶縁膜(16)が自然酸化膜、化学酸化膜又
は熱酸化膜である請求項1又は2記載の擬似MOSFE
Tの測定方法。
3. The pseudo-MOSFE according to claim 1, wherein the insulating film is a natural oxide film, a chemical oxide film or a thermal oxide film.
Method for measuring T.
JP2000071452A 2000-03-15 2000-03-15 Measurement method of pseudo-mosfet Pending JP2001267384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071452A JP2001267384A (en) 2000-03-15 2000-03-15 Measurement method of pseudo-mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071452A JP2001267384A (en) 2000-03-15 2000-03-15 Measurement method of pseudo-mosfet

Publications (1)

Publication Number Publication Date
JP2001267384A true JP2001267384A (en) 2001-09-28

Family

ID=18590037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071452A Pending JP2001267384A (en) 2000-03-15 2000-03-15 Measurement method of pseudo-mosfet

Country Status (1)

Country Link
JP (1) JP2001267384A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057153A (en) * 2003-08-07 2005-03-03 Shin Etsu Handotai Co Ltd Evaluation method of soi wafer
JP2005333072A (en) * 2004-05-21 2005-12-02 Sumco Corp Evaluation method of semiconductor substrate
WO2006001156A1 (en) * 2004-06-25 2006-01-05 Shin-Etsu Handotai Co., Ltd. Method for evaluating soi wafer
WO2006016448A1 (en) * 2004-08-13 2006-02-16 Shin-Etsu Handotai Co., Ltd. Apparatus for evaluating semiconductor wafer
JP2008016773A (en) * 2006-07-10 2008-01-24 Shin Etsu Handotai Co Ltd Evaluation method of soi wafer
WO2008047478A1 (en) 2006-10-20 2008-04-24 Shin-Etsu Handotai Co., Ltd. Method for evaluating semiconductor wafer
JP2009016681A (en) * 2007-07-06 2009-01-22 Shin Etsu Handotai Co Ltd Method of evaluating soi wafer
US7633305B2 (en) 2004-09-13 2009-12-15 Shin-Etsu Handotai Co., Ltd. Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer
WO2013065094A1 (en) 2011-10-30 2013-05-10 株式会社日本マイクロニクス Device and method for testing of quantum cell by semiconductor probe
WO2013179471A1 (en) 2012-05-31 2013-12-05 株式会社日本マイクロニクス Semiconductor probe for testing quantum cell, test device, and test method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525024B2 (en) * 2003-08-07 2010-08-18 信越半導体株式会社 Evaluation method of SOI wafer
JP2005057153A (en) * 2003-08-07 2005-03-03 Shin Etsu Handotai Co Ltd Evaluation method of soi wafer
JP2005333072A (en) * 2004-05-21 2005-12-02 Sumco Corp Evaluation method of semiconductor substrate
WO2006001156A1 (en) * 2004-06-25 2006-01-05 Shin-Etsu Handotai Co., Ltd. Method for evaluating soi wafer
WO2006016448A1 (en) * 2004-08-13 2006-02-16 Shin-Etsu Handotai Co., Ltd. Apparatus for evaluating semiconductor wafer
US7525327B2 (en) 2004-08-13 2009-04-28 Shin-Etsu Handotai Co., Ltd. Apparatus for evaluating semiconductor wafer
US7633305B2 (en) 2004-09-13 2009-12-15 Shin-Etsu Handotai Co., Ltd. Method for evaluating semiconductor wafer and apparatus for evaluating semiconductor wafer
JP2008016773A (en) * 2006-07-10 2008-01-24 Shin Etsu Handotai Co Ltd Evaluation method of soi wafer
WO2008047478A1 (en) 2006-10-20 2008-04-24 Shin-Etsu Handotai Co., Ltd. Method for evaluating semiconductor wafer
JP2009016681A (en) * 2007-07-06 2009-01-22 Shin Etsu Handotai Co Ltd Method of evaluating soi wafer
WO2013065094A1 (en) 2011-10-30 2013-05-10 株式会社日本マイクロニクス Device and method for testing of quantum cell by semiconductor probe
KR20140101337A (en) 2011-10-30 2014-08-19 가부시키가이샤 니혼 마이크로닉스 Device and method for testing of quantum cell by semiconductor probe
US9164149B2 (en) 2011-10-30 2015-10-20 Kabushiki Kaisha Nihon Micronics Testing device and testing method for quantum battery using semiconductor probe
WO2013179471A1 (en) 2012-05-31 2013-12-05 株式会社日本マイクロニクス Semiconductor probe for testing quantum cell, test device, and test method
US9778284B2 (en) 2012-05-31 2017-10-03 Kabushiki Kaisha Nihon Micronics Semiconductor probe, testing device and testing method for testing quantum battery

Similar Documents

Publication Publication Date Title
JP2001267384A (en) Measurement method of pseudo-mosfet
CN106796196A (en) Method for forming nano gap in Graphene
US10416147B2 (en) Method of manufacturing membrane device, membrane device, and nanopore device
JP4379627B2 (en) Semiconductor wafer evaluation method and semiconductor wafer evaluation apparatus
US6528335B2 (en) Electrical method for assessing yield-limiting asperities in silicon-on-insulator wafers
JP4640204B2 (en) Evaluation method of SOI wafer
JPH02205046A (en) Method and apparatus for measuring semiconductor surface
JP5003288B2 (en) Silicon wafer evaluation method and silicon wafer manufacturing method
JP3384116B2 (en) Method for manufacturing single-crystal Si cantilever and scanning probe microscope
JP2003332399A (en) Method and system for evaluating insulation film
CN103745941B (en) The testing method of the electric property of gate medium
EA020321B1 (en) Sensitive pick up element
JPH1032234A (en) Evaluation of soi substrate
KR100206873B1 (en) Semiconductor device for testing surface characteristics
JP4525024B2 (en) Evaluation method of SOI wafer
JPH08285867A (en) Probe, cantilever and force microscope comprising them
Sun Characterization of metal-oxide-semiconductor structures at low temperatures using self-aligned and vertically coupled aluminum and silicon single-electron transistors
JP5017946B2 (en) Evaluation method of SOI wafer
JP2001351957A (en) Method and apparatus for measuring by scanning electrostatic capacity microscope
Kushner et al. SOI low frequency noise and interface trap density measurements with the pseudo MOSFET
JP2016066760A (en) Evaluation method of soi substrate
JPH09203770A (en) Electric waveform measuring probe and its manufacture
JP2003100831A (en) Method for evaluating silicon wafer
JPH10123190A (en) Method for measuring sheet resistance of semiconductor substrate
JPH04218926A (en) Manufacture of thin film transistor