JP2001267337A - Tablet for resin-sealed semiconductor devices - Google Patents

Tablet for resin-sealed semiconductor devices

Info

Publication number
JP2001267337A
JP2001267337A JP2000080987A JP2000080987A JP2001267337A JP 2001267337 A JP2001267337 A JP 2001267337A JP 2000080987 A JP2000080987 A JP 2000080987A JP 2000080987 A JP2000080987 A JP 2000080987A JP 2001267337 A JP2001267337 A JP 2001267337A
Authority
JP
Japan
Prior art keywords
resin
resin composition
tablet
package
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000080987A
Other languages
Japanese (ja)
Inventor
Hisashi Ito
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2000080987A priority Critical patent/JP2001267337A/en
Publication of JP2001267337A publication Critical patent/JP2001267337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/30Reducing waste in manufacturing processes; Calculations of released waste quantities

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tablet economically by reducing the raw material loss for resin-sealed semiconductor devices, which is superior in workability and formability for sealing a large chip in a small and thin package having low thermal stress in the package to avoid stripping or cracking of the package during heating for mounting, and is superior in solder stress resistance and high in package reliability. SOLUTION: The tablet for resin-sealed semiconductor devices is composed of a resin composition (A), having a modulus of bending elasticity of 980 N/mm2 or low and a resin composition (B) having a modulus of bending elasticity of 9,800 N/mm2 or more, the resin composition (B) is formed so as to surround the resin composition (B) in a double-layer structure, and the resin composition (A) is a composite resin composition containing a resin, having physical cross links of ion bonds or a low-stress thermoplastic elastomer resin and a thermosetting resin composition as the essential components.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、作業性、成形性、
耐半田ストレス性、耐温度サイクル性、耐湿信頼性に優
れた、樹脂封止型半導体装置を提供する、樹脂封止型半
導体装置用タブレットに関するものである。
TECHNICAL FIELD The present invention relates to workability, moldability,
The present invention relates to a tablet for a resin-encapsulated semiconductor device, which provides a resin-encapsulated semiconductor device having excellent solder stress resistance, temperature cycling resistance, and moisture resistance reliability.

【0002】[0002]

【従来の技術】半導体素子を外部環境から保護し、プリ
ント基板への実装を容易にするためのパッケージ技術と
して、従来から樹脂封止技術が広く用いられている。と
ころが近年は、半導体素子の高集積化、高機能化に伴う
素子の大型化、多ピン化が進んでいる。一方、エレクト
ロニクス機器の小型軽量化、高性能化などのニーズか
ら、各種半導体装置には実装の高密度化が望まれ、樹脂
封止型半導体装置も小型薄型化する傾向にある。
2. Description of the Related Art Resin sealing technology has been widely used as a package technology for protecting a semiconductor element from an external environment and facilitating mounting on a printed circuit board. However, in recent years, the size and number of pins of a semiconductor device have been increased due to higher integration and higher functionality of the semiconductor device. On the other hand, due to the need for smaller and lighter electronic devices and higher performance, various semiconductor devices are required to have higher mounting density, and resin-sealed semiconductor devices also tend to be smaller and thinner.

【0003】その結果、従来のDIP(Dual Inline Pl
astic Package)、ZIP(ZigzagInline Plastic Pack
age)のピン挿入型実装から、SOP(Small Outline P
lastic Package)、SOJ(Small Outline J-lead Pla
stic Package)、QFP(Quad Flat Plastic Packag
e)といった表面実装型の需要が急増し、更には半導体
装置の薄型化を図るために、TSOP(Thin Small Out
line Plastic Package)、TSOJ(Thin Small Outli
ne J-lead Plastic Package)、TQFP(ThinQuad Fl
at Plastic Package)といった、厚さが1mm程度以下
の極薄型樹脂封止型半導体装置の開発も進められてい
る。
As a result, the conventional DIP (Dual Inline Pl
astic Package), ZIP (ZigzagInline Plastic Pack)
age) to SOP (Small Outline P)
lastic Package), SOJ (Small Outline J-lead Pla)
stic Package), QFP (Quad Flat Plastic Packag)
e), the demand for surface mount type devices such as TSOP (Thin Small Out) is increasing in order to reduce the thickness of semiconductor devices.
line Plastic Package), TSOJ (Thin Small Outli)
ne J-lead Plastic Package), TQFP (ThinQuad Fl)
At Plastic Package), an ultra-thin resin-encapsulated semiconductor device having a thickness of about 1 mm or less has also been developed.

【0004】しかしながら、このようなチップの大型
化、多ピン化や、パッケージの薄型化に伴い、パッケー
ジの内部応力によるクラックの発生、更にはクラックに
起因する耐湿性の低下等の問題が大きくなってきてい
る。
However, with the increase in the size of chips, the increase in the number of pins, and the reduction in the thickness of the package, cracks due to the internal stress of the package, and furthermore, problems such as a decrease in moisture resistance due to the cracks, etc., increase. Is coming.

【0005】表面実装パッケージでは、赤外リフロー等
により半田付け工程が行われ、実装時に急激に200℃
以上の高温にさらされる。半導体の樹脂封止には、一般
にエポキシ樹脂系の封止材料が広く用いられている。し
かし、エポキシ樹脂系の材料は透湿性を有しており、パ
ッケージ中には少量の水分が存在する。また、半導体封
止装置は、リードフレーム、シリコンチップ、金線、各
種パッシベーション膜と封止樹脂の密着界面が存在し、
封止樹脂と半導体封止装置を構成する全ての材料との密
着界面が、必ずしも同様の接着強度を有してはいない。
そのため、パッケージ内部の水分が所定量を超えた状態
で加熱されると、水分が急激に蒸発し、その蒸気圧によ
ってパッケージ内部に応力が発生し、パッケージを構成
する材料間の接着強度が低い密着界面において、優先的
に剥離やクラックが生じ、素子特性や信頼性を低下させ
る問題が顕在化して来る。このような現象はチップの大
型化、パッケージの薄型化が進むにつれて、より発生し
易くなるため、その解決が強く望まれていた。
[0005] In a surface mount package, a soldering process is performed by infrared reflow or the like.
Exposure to higher temperatures. In general, epoxy resin-based sealing materials are widely used for resin sealing of semiconductors. However, the epoxy resin material has moisture permeability, and a small amount of moisture exists in the package. In addition, the semiconductor sealing device has a contact interface between a lead frame, a silicon chip, a gold wire, various passivation films and a sealing resin,
Adhesion interfaces between the sealing resin and all the materials constituting the semiconductor sealing device do not always have the same adhesive strength.
For this reason, when the package is heated in a state where the moisture inside the package exceeds a predetermined amount, the moisture evaporates rapidly, and a stress is generated inside the package due to the vapor pressure, and the adhesive strength between the materials constituting the package is low. At the interface, peeling and cracking occur preferentially, and the problem of deteriorating element characteristics and reliability becomes apparent. Such a phenomenon is more likely to occur as the chip becomes larger and the package becomes thinner. Therefore, it has been strongly desired to solve the phenomenon.

【0006】パッケージ内部に発生する内部応力は、一
般に線膨張係数と曲げ弾性率の積に比例することが分か
っており、無機充填材料を封止材料中に多量に添加し
て、線膨張係数を低減することが行われている。しか
し、無機充填剤を多量に添加すると曲げ弾性率が向上
し、また成型時の流動性が低下する傾向にあるため、無
機充填剤の添加にも当然ながら限界があり、封止材料と
シリコンチップの線膨張係数のミスマッチによって発生
する、パッケージ内部の熱応力を解消するまでには至っ
ていない。
It has been known that the internal stress generated inside the package is generally proportional to the product of the coefficient of linear expansion and the modulus of bending elasticity, and a large amount of an inorganic filler material is added to the sealing material to reduce the coefficient of linear expansion. Reductions have been made. However, if a large amount of inorganic filler is added, the flexural modulus tends to be improved and the fluidity during molding tends to be reduced. The thermal stress inside the package, which is caused by the mismatch of the coefficient of linear expansion, has not been eliminated.

【0007】また、樹脂封止材料のベースエポキシ樹脂
を、特殊なシリコーン化合物で変性した封止材料を用い
たり(特開昭60−206824号公報、特開昭63−
251419号公報)、ブタジエンゴム等の合成ゴムを
少量添加することにより、曲げ弾性率を小さくする方法
(特開昭60−8315号公報、特開昭60−3125
1号公報)が行われているが、前者では半導体素子との
密着性の低下が発生したり、後者では架橋密度の低下に
よる耐湿信頼性劣化が発生し、十分な特性を有する樹脂
封止材料は得られていないい。一方、パッケージ内部に
発生する、内部剥離やクラックを防止する方法として、
実装前のパッケージの予備乾燥による、内在する水分の
除去が行われているが、この方法はパッケージ中の水分
管理や乾燥工程などの、作業の煩雑さを生じさせるた
め、パッケージが少量の水分を吸湿した状態で実装を行
っても、内部剥離やクラックが発生しないようにするこ
とが望まれていた。
Further, a sealing material obtained by modifying a base epoxy resin as a resin sealing material with a special silicone compound is used (Japanese Patent Application Laid-Open Nos. 60-206824 and 63-206).
251419) and a method of reducing the flexural modulus by adding a small amount of synthetic rubber such as butadiene rubber (JP-A-60-8315, JP-A-60-3125).
No. 1), the former causes a decrease in adhesion to a semiconductor element, and the latter causes a decrease in moisture resistance reliability due to a decrease in crosslink density, and a resin sealing material having sufficient characteristics. Have not been obtained. On the other hand, as a method to prevent internal peeling and cracks that occur inside the package,
Preliminary drying of the package prior to mounting removes the internal moisture.However, this method complicates work such as moisture management in the package and the drying process. It has been desired to prevent internal peeling and cracking from occurring even when mounting is performed while absorbing moisture.

【0008】パッケージ内部に発生する内部剥離やクラ
ックを防止する方法として、多層型のパッケージが提案
されている。例えば、シリコンチップ近傍を低応力化樹
脂組成物で封止し、その外層を、高強度で低吸水性の樹
脂組成物で封止するパッケージ(特開平1−22046
5号公報、特開平7−183431号公報、特開平10
−22422号公報)等があるが、パッケージ内部には
明確な樹脂組成の異なる界面があるため、内部剥離やク
ラック発生の抑制に十分な効果があるとは言い難い。
A multilayer package has been proposed as a method for preventing internal peeling or cracking occurring inside the package. For example, a package in which the vicinity of a silicon chip is sealed with a low-stress resin composition and the outer layer thereof is sealed with a high-strength, low-water-absorbing resin composition (Japanese Patent Laid-Open No. 1-2046)
No. 5, JP-A-7-183431, JP-A-10
However, since there are clear interfaces having different resin compositions inside the package, it is hard to say that the package is sufficiently effective in suppressing internal peeling and cracking.

【0009】また、樹脂組成物の低応力化方法として、
シリコーン弾性体またはオイル状物質を添加する方法が
検討されているが、未硬化の樹脂組成物は、オイル成分
のにじみ出しにより表面粘着性が発現して、作業性を低
下させたり、弾性体により樹脂組成物が増粘するなどの
問題が生じていた。
Further, as a method of reducing the stress of the resin composition,
A method of adding a silicone elastic body or an oil-like substance is being studied, but the uncured resin composition develops surface tackiness due to bleeding of the oil component, which lowers workability or reduces the workability of the elastic body. There have been problems such as an increase in the viscosity of the resin composition.

【0010】本発明者らは、半導体封止装置の信頼性を
向上させる技術として、半導体素子を封止する樹脂組成
物の曲げ弾性率が、半導体装置の表層近傍の樹脂層よ
り、半導体素子近傍の樹脂層に向かって、順に小さくな
る半導体装置を提案している(特願2000−3205
8号)。曲げ弾性率の異なる樹脂組成物の、粗粉砕物の
粒径を規定範囲内で篩分した後に、混合し打錠したタブ
レットを用いて、半導体素子を封止することにより、信
頼性の高い半導体装置が得られるが、樹脂組成物の粉砕
作業の際の篩分工程や微粉砕物の除去等による、工程の
増加や原料歩留まりの低下が問題にされていた。
As a technique for improving the reliability of a semiconductor encapsulation device, the present inventors have proposed that the resin composition for encapsulating a semiconductor element has a flexural modulus that is higher than that of the resin layer near the surface of the semiconductor device. (Japanese Patent Application No. 2000-3205).
No. 8). After sieving the particle size of the coarsely pulverized product of the resin composition having a different flexural modulus within the specified range, using a tablet that has been mixed and tableted, the semiconductor element is sealed, thereby providing a highly reliable semiconductor. Although an apparatus can be obtained, an increase in the number of steps and a decrease in the yield of raw materials due to the sieving step and the removal of the finely pulverized material during the pulverizing operation of the resin composition have been problematic.

【0011】[0011]

【発明が解決しようとする課題】本発明は、大型チップ
を小型かつ薄型のパッケージに封止する際の、作業性及
び成形性に優れ、パッケージ内部の熱応力が小さく、か
つ実装時の加熱によるパッケージ剥離や、クラックが発
生せず、耐半田ストレス性に優れ、パッケージ信頼性の
高い樹脂封止型半導体装置用タブレットを、原料損失を
改善し経済性良く提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides excellent workability and moldability when sealing a large chip in a small and thin package, has a small thermal stress inside the package, and uses a heating method for mounting. An object of the present invention is to provide a tablet for a resin-encapsulated semiconductor device, which does not cause package peeling or cracking, has excellent solder stress resistance, and has high package reliability, with improved raw material loss and economical efficiency.

【0012】[0012]

【課題を解決するための手段】本発明は、樹脂封止型半
導体装置において、半導体素子を封止する樹脂組成物の
曲げ弾性率を、半導体装置の表層近傍の樹脂層より、半
導体素子近傍の樹脂層に向かって、順に小さくすること
によって、パッケージ内部の熱応力が小さく、かつ実装
時の加熱によるパッケージ剥離や、クラックが発生せ
ず、耐半田ストレス性に優れ、パッケージ信頼性が高く
なると言う事実に注目してなされたものである。
According to the present invention, in a resin-sealed semiconductor device, the bending elastic modulus of a resin composition for encapsulating a semiconductor element is made smaller in the vicinity of the semiconductor element than in the surface layer of the semiconductor device. By decreasing in order toward the resin layer, it is said that the thermal stress inside the package is small, the package does not peel off or crack due to heating during mounting, the solder stress resistance is excellent, and the package reliability increases. It was done by paying attention to the facts.

【0013】即ち本発明は、曲げ弾性率が980N/mm2
以下である樹脂組成物(A)と、曲げ弾性率が9800
N/mm2以上である樹脂組成物(B)の、2成分から打錠
したタブレットであって、樹脂組成物(A)の周囲を囲
むように、樹脂組成物(B)が成形されていることを特
徴とする樹脂封止型半導体装置用タブレットであり、さ
らに、そのタブレットを用いて、半導体素子を取り囲む
封止樹脂層の曲げ弾性率が、表層近傍より半導体素子近
傍に向かって、順に小さくなるように、封止成形されて
いることを特徴とする樹脂封止型半導体装置である。
That is, according to the present invention, the flexural modulus is 980 N / mm 2.
The following resin composition (A) and a flexural modulus of 9800
A tablet obtained by tableting two components of the resin composition (B) having an N / mm 2 or more, wherein the resin composition (B) is formed so as to surround the resin composition (A). A tablet for a resin-encapsulated semiconductor device, further comprising: using the tablet, the bending elastic modulus of the encapsulation resin layer surrounding the semiconductor element is gradually reduced from the vicinity of the surface layer to the vicinity of the semiconductor element. A resin-encapsulated semiconductor device characterized by being molded by encapsulation.

【0014】またさらには、樹脂組成物(A)は、熱可
逆的な架橋構造を有する低応力樹脂と、熱硬化性樹脂組
成物とを必須成分とする複合樹脂組成物であり、その熱
可逆的な架橋構造を有する低応力樹脂としては、イオン
結合からなる物理架橋部を有する樹脂、または、熱可塑
性エラストマーを用いるのが良い。
Further, the resin composition (A) is a composite resin composition comprising, as essential components, a low-stress resin having a thermoreversible crosslinked structure and a thermosetting resin composition. As the low stress resin having a typical crosslinked structure, it is preferable to use a resin having a physical crosslinked portion composed of an ionic bond or a thermoplastic elastomer.

【0015】[0015]

【発明の実施の形態】本発明の樹脂封止型半導体装置用
タブレットは、半導体封止用金型のポットに供給された
後、加熱溶融されてキャビティ内に圧送され、熱硬化す
ることにより半導体素子を封止する。この際に、タブレ
ット表面の曲げ弾性率の大きい樹脂が、先に加熱溶融さ
れることで、キャビティ内に先に到達し金型近傍で硬化
する。曲げ弾性率の小さな樹脂は、後から圧送されるた
め、半導体素子近傍で硬化する。このようにして、半導
体素子を封止する樹脂組成物の曲げ弾性率が、半導体装
置の表層近傍のより半導体素子近傍に向かって、順に小
さくなる構造が形成され、更に曲げ弾性率の不連続な界
面が封止材料内部に存在せず、応力集中する界面が存在
しないため、耐半田ストレス性及びパッケージ信頼性が
向上する。
BEST MODE FOR CARRYING OUT THE INVENTION A tablet for a resin-encapsulated semiconductor device according to the present invention is supplied to a pot of a semiconductor encapsulation mold, then heated and melted, pressure-fed into a cavity, and thermally cured. The device is sealed. At this time, the resin having a large flexural modulus on the tablet surface is first heated and melted, so that the resin reaches the cavity first and is hardened near the mold. Since the resin having a low flexural modulus is pressure-fed later, it hardens near the semiconductor element. In this manner, a structure is formed in which the bending elastic modulus of the resin composition for sealing the semiconductor element gradually decreases from near the surface layer of the semiconductor device toward the vicinity of the semiconductor element. Since the interface does not exist inside the sealing material and there is no interface where stress is concentrated, the solder stress resistance and the package reliability are improved.

【0016】本発明に用いる樹脂封止型半導体装置用タ
ブレットの製造方法は、曲げ弾性率が980N/mm2以下
である樹脂組成物(A)と、曲げ弾性率が9800N/m
m2以上である樹脂組成物(B)とを、別々に、ミキサー
により均一混合し、次に、加熱ロールにより70〜90
℃程度の温度で混練し、冷却後粉砕することにより、そ
れぞれの粉砕物を得る。粉砕物は粒径の制約を受けずに
使用することができるため、篩分する工程が必要なく原
料損失を抑えることができる。樹脂組成物(A)の粉砕
物を小さくタブレット化した後に、樹脂組成物(B)の
粉砕物が、先に打錠した曲げ弾性率の小さい樹脂組成物
(A)のタブレットを囲むように、打錠成形金型に供給
して加圧成形することにより、本発明のタブレットを作
製できる。タブレットの樹脂組成物(A)と樹脂組成物
(B)の比率は、半導体封止装置の形態に応じて変える
ことができる。
The method for producing a tablet for a resin-encapsulated semiconductor device used in the present invention comprises a resin composition (A) having a flexural modulus of 980 N / mm 2 or less, and a flexural modulus of 9800 N / m 2.
m 2 or more at which the resin composition and (B), separately, were uniformly mixed by a mixer, then, by heating rolls 70 and 90
Each kneaded material is obtained by kneading at a temperature of about ℃, cooling and pulverizing. Since the pulverized material can be used without being restricted by the particle size, the step of sieving is not required, and the loss of the raw material can be suppressed. After the pulverized product of the resin composition (A) is formed into small tablets, the pulverized product of the resin composition (B) surrounds the tablet of the resin composition (A) having a low flexural modulus previously compressed, The tablet of the present invention can be produced by supplying it to a tableting mold and performing pressure molding. The ratio of the resin composition (A) to the resin composition (B) of the tablet can be changed according to the form of the semiconductor sealing device.

【0017】本発明に用いる曲げ弾性率の小さい樹脂組
成物(A)は、その曲げ弾性率が980N/mm2以下であ
ることが好ましい。曲げ弾性率が980N/mm2を越える
と、封止樹脂とチップ及びその他の構成部材との間に発
生する、内部応力を低減する効果が低下し、実装時の加
熱によるパッケージ剥離、クラック等が発生し易くな
る。
The resin composition (A) having a small flexural modulus used in the present invention preferably has a flexural modulus of 980 N / mm 2 or less. If the flexural modulus exceeds 980 N / mm 2 , the effect of reducing internal stress generated between the sealing resin and the chip and other constituent members is reduced, and package peeling and cracks due to heating during mounting are reduced. It is easy to occur.

【0018】曲げ弾性率の小さい樹脂組成物(A)とし
ては、熱可逆的な架橋構造を有する低応力樹脂と熱硬化
性樹脂組成物を含有する複合樹脂組成物が挙げられる。
また、熱可逆的な粘度変化を示す樹脂としては、イオン
結合からなる物理架橋部を有している樹脂、または、熱
可塑性エラストマーなどの、室温での作業性と高温時の
流動性を両立する樹脂系がよく、熱硬化樹脂組成物との
室温及び高温時の相溶性が良好なものがよい。熱可逆的
な架橋構造を有していない低応力樹脂は、取り扱い等の
作業性に優れ、低応力化に寄与できるものの、溶融粘度
が増加し、チップシフト及び金線流れ等の不良を引き起
こす。また、低分子量のオイル状物質や液状ゴム成分の
場合は、成型時の不良を抑え低応力化に寄与できるもの
の、表面粘着性等の発現により、取り扱いなどの作業性
が低下する。
Examples of the resin composition (A) having a small flexural modulus include a composite resin composition containing a low stress resin having a thermoreversible crosslinked structure and a thermosetting resin composition.
In addition, as a resin exhibiting a thermoreversible viscosity change, a resin having a physical cross-linking portion composed of an ionic bond, or a thermoplastic elastomer, etc., has both workability at room temperature and fluidity at high temperature. A resin-based resin having good compatibility with the thermosetting resin composition at room temperature and high temperature is preferred. A low-stress resin having no thermoreversible cross-linking structure is excellent in workability in handling and the like, and can contribute to lowering the stress, but increases the melt viscosity and causes defects such as chip shift and gold wire flow. In the case of an oily substance or a liquid rubber component having a low molecular weight, although defects during molding can be suppressed and stress can be reduced, workability such as handling decreases due to the development of surface tackiness and the like.

【0019】イオン結合からなる物理架橋部を有してい
る樹脂としては、末端または分子鎖内にカルボキシル基
やスルホン酸基を、少なくとも2個以上有している、ポ
リイソプレン、ポリアクリロニトリルブタジエン共重合
体、ポリクロロプレン、ポリエチレンプロピレン共重合
体、ポリブタジエン、スチレンブタジエン共重合体、水
添ポリブタジエン、水添ポリイソプレン、ポリアクリ
ル、シリコーン、ポリウレタン、ポリフッ化ビニリデ
ン、ポリシアン化ビニリデン、ポリアクリル酸エステ
ル、ポリメタクリル酸エステル等の樹脂を、金属酸化物
や、金属水酸化物でイオン架橋したものが挙げられる。
また、イオン結合からなる物理架橋部を有している樹脂
の分子鎖は、直鎖状、分岐状いずれでも良い。
Examples of the resin having a physical cross-linking portion composed of an ionic bond include polyisoprene and polyacrylonitrile-butadiene copolymer having at least two carboxyl groups or sulfonic acid groups at the terminal or in the molecular chain. Coalescence, polychloroprene, polyethylene propylene copolymer, polybutadiene, styrene butadiene copolymer, hydrogenated polybutadiene, hydrogenated polyisoprene, polyacryl, silicone, polyurethane, polyvinylidene fluoride, polyvinylidene cyanide, polyacrylate, polymethacryl Examples thereof include resins obtained by ion-crosslinking a resin such as an acid ester with a metal oxide or a metal hydroxide.
The molecular chain of the resin having a physical cross-linking portion composed of an ionic bond may be linear or branched.

【0020】また、熱可塑性エラストマーとしては、ポ
リウレタン系、ポリアミド系、ポリスチレン系、ポリエ
ステル系、ポリエーテル系等の樹脂が挙げられる。
Examples of the thermoplastic elastomer include polyurethane-based, polyamide-based, polystyrene-based, polyester-based, and polyether-based resins.

【0021】熱可逆的な架橋構造を有する樹脂の分子量
は、数千〜数万程度であることが好ましい。分子量が数
千未満の場合には、樹脂軟化点が低いために取り扱いし
難い樹脂となり、更には、架橋間の分子量が小さくな
り、非常に脆い樹脂組成物になってしまう。また、数万
程度を越える場合には、高温時のムーニー粘度が高くな
り、成形性が低下する。曲げ弾性率の小さい樹脂の樹脂
成分として使用するには、曲げ弾性率と成形性の兼ね合
いから、実用的な分子量の範囲は1000〜50000
程度である。しかし、これに限定されるものではない。
The resin having a thermoreversible crosslinked structure preferably has a molecular weight of several thousands to tens of thousands. When the molecular weight is less than several thousand, the resin has a low softening point and is difficult to handle, and further, the molecular weight between crosslinks becomes small, resulting in a very brittle resin composition. On the other hand, when it exceeds about tens of thousands, the Mooney viscosity at a high temperature becomes high, and the moldability decreases. For use as a resin component of a resin having a low flexural modulus, the practical molecular weight is in the range of 1,000 to 50,000 in consideration of the flexural modulus and moldability.
It is about. However, it is not limited to this.

【0022】曲げ弾性率の小さい樹脂組成物(A)に含
有される熱硬化性樹脂組成物としては、エポキシ樹脂、
硬化剤、硬化促進剤、及び無機充填剤を必須成分とする
樹脂組成物が好ましい。エポキシ樹脂及び硬化剤につい
ては、常温で液状または半固形のものが、高温時に低粘
度を示す点でより好ましい。
The thermosetting resin composition contained in the resin composition (A) having a low flexural modulus includes epoxy resin,
A resin composition containing a curing agent, a curing accelerator, and an inorganic filler as essential components is preferable. The epoxy resin and the curing agent are more preferably liquid or semi-solid at normal temperature, since they exhibit low viscosity at high temperatures.

【0023】一方、本発明で用いる曲げ弾性率の大きい
樹脂組成物(B)は、9800N/mm2以上であることが
好ましい。9800N/mm2未満であると、パッケージ自
体の機械的な強度が低下するために、パッケージの変形
が容易になり、剥離やクラックが生じ、更には半導体素
子の破壊が発生するために好ましくない。
On the other hand, the resin composition (B) having a large flexural modulus used in the present invention is preferably at least 9800 N / mm 2 . If it is less than 9800 N / mm 2 , the mechanical strength of the package itself is reduced, so that the package is easily deformed, peeling or cracking occurs, and furthermore, the semiconductor element is broken, which is not preferable.

【0024】曲げ弾性率がの大きい樹脂組成物(B)と
しては、エポキシ樹脂、硬化剤、硬化促進剤及び無機充
填剤を必須成分とする樹脂組成物が好ましい。エポキシ
樹脂としては、ビスフェノールA骨格、ビスフェノール
F骨格、ビフェニル骨格、ジシクロペンタジエン型骨
格、あるいはナフタレン骨格を有する2官能型のエポキ
シ樹脂から選ばれた樹脂を用いるのがよく、また、硬化
剤としては、分子内にフェノール性水酸基を2個以上含
むフェノール系化合物を用いるのが良い。エポキシ樹脂
とフェノール樹脂(硬化剤)との配合比は、エポキシ樹
脂のエポキシ基とフェノール樹脂の水酸基との当量比
が、0.5〜5の範囲内が好ましい。当量比が0.5未
満または5を越えるものは、耐湿性、成形性が悪くなる
ので好ましくない。
As the resin composition (B) having a large flexural modulus, a resin composition containing an epoxy resin, a curing agent, a curing accelerator and an inorganic filler as essential components is preferable. As the epoxy resin, it is preferable to use a resin selected from a bifunctional epoxy resin having a bisphenol A skeleton, a bisphenol F skeleton, a biphenyl skeleton, a dicyclopentadiene skeleton, or a naphthalene skeleton. It is preferable to use a phenolic compound containing two or more phenolic hydroxyl groups in the molecule. As for the compounding ratio of the epoxy resin and the phenol resin (curing agent), the equivalent ratio of the epoxy group of the epoxy resin to the hydroxyl group of the phenol resin is preferably in the range of 0.5 to 5. If the equivalent ratio is less than 0.5 or more than 5, the moisture resistance and the moldability are deteriorated, which is not preferable.

【0025】また、硬化促進剤としては、テトラ置換ホ
スホニウムテトラ置換ボレート、三級ホスフィン化合物
やその誘導体などのリン系化合物、またはイミダゾール
類、ジアザビシクロ化合物、三級アミン化合物、二級ア
ミン化合物や、これらの誘導体などの含窒素系の化合物
がよく、樹脂成分にたいし0.1から5wt%の範囲で
配合される。
Examples of the curing accelerator include phosphorus-based compounds such as tetra-substituted phosphonium tetra-substituted borate, tertiary phosphine compounds and derivatives thereof, imidazoles, diazabicyclo compounds, tertiary amine compounds, secondary amine compounds, and the like. Nitrogen-containing compounds, such as the derivatives of the above, are preferably blended with the resin component in the range of 0.1 to 5 wt%.

【0026】無機充填剤としては、シリカ粉末、アルミ
ナ、層状粘土鉱物及び有機化した層状粘土等があげら
れ、これらの無機充填剤を2種類以上併用してもよい。
層状粘土鉱物としては、モンモリロナイト、サポナイ
ト、ヘクトライト、バイデライト、スティブンサイト、
ノントロナイト等のスメクタイト系粘土鉱物、バーミキ
ュライト、ハロサイト、膨潤性マイカ、α型リン酸ジル
コニウム、γ型リン酸ジルコニウム等があり、天然のも
のでも合成されたものでもよい。層状粘土鉱物を有機化
する化合物としては、スルホニウム塩型、アンモニウム
塩型、ホスホニウム塩型、酸性リン酸エステル型などの
有機化合物が用いられる。
Examples of the inorganic filler include silica powder, alumina, a layered clay mineral and an organically modified layered clay. Two or more of these inorganic fillers may be used in combination.
Montmorillonite, saponite, hectorite, beidellite, stevensite,
There are smectite-based clay minerals such as nontronite, vermiculite, halosite, swellable mica, α-type zirconium phosphate, γ-type zirconium phosphate, and the like, which may be natural or synthesized. As the compound for organizing the layered clay mineral, an organic compound such as a sulfonium salt type, an ammonium salt type, a phosphonium salt type, and an acidic phosphate ester type is used.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれによって何ら限定されるものではな
い。まず、曲げ弾性率の小さい樹脂組成物と大きい樹脂
組成物の粉砕物をそれぞれ調製し、粉砕後の回収率を調
べた。次に、それを用いて2層構造のタブレットを作
り、低圧トランスファー成形により、6mm角チップサイ
ズの80ピンQFPを成形して、成形品の表面近傍およ
びチップ近傍の樹脂の曲げ弾性率を測定した。さらに、
成形品の特性評価のため、耐ヒートサイクル性および耐
半田クラック性の試験を行なった。耐ヒートサイクル性
および耐半田クラック性の、試験方法および条件は次の
通りとし、測定結果はまとめて表1に示した。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited thereto. First, pulverized products of a resin composition having a small flexural modulus and a resin composition having a large flexural modulus were prepared, and the recovery rate after pulverization was examined. Next, a tablet having a two-layer structure was manufactured using the tablet, and an 80-pin QFP having a chip size of 6 mm square was formed by low-pressure transfer molding, and the flexural modulus of the resin near the surface of the molded product and near the chip was measured. . further,
In order to evaluate the characteristics of the molded product, a test for heat cycle resistance and solder crack resistance was performed. The test methods and conditions for heat cycle resistance and solder crack resistance were as follows, and the measurement results are shown in Table 1.

【0028】1) 耐ヒートサイクル性 サンプルを、−65℃(30分)⇔150℃(30分)
の条件下で、1000サイクル冷熱衝撃を与えた時の、
不良数/テストサンプル数を調べた。
1) Heat cycle resistance The sample was subjected to -65 ° C (30 minutes) @ 150 ° C (30 minutes).
Under the conditions of 1000 cycles of thermal shock,
The number of defects / the number of test samples was examined.

【0029】2) 耐半田クラック性 サンプルを、HH85℃,85%の環境下で168時間
処理した後に、IRリフローを260℃で3回行った後
に、超音波映像装置でクラックを観察し、不良数/テス
トサンプル数を調べた。
2) Solder crack resistance After the sample was treated for 168 hours in an environment of 85% HH and 85%, IR reflow was performed three times at 260 ° C., and cracks were observed with an ultrasonic imaging apparatus. The number / number of test samples was determined.

【0030】(実施例1)まず、熱可逆的な架橋構造を
有する低応力樹脂として、カルボキシル基末端ポリブタ
ジエン−アクリロニトリル共重合体(宇部興産社製 CTB
N1300X31、数平均分子量3500)と、その共重合体の含有
酸基の1倍当量の水酸化カルシウム(キシダ化学社製、
試薬)を、水/テトラヒドロフラン混合溶媒中で、室温
にて中和反応させ、イオン架橋を有する常温でゴム弾性
体である低応力樹脂を調製した。
Example 1 First, as a low stress resin having a thermoreversible crosslinked structure, a carboxyl group-terminated polybutadiene-acrylonitrile copolymer (CTB manufactured by Ube Industries, Ltd.)
N1300X31, number average molecular weight 3500) and calcium hydroxide (Kishida Chemical Co., Ltd., one equivalent of the acid group contained in the copolymer)
Reagent) was subjected to a neutralization reaction in a mixed solvent of water / tetrahydrofuran at room temperature to prepare a low-stress resin as a rubber elastic body at room temperature having ionic crosslinking.

【0031】得られた低応力樹脂20重量部、ビフェニ
ル型エポキシ樹脂(油化シェル社製YX-4000、エポキシ
当量193)10重量部、およびノボラック樹脂(三井
化学社製 XL-225-3L、水酸基当量174)10重量部
を、150℃にて溶融混合し、冷却後、粉砕した後に、
トリフェニルホスフィン0.2重量部、カルナバワック
ス0.3重量部、および溶融シリカ粉末60重量部を加
えて、ミキサーにより常温で均一混合し、さらに、加熱
ロールにより70〜90℃で混練し、冷却後、粉砕し
て、曲げ弾性率の小さい樹脂組成物の粉砕物を得た。粉
砕物は篩分せずにそのまま使用し、粉砕後の回収率は9
9%であった。また、この樹脂組成物の硬化物の曲げ弾
性率は、390N/mm2であった。
20 parts by weight of the obtained low stress resin, 10 parts by weight of a biphenyl type epoxy resin (YX-4000 manufactured by Yuka Shell Co., Ltd., epoxy equivalent: 193), and a novolak resin (XL-225-3L manufactured by Mitsui Chemicals, hydroxyl group) Equivalent 174) 10 parts by weight were melt-mixed at 150 ° C., cooled, pulverized,
0.2 parts by weight of triphenylphosphine, 0.3 parts by weight of carnauba wax and 60 parts by weight of fused silica powder are added, uniformly mixed at room temperature by a mixer, and further kneaded at 70 to 90 ° C. by a heating roll, and cooled. Thereafter, the mixture was pulverized to obtain a pulverized resin composition having a low flexural modulus. The pulverized material is used without sieving, and the recovery after pulverization is 9
9%. The flexural modulus of the cured product of this resin composition was 390 N / mm 2 .

【0032】次に、曲げ弾性率の大きい封止樹脂とし
て、o−クレゾールノボラックエポキシ樹脂(日本化薬
社製 EOCN-1020-55、エポキシ当量196)100重量
部、フェノールノボラック樹脂(住友デュレズ社製 PR-
51470、水酸基当量104)54重量部、トリフェニル
ホスフィン1.8重量部、カルナバワックス2.7重量
部、および溶融シリカ粉末1100重量部を、ミキサー
により常温で均一混合し、加熱ロールにより70〜90
℃で混練し、冷却後、粉砕して、曲げ弾性率の大きい樹
脂組成物の粉砕物を得た。粉砕物は篩分せずにそのまま
使用し、粉砕後の回収率は99%であった。また、この
樹脂組成物の硬化物の曲げ弾性率は、17640N/mm2
であった。
Next, as a sealing resin having a large flexural modulus, 100 parts by weight of o-cresol novolak epoxy resin (EOCN-1020-55, Nippon Kayaku Co., Ltd., epoxy equivalent: 196) and phenol novolak resin (Sumitomo Durez Co., Ltd.) PR-
51470, hydroxy equivalent 104) 54 parts by weight, 1.8 parts by weight of triphenylphosphine, 2.7 parts by weight of carnauba wax, and 1100 parts by weight of fused silica powder are uniformly mixed at room temperature by a mixer, and 70 to 90 parts by a heating roll.
C., kneaded, cooled and pulverized to obtain a pulverized resin composition having a large flexural modulus. The pulverized product was used without sieving, and the recovery after pulverization was 99%. The cured product of this resin composition had a flexural modulus of 17640 N / mm 2.
Met.

【0033】前記で得られた曲げ弾性率の小さい樹脂組
成物の粉砕物をタブレット化した後、曲げ弾性率の大き
い樹脂組成物と小さい樹脂組成物の重量比が4/6にな
るように、曲げ弾性率の大きい樹脂組成物の粉砕物を打
錠成形機に供給して、タブレット化した。作製したタブ
レットを用いて、低圧トランスファー成形にて、175
℃、6.9MP(70kg/cm2)、120秒の条件で、6
mm角チップサイズの80ピンQFPを成形し、更に得ら
れた成形品を、180℃で5時間加熱して硬化させた。
成形品は、表面近傍の樹脂の曲げ弾性率が17100N
/mm2で、チップ近傍の樹脂は420N/mm2であり、中
間層での不連続な界面はなかった。
After the pulverized product of the resin composition having a low flexural modulus obtained above is tabletted, the weight ratio of the resin composition having a high flexural modulus to the resin composition having a low flexural modulus becomes 4/6. A pulverized product of the resin composition having a large flexural modulus was supplied to a tableting machine to form a tablet. 175 by low pressure transfer molding using the prepared tablet
℃, 6.9MP (70kg / cm 2 ), at 120 seconds, 6
An 80-pin QFP having a chip size of mm square was molded, and the obtained molded product was cured by heating at 180 ° C. for 5 hours.
The molded product has a bending elastic modulus of 17100N for the resin near the surface.
/ Mm 2 , the resin near the chip was 420 N / mm 2 , and there was no discontinuous interface in the intermediate layer.

【0034】(実施例2)熱可逆的な架橋構造を有する
低応力樹脂として、エステル系熱可塑性エラストマー
(東洋紡績社製 P-30B)を10重量部、ビフェニル型エ
ポキシ樹脂(油化シェル社製 YX-4000)10重量部、お
よびノボラック樹脂(三井化学社製 XL-225-3L)10重
量部を、180℃にて溶融混合し、冷却後、粉砕した
後、トリフェニルホスフィン0.2重量部、カルナバワ
ックス0.3重量部、および溶融シリカ粉末70重量部
を、ミキサーにより常温で均一混合し、加熱ロールによ
り70〜90℃で混練し、冷却後、粉砕して、曲げ弾性
率の小さい樹脂組成物の粉砕物を得た。粉砕物は篩分せ
ずにそのまま使用し、粉砕後の回収率は99%であっ
た。また、得られた樹脂組成物の硬化物の曲げ弾性率
は、650N/mm2であった。
Example 2 As a low-stress resin having a thermoreversible crosslinked structure, 10 parts by weight of an ester-based thermoplastic elastomer (P-30B manufactured by Toyobo Co., Ltd.) and a biphenyl-type epoxy resin (manufactured by Yuka Shell Co., Ltd.) 10 parts by weight of YX-4000) and 10 parts by weight of novolak resin (XL-225-3L manufactured by Mitsui Chemicals, Inc.) are melt-mixed at 180 ° C., cooled, pulverized, and then 0.2 parts by weight of triphenylphosphine. , 0.3 parts by weight of carnauba wax and 70 parts by weight of fused silica powder are uniformly mixed at room temperature by a mixer, kneaded at 70 to 90 ° C. by a heating roll, cooled, and crushed to obtain a resin having a low flexural modulus. A crushed product of the composition was obtained. The pulverized product was used without sieving, and the recovery after pulverization was 99%. The flexural modulus of the cured product of the obtained resin composition was 650 N / mm 2 .

【0035】得られた曲げ弾性率の小さい樹脂組成物の
粉砕物をタブレット化した後、曲げ弾性率の大きい樹脂
組成物と小さい樹脂組成物の重量比が4/6になるよう
に、実施例1と同様にして調製した、曲げ弾性率の大き
い樹脂組成物の粉砕物を打錠成形機に供給して、タブレ
ット化した。作製したタブレットを用いて、実施例1と
同様にして80ピンQFPの成形品を得た。成形品は、
表面近傍の樹脂の曲げ弾性率が17100N/mm2で、チ
ップ近傍の樹脂は680N/mm2であり、中間層での不連
続な界面はなかった。
The resulting pulverized resin composition having a low flexural modulus is tableted, and the weight ratio of the resin composition having a high flexural modulus to the resin composition having a low flexural modulus becomes 4/6. The pulverized product of the resin composition having a large flexural modulus prepared in the same manner as in Example 1 was supplied to a tableting machine to form a tablet. Using the produced tablet, a molded product of 80-pin QFP was obtained in the same manner as in Example 1. Molded products are
The bending elastic modulus of the resin near the surface was 17,100 N / mm 2 , and the resin near the chip was 680 N / mm 2 , and there was no discontinuous interface in the intermediate layer.

【0036】(比較例1)実施例1に記載した配合およ
び方法で調製した、曲げ弾性率の小さい樹脂組成物と大
きい樹脂組成物の各粉砕物を、それぞれ篩分して、粒径
が0.5〜2mmの粉砕物を分取した。粉砕物の回収率
は、曲げ弾性率の小さい樹脂組成物で80%、曲げ弾性
率の大きい樹脂組成物では76%であった。
(Comparative Example 1) Each pulverized product of the resin composition having a small flexural modulus and the resin composition having a large flexural modulus prepared by the compounding and the method described in Example 1 was sieved to obtain a particle size of 0. A pulverized product of 0.5 to 2 mm was collected. The recovery rate of the pulverized product was 80% for the resin composition having a low flexural modulus and 76% for the resin composition having a high flexural modulus.

【0037】得られた曲げ弾性率の小さい樹脂組成物と
大きい樹脂組成物の各粉砕物を、重量比1/1の割合
で、ブレンダーにより均一混合した後、タブレット化
し、実施例1と同様にして80ピンQFPの成形品を得
た。成形品は、表面近傍の樹脂の曲げ弾性率が1680
0N/mm2で、チップ近傍の樹脂は410N/mm2であり、
中間層での不連続な界面はなかった。
The pulverized products of the resin composition having a small flexural modulus and the resin composition having a large flexural modulus were uniformly mixed in a blender at a weight ratio of 1/1 by a blender. Thus, a molded product of 80-pin QFP was obtained. As for the molded product, the bending elastic modulus of the resin near the surface is 1680.
In 0N / mm 2, the resin chips neighborhood is 410N / mm 2,
There were no discontinuous interfaces in the middle layer.

【0038】(比較例2)実施例2に記載した配合およ
び方法で調製した、曲げ弾性率の小さい樹脂組成物と、
実施例1に従って調製した、曲げ弾性率の大きい樹脂組
成物の各粉砕物を、それぞれ篩分して、粒径が0.5〜
2mmの粉砕物を分取した。粉砕物の回収率は、曲げ弾
性率の小さい樹脂組成物で82%、曲げ弾性率の大きい
樹脂組成物では76%であった。
(Comparative Example 2) A resin composition having a low flexural modulus, prepared by the formulation and method described in Example 2,
Each pulverized product of the resin composition having a large flexural modulus prepared according to Example 1 was sieved to obtain a particle size of 0.5 to 0.5.
A 2 mm pulverized product was collected. The recovery rate of the pulverized material was 82% for the resin composition having a low flexural modulus and 76% for the resin composition having a high flexural modulus.

【0039】得られた曲げ弾性率の小さい樹脂組成物と
大きい樹脂組成物の各粉砕物を、重量比1/1の割合
で、ブレンダーにより均一混合した後、タブレット化
し、実施例1と同様にして80ピンQFPの成形品を得
た。成形品は、表面近傍の樹脂の曲げ弾性率が1700
0N/mm2で、チップ近傍の樹脂は720N/mm2であり、
中間層での不連続な界面はなかった。
The pulverized products of the resin composition having a small flexural modulus and the resin composition having a large flexural modulus were uniformly mixed in a blender at a ratio of 1/1 by weight, and then tableted. Thus, a molded product of 80-pin QFP was obtained. In the molded product, the bending elastic modulus of the resin near the surface is 1700.
0 N / mm 2 , the resin near the chip is 720 N / mm 2 ,
There were no discontinuous interfaces in the middle layer.

【0040】[0040]

【表1】 [Table 1]

【0041】表1にまとめた結果から明らかなように、
本発明の樹脂封止型半導体装置用タブレットは、半導体
装置の表面近傍およびチップ近傍における樹脂層の曲げ
弾性率、耐ヒートサイクル性、および耐半田クラック性
については、従来のタブレットである比較例と、ほヾ同
等の特性を維持しており、これに加えて、樹脂粉砕物の
回収率はほヾ100%に近く、従来のタブレットに比較
して格段に有利であると言える。
As is clear from the results summarized in Table 1,
The tablet for a resin-encapsulated semiconductor device of the present invention has a flexural modulus, heat cycle resistance, and solder crack resistance of a resin layer near the surface of the semiconductor device and near the chip. In addition to this, the recovery rate of the resin pulverized matter is close to about 100%, which can be said to be extremely advantageous as compared with the conventional tablet.

【0042】[0042]

【発明の効果】本発明によれば、作業性、成形性に優
れ、更にパッケージ内部に熱応力が発生し難いため、実
装時の加熱によるパッケージ剥離、クラックが発生せ
ず、耐半田ストレス性に優れ、耐温度サイクル性、耐湿
信頼性の高い樹脂封止型半導体装置用タブレットを、原
料損失を改善し経済性良く提供することができる。
According to the present invention, the workability and the formability are excellent, and the thermal stress is hardly generated inside the package. Therefore, the package does not peel or crack due to the heating during mounting, and the solder stress resistance is improved. A tablet for a resin-encapsulated semiconductor device having excellent temperature cycle resistance and high humidity resistance reliability can be provided with improved raw material loss and economical efficiency.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 曲げ弾性率が980N/mm2以下である樹
脂組成物(A)と、曲げ弾性率が9800N/mm2以上で
ある樹脂組成物(B)の、2成分から打錠したタブレッ
トであって、樹脂組成物(A)の周囲を囲むように、樹
脂組成物(B)が成形されている、ことを特徴とする樹
脂封止型半導体装置用タブレット。
1. A bending resin composition elastic modulus at 980 N / mm 2 or less and (A), bending the resin composition elastic modulus is 9800N / mm 2 or more (B), tabletting and tablet bicomponent A resin-encapsulated semiconductor device tablet, wherein the resin composition (B) is molded so as to surround the periphery of the resin composition (A).
【請求項2】 樹脂組成物(A)が、熱可逆的な架橋構
造を有する低応力樹脂と熱硬化性樹脂組成物とを、必須
成分とする複合樹脂組成物であることを特徴とする、請
求項1記載の樹脂封止型半導体装置用タブレット。
2. The resin composition (A) is a composite resin composition comprising, as essential components, a low-stress resin having a thermoreversible crosslinked structure and a thermosetting resin composition. The tablet for a resin-encapsulated semiconductor device according to claim 1.
【請求項3】 熱可逆的な架橋構造を有する低応力樹脂
が、イオン結合からなる物理架橋部を有する樹脂である
ことを特徴とする、請求項2記載の樹脂封止型半導体装
置用タブレット。
3. The tablet for a resin-encapsulated semiconductor device according to claim 2, wherein the low-stress resin having a thermoreversible cross-linking structure is a resin having a physical cross-linking portion composed of an ionic bond.
【請求項4】 熱可逆的な架橋構造を有する低応力樹脂
が、熱可塑性エラストマーであることを特徴とする、請
求項2記載の樹脂封止型半導体装置用タブレット。
4. The tablet for a resin-encapsulated semiconductor device according to claim 2, wherein the low-stress resin having a thermoreversible crosslinked structure is a thermoplastic elastomer.
【請求項5】 請求項1乃至請求項4のいずれかに記載
された、樹脂封止型半導体装置用タブレットを用いて、
半導体素子を取り囲む封止樹脂層の曲げ弾性率が、表層
近傍より半導体素子近傍に向かって、順に小さくなるよ
うに、封止成形されていることを特徴とする樹脂封止型
半導体装置。
5. A resin-sealed semiconductor device tablet according to claim 1,
A resin-encapsulated semiconductor device characterized by being molded so that a bending elastic modulus of an encapsulating resin layer surrounding a semiconductor element decreases in order from the vicinity of the surface layer to the vicinity of the semiconductor element.
JP2000080987A 2000-03-22 2000-03-22 Tablet for resin-sealed semiconductor devices Pending JP2001267337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080987A JP2001267337A (en) 2000-03-22 2000-03-22 Tablet for resin-sealed semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080987A JP2001267337A (en) 2000-03-22 2000-03-22 Tablet for resin-sealed semiconductor devices

Publications (1)

Publication Number Publication Date
JP2001267337A true JP2001267337A (en) 2001-09-28

Family

ID=18597984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080987A Pending JP2001267337A (en) 2000-03-22 2000-03-22 Tablet for resin-sealed semiconductor devices

Country Status (1)

Country Link
JP (1) JP2001267337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053694A1 (en) * 2006-10-27 2008-05-08 Toagosei Co., Ltd. Novel lamellar zirconium phosphate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053694A1 (en) * 2006-10-27 2008-05-08 Toagosei Co., Ltd. Novel lamellar zirconium phosphate
US8066810B2 (en) 2006-10-27 2011-11-29 Toagosei Co., Ltd. Lamellar zirconium phosphate
JP2012254925A (en) * 2006-10-27 2012-12-27 Toagosei Co Ltd Novel lamellar zirconium phosphate
JP5157911B2 (en) * 2006-10-27 2013-03-06 東亞合成株式会社 Resin composition for sealing electronic parts

Similar Documents

Publication Publication Date Title
KR19980018709A (en) Resin-sealed semiconductor device and manufacturing method
JP3603483B2 (en) Semiconductor element sealing material and semiconductor device using the same
JP4772305B2 (en) Sheet-shaped resin composition for compression molding, resin-encapsulated semiconductor device, and method for manufacturing the same
JP2001267337A (en) Tablet for resin-sealed semiconductor devices
JPH05299537A (en) Epoxy resin composition
JP2001223304A (en) Resin encapsulated semiconductor device
JPH09143345A (en) Epoxy resin composition
JP3259968B2 (en) Semiconductor device manufacturing method
JPH0957749A (en) Epoxy resin tablet for sealing
JP5098125B2 (en) Epoxy resin composition and semiconductor device
JP2816290B2 (en) Resin-sealed semiconductor device
JP2001151861A (en) Epoxy resin composition and semiconductor device
JP2922672B2 (en) Semiconductor device manufacturing method
JP2003246845A (en) Liquid epoxy resin composition for sealing semiconductor, and semiconductor device
JPH0859795A (en) Semiconductor device
JP2985706B2 (en) Epoxy resin composition for sealing and semiconductor device using the same
JPH11335527A (en) Epoxy resin composition for semiconductor sealing
JP4734731B2 (en) Method for producing epoxy resin composition for semiconductor encapsulation
JP2000281748A (en) Epoxy resin composition and semiconductor device
JP2000226497A (en) Epoxy resin composition and semiconductor device
JPH09208807A (en) Epoxy resin composition for sealing material and semiconductor device using the same
JP2951089B2 (en) Epoxy resin composition
JP3302259B2 (en) Epoxy resin composition
JPH09129786A (en) Semiconductor device
JP3533976B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device