JP2001264406A - Azimuth detection device of movable body - Google Patents

Azimuth detection device of movable body

Info

Publication number
JP2001264406A
JP2001264406A JP2000078599A JP2000078599A JP2001264406A JP 2001264406 A JP2001264406 A JP 2001264406A JP 2000078599 A JP2000078599 A JP 2000078599A JP 2000078599 A JP2000078599 A JP 2000078599A JP 2001264406 A JP2001264406 A JP 2001264406A
Authority
JP
Japan
Prior art keywords
antenna
phase difference
double phase
calculated
satellites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078599A
Other languages
Japanese (ja)
Other versions
JP3502007B2 (en
Inventor
Mikio Nakamura
幹男 中村
Yuji Takara
裕二 高良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2000078599A priority Critical patent/JP3502007B2/en
Publication of JP2001264406A publication Critical patent/JP2001264406A/en
Application granted granted Critical
Publication of JP3502007B2 publication Critical patent/JP3502007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the azimuth detection device of a movable body, capable of inexpensively finding a stem azimuth at high speed by using two satellite signal receivers such as GPS receivers. SOLUTION: The measured double phase difference of a plurality of satellites obtained from the carrier phase measured by first and second satellite receivers. The calculated double phase difference of a plurality of the satellites is calculated based on a position on a circumference of which the center is a first antenna and which has a radius of the distance between the first antenna and a second antenna, the position of the first antenna, and the positions of a plurality of the satellites. The azimuth of the movable body is obtained by changing the circumferential position sequentially and setting the circumferential position that has a minimum difference between the calculated and measured double phase differences as a true position of the second antenna.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GPS、GLON
ASSなどの衛星航法システムの衛星信号を受ける2つ
の衛星信号受信機を利用して、船舶の船首方位など、移
動体の向きを検出する移動体方位検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to GPS, GLON
The present invention relates to a moving object direction detecting device that detects the direction of a moving object such as the heading of a ship using two satellite signal receivers that receive satellite signals of a satellite navigation system such as ASS.

【0002】[0002]

【従来の技術】移動体の位置や速度や進行方向を求める
手段として、GPS、GLONASSなどの衛星航法シ
ステムがある。以下、衛星航法システムとしてGPS
を、移動体として船舶を、例に説明する。
2. Description of the Related Art There are satellite navigation systems such as GPS and GLONASS as means for obtaining the position, speed and traveling direction of a moving object. Below, GPS is used as a satellite navigation system.
Will be described using a ship as an example of a moving object.

【0003】GPSにおける衛星信号受信機(以下、G
PS受信機)は、刻々と変化する船舶の位置や速度や進
行方向を求めることができる。しかし、図5のように船
首方向に進もうとする船舶11が、潮流の影響を受ける
と、潮流方向と船首方向とのベクトルが合成された方向
に進む。GPS受信機51を用いて求まる方向は、進行
方向のみであるので船首方位は分からなかった。
[0003] A satellite signal receiver (hereinafter referred to as G
PS receiver) can obtain the position, speed, and traveling direction of the ship, which change every moment. However, as shown in FIG. 5, when the marine vessel 11 trying to proceed in the bow direction is affected by the tidal current, the marine vessel 11 proceeds in a direction in which the vectors of the tidal current direction and the bow direction are combined. Since the direction obtained by using the GPS receiver 51 is only the traveling direction, the heading was not known.

【0004】また、一般に、船首方位を求めるために
は、ジャイロコンバスやマグネットコンパスが用いられ
ている。ジャイロコンパスは高速で回転するコマを用い
るので、指北力が強く、船体の鉄類によって誤差を生じ
ることもないが、安定するまでに時間がかかりまた高価
である。マグネットコンパスは、構造が簡単で電源の必
要もなく故障の心配もほとんどないが、場所により必ず
しも真北を示すとは限らないという欠点がある。
In general, a gyrocompass or a magnet compass is used to determine the heading. The gyro compass uses a high-speed rotating top, so it has a strong fingering force and does not cause errors due to the irons of the hull, but it takes time to be stable and is expensive. The magnet compass has a simple structure, does not require a power source, and has little fear of failure, but has a drawback that it does not always indicate true north depending on the location.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のコン
パスの問題点に鑑み、GPS受信機などの2つの衛星信
号受信機を用いて、安価で高速に船首方位を求めること
が出来る移動体方位検出装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the problems of the conventional compass, and has been made in consideration of the problem of the conventional compass. It is an object to provide an azimuth detecting device.

【0006】[0006]

【課題を解決するための手段】請求項1の移動体方位検
出装置は、移動体上に所定の距離を離して配置された、
衛星信号を受ける第1及び第2のアンテナと、この第1
及び第2のアンテナからの衛星信号を受信して、その搬
送波(キャリア)位相を測定する第1及び第2の衛星信
号受信機と、その第1及び第2の衛星信号受信機で測定
したキャリア位相から複数衛星の測定2重位相差を得る
2重位相差測定手段と、前記第1のアンテナを中心と
し、第2のアンテナまでの距離を半径とする円周上の位
置と、前記第1のアンテナの位置と、前記複数衛星の位
置に基づいて、複数衛星の計算2重位相差を得る2重位
相差計算手段と、前記計算2重位相差と前記測定2重位
相差とを比較する比較手段とを備え、前記円周上の位置
を順次変えると共に、前記計算2重位相差と前記測定2
重位相差との小数部の差が最も小さいときの前記円周上
の位置を、真の第2のアンテナ位置とし、当該移動体の
方位を求めることを特徴とする。
According to a first aspect of the present invention, there is provided a moving body direction detecting apparatus disposed at a predetermined distance from a moving body.
First and second antennas for receiving satellite signals;
And a first and second satellite signal receiver for receiving a satellite signal from a second antenna and measuring a carrier phase thereof, and a carrier measured by the first and second satellite signal receivers A double phase difference measuring means for obtaining a measured double phase difference of a plurality of satellites from a phase; a position on a circumference centered on the first antenna and having a radius equal to the distance to the second antenna; A second phase difference calculating means for obtaining a calculated double phase difference of a plurality of satellites based on the position of the antenna and the positions of the plurality of satellites, and comparing the calculated double phase difference with the measured double phase difference. Comparing means for sequentially changing the position on the circumference, the calculated double phase difference and the measurement 2
The position on the circumference when the difference between the fractional part and the heavy phase difference is the smallest is defined as the true second antenna position, and the azimuth of the moving body is obtained.

【0007】本発明によれば、第1、第2のアンテナ、
及び第1、第2の衛星信号受信機を設け、複数衛星の測
定2重位相差と、円周上の各位置での複数衛星の計算2
重位相差との比較により、高速に精度良く且つ安価に、
船舶、車両、航空機など移動体の方位を求める。
According to the present invention, a first and a second antenna,
And the first and second satellite signal receivers are provided, and the measured double phase difference of the plurality of satellites and the calculation of the plurality of satellites at each position on the circumference are calculated.
By comparing with the heavy phase difference, high speed, high accuracy and low cost,
Find the azimuth of a moving object such as a ship, vehicle, or aircraft.

【0008】[0008]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について、衛星航法システムとしてGPS
を、移動体として船舶を、例として説明する。図1は本
発明の2つのGPSアンテナの船舶上への設置状況を示
す図、図2は本発明の移動体方位検出装置のブロック
図、図3は基準GPSアンテナを中心とし比較GPSア
ンテナを円周に配置した配置図、図4は基準GPSアン
テナと比較GPSアンテナとの1重位相差を説明する図
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a satellite navigation system according to an embodiment of the present invention;
Will be described using a ship as an example of a moving object. FIG. 1 is a view showing a situation where two GPS antennas of the present invention are installed on a ship, FIG. 2 is a block diagram of a mobile azimuth detecting device of the present invention, and FIG. 3 is a comparative GPS antenna centered on a reference GPS antenna. FIG. 4 is a diagram illustrating a single phase difference between a reference GPS antenna and a comparative GPS antenna.

【0009】図1は、本発明の移動体方位検出装置を設
置した船舶を上から見た図であり、2つのGPSアンテ
ナを船尾から船首方向へ直線上に設置している。船尾側
のGPSアンテナ12を基準アンテナとし、船首側のG
PSアンテナ13を比較アンテナとし、両者の間の距離
LはGPS搬送波(キャリア)の1波長λ程度とする。
因みに、GPSのL1キャリアの場合にはλ≒19c
m、同じくL2キャリアの場合にはλ≒24cmであ
る。
FIG. 1 is a top view of a ship on which a mobile azimuth detecting device of the present invention is installed. Two GPS antennas are installed in a straight line from the stern to the bow. The GPS antenna 12 on the stern side is used as a reference antenna, and the GPS antenna 12 on the bow side is
The PS antenna 13 is used as a comparison antenna, and the distance L between the two is set to about one wavelength λ of the GPS carrier (carrier).
By the way, in the case of the GPS L1 carrier, λ ≒ 19c
m, and λ ≒ 24 cm for the L2 carrier.

【0010】図2の本発明の移動体方位検出装置のブロ
ック図において、基準アンテナ12が接続されている基
準GPS受信機21では、位置計算部22で単独のGP
S測位または差動のDGPS測位を用いて基準アンテナ
12の位置を計算する。衛星の方位角、仰角計算部23
で基準アンテナ12の位置における衛星の方位角と仰角
を、受信した衛星信号に基づいて計算する。また、キャ
リア位相測定部24で基準アンテナ12で得られたGP
S信号のキャリア位相を測定する。
In the block diagram of the mobile azimuth detecting apparatus of the present invention shown in FIG. 2, in the reference GPS receiver 21 to which the reference antenna 12 is connected, a single
The position of the reference antenna 12 is calculated using S positioning or differential DGPS positioning. Azimuth and elevation angle calculator 23 for satellite
Then, the azimuth and elevation of the satellite at the position of the reference antenna 12 are calculated based on the received satellite signal. The GP obtained by the reference antenna 12 by the carrier phase measurement unit 24
The carrier phase of the S signal is measured.

【0011】比較アンテナ13が接続された比較GPS
受信機31においては、得られたGPS信号のキャリア
位相をキャリア位相測定部32で測定する。
A comparative GPS to which a comparative antenna 13 is connected
In the receiver 31, the carrier phase of the obtained GPS signal is measured by the carrier phase measuring unit 32.

【0012】方位計算処理器41では、まず、円周上位
置計算部42で、位置計算部22で得られた基準アンテ
ナ12の位置に基づいて、比較アンテナ13の各円周上
の位置を計算する。則ち、図3を参照して、円周上位置
計算部42において、北を0度とした座標系で基準アン
テナ12を中心とし、他方の比較アンテナ13までの距
離Lを半径とした円周上の位置を計算する。例えば、1
度ステップで円周上の位置を計算したとすると、360
ポイントの位置を計算することになる。この円周上の各
位置を比較アンテナ13の仮の位置とする。
In the azimuth calculation processor 41, first, the position on the circumference of the comparison antenna 13 is calculated by the position on the circumference calculation unit 42 based on the position of the reference antenna 12 obtained by the position calculation unit 22. I do. That is, referring to FIG. 3, in the on-circumferential position calculation unit 42, a circle whose center is the reference antenna 12 in a coordinate system in which north is 0 degree and whose radius is the distance L to the other comparison antenna 13. Calculate the top position. For example, 1
If the position on the circumference is calculated in the degree step, 360
You will calculate the position of the point. Each position on this circumference is a temporary position of the comparison antenna 13.

【0013】2重位相差計算部43において、位置計算
部22で得られた基準アンテナ12の位置と円周上位置
計算部42で得られた比較アンテナ13の仮の位置と衛
星の方位角、仰角計算部23で得られた各衛星の方位
角、仰角を用いて、比較アンテナ13の円周上の仮の位
置での2重位相差を計算する。
In a double phase difference calculator 43, the position of the reference antenna 12 obtained by the position calculator 22 and the provisional position of the comparison antenna 13 obtained by the circumferential position calculator 42, the azimuth of the satellite, Using the azimuth and elevation of each satellite obtained by the elevation calculator 23, a double phase difference at a temporary position on the circumference of the comparison antenna 13 is calculated.

【0014】この2重位相差の計算は次のように行われ
る。2重位相差を計算するために、まず1重位相差を考
える。図3のように基準アンテナ12は座標系の原点に
配置され、複数の可視衛星(以下の例では、可視衛星は
5つとし、衛星番号は1,2,3,4,5とする)があ
るとする。基準アンテナ12は原点に位置しているの
で、 (x、y、z)=(0,0,0) となる。
The calculation of the double phase difference is performed as follows. To calculate a double phase difference, first consider a single phase difference. As shown in FIG. 3, the reference antenna 12 is disposed at the origin of the coordinate system, and a plurality of visible satellites (in the following example, five visible satellites and satellite numbers 1, 2, 3, 4, and 5) are used. Suppose there is. Since the reference antenna 12 is located at the origin, (x, y, z) = (0, 0, 0).

【0015】既知のアンテナ間距離Lを半径とした円周
上の位置は、x軸からの角度をI度とすると、 (x、y、z)=(sinI、cosI、0) となる。これが比較アンテナ13の位置となる。
The position on the circumference whose radius is the known distance L between antennas is given by (x, y, z) = (sinI, cosI, 0) when the angle from the x axis is I degree. This is the position of the comparison antenna 13.

【0016】したがって、基準アンテナ位置12と比較
アンテナ13の位置関係から、図4を参照して、両アン
テナ12,13間の位置ベクトルPは、 P=(x、y、0)=(sinI、cosI、0) となる。
Therefore, based on the positional relationship between the reference antenna position 12 and the comparison antenna 13, referring to FIG. 4, the position vector P between the two antennas 12, 13 is P = (x, y, 0) = (sinI, cosI, 0).

【0017】また、基準アンテナ12の位置での衛星の
方位角をA度、仰角をE度とすると方向余弦ベクトルC
は、 C=(cosEsinA、cosEcosA、sin
E) と表されるので、位置ベクトルPと方向余弦ベクトルC
の内積をとることにより2個のアンテナ12,13と1
個の衛星との行路差Dが求まる。 D=(x、y、0)(cosEsinA、cosEcosA、sinE)t =xcosEsinA+ycosEcosA =(xsinA+ycosA)cosE t:転置
If the azimuth of the satellite at the position of the reference antenna 12 is A degrees and the elevation angle is E degrees, the direction cosine vector C
Is C = (cosEsinA, cosEcosA, sin
E), the position vector P and the direction cosine vector C
By taking the inner product of the two antennas 12, 13 and 1
The path difference D from the number of satellites is obtained. D = (x, y, 0) (cosEsinA, cosEcosA, sinE) t = xcosEsinA + ycosEcosA = (xsinA + ycosA) cosE t: transpose

【0018】この行路差Dをサイクルの単位で表すこと
によりアンテナ12,13間の1重位相差が求まる。x
軸からの角度I毎に、各衛星毎に1個で計5個の1重位
相差をが求まるので、この1重位相差をCP1(I)、C
P2(I)、CP3(I)、CP4(I)、CP5(I)とす
る。
By expressing the path difference D in cycle units, a single phase difference between the antennas 12 and 13 is obtained. x
For each angle I from the axis, a total of five single phase differences, one for each satellite, are determined, and this single phase difference is calculated as CP1 (I), C1
P2 (I), CP3 (I), CP4 (I), and CP5 (I).

【0019】次に、1重位相差を計算した衛星の中の1
個を基準衛星とする。基準衛星の決定法としては仰角が
最も高い衛星を基準衛星にすることが望ましい。ここで
は衛星番号1の衛星を基準衛星と仮定する。
Next, one of the satellites for which the single phase difference has been calculated is
Is the reference satellite. As a method for determining the reference satellite, it is desirable to set the satellite having the highest elevation angle as the reference satellite. Here, it is assumed that the satellite with the satellite number 1 is the reference satellite.

【0020】このようにして決定した基準衛星の1重位
相差と他の衛星の1重位相差との差を、2重位相差計算
部43で計算することにより、衛星数より1個少ない、
4個の2重位相差を計算することができる。すなわち、
計算上の2重位相差は CP1(I)−CP2(I)、 CP1(I)−CP3(I)、 CP1(I)−CP4(I)、 CP1(I)−CP5(I)となる。
The difference between the single phase difference of the reference satellite determined in this way and the single phase difference of the other satellites is calculated by the double phase difference calculation unit 43, whereby one less than the number of satellites is obtained.
Four double phase differences can be calculated. That is,
The calculated double phase differences are CP1 (I) -CP2 (I), CP1 (I) -CP3 (I), CP1 (I) -CP4 (I), and CP1 (I) -CP5 (I).

【0021】このようにすれば円周上のある点での計算
上の2重位相差が求まるため、これを円周上の全ポイン
ト、例えば1度ステップで計算したらI=1,2...
359の360ポイント、で行い、全ポイントの計算上
の2重位相差を得ることができる。
In this way, a calculated double phase difference at a certain point on the circumference can be obtained. Therefore, if this is calculated at all points on the circumference, for example, in a single step, I = 1, 2,. . .
359 of 360 points, and a calculated double phase difference of all points can be obtained.

【0022】一方、基準GPS受信機21のキャリア位
相測定部24と比較GPS受信機31のキャリア位相測
定部32で測定したそれぞれのキャリア位相積算値を用
いて測定2重位相差計算部44で測定値の2重位相差を
求めることにより、測定値の2重位相差も、衛星数より
1個少ない、4個の2重位相差を求めることが出来る。
On the other hand, using the respective carrier phase integrated values measured by the carrier phase measurement unit 24 of the reference GPS receiver 21 and the carrier phase measurement unit 32 of the comparison GPS receiver 31, measurement is performed by the double phase difference calculation unit 44. By obtaining the double phase difference of the values, four double phase differences of the measured value, which is one less than the number of satellites, can be obtained.

【0023】すなわち、各衛星のキャリア信号により基
準アンテナ12と比較アンテナ13の間の1重位相差を
それぞれ求めて、これらの1重位相差をOP1、OP
2、0P3、0P4、0P5とする。計算上の2重位相
差の場合の基準衛星と同じ衛星を基準衛星(番号1の衛
星を基準と仮定する)とすると、測定2重位相差は、 OP1−OP2 OP1−OP3 OP1−OP4 OP1−OP5 となる。
That is, a single phase difference between the reference antenna 12 and the comparison antenna 13 is obtained from the carrier signal of each satellite, and these single phase differences are referred to as OP1 and OP.
2, 0P3, 0P4, and 0P5. Assuming that the same satellite as the reference satellite in the case of the calculated double phase difference is a reference satellite (assuming the satellite of number 1 as a reference), the measured double phase difference is OP1-OP2 OP1-OP3 OP1-OP4 OP1- OP5 is obtained.

【0024】基準アンテナ12と比較アンテナ13での
測定値を用いて、測定2重位相差計算部44で得られた
測定上の2重位相差が実際のアンテナ位置での値である
のに対し、2重位相差計算部43で得られた計算上の2
重位相差は円周上の各ポイントにおける仮のアンテナ位
置での値である。
Using the measured values of the reference antenna 12 and the comparison antenna 13, the measured double phase difference obtained by the measured double phase difference calculator 44 is the value at the actual antenna position. 2 in the calculation obtained by the double phase difference calculation unit 43
The heavy phase difference is a value at a temporary antenna position at each point on the circumference.

【0025】実際のアンテナの位置での測定上の2重位
相差の値と、仮のアンテナ位置での計算上での2重位相
差の値との差が最も小さい時、実際のアンテナの位置と
仮のアンテナの位置が一致していると言える。
When the difference between the measured double phase difference value at the actual antenna position and the calculated double phase difference value at the temporary antenna position is the smallest, the actual antenna position is determined. It can be said that the position of the temporary antenna coincides with that of the temporary antenna.

【0026】そのため、全衛星における2重位相差の差
を2重位相差の差の計算部45で計算する。すなわち、
2重位相差の差は、 (CP1(I)−CP3(I))−(OP1−OP3) (CP1(I)−CP4(I))−(OP1−OP4) (CP1(I)−CP5(I))−(OP1−OP5) となる。
Therefore, the difference between the double phase differences in all the satellites is calculated by the double phase difference difference calculation unit 45. That is,
The difference between the double phase differences is (CP1 (I) -CP3 (I))-(OP1-OP3) (CP1 (I) -CP4 (I))-(OP1-OP4) (CP1 (I) -CP5 ( I))-(OP1-OP5).

【0027】これらの2重位相差の差を、円周上位置計
算部42,2重位相差計算部43での角度Iを変化させ
ながら順次求め、この小数部のみ取り出し、標準偏差計
算部46で標準偏差を計算する。
The difference between these double phase differences is sequentially obtained while changing the angle I in the circumferential position calculation unit 42 and the double phase difference calculation unit 43, and only this decimal part is extracted, and the standard deviation calculation unit 46 is obtained. Calculate the standard deviation with.

【0028】方位決定部47に、この標準偏差が供給さ
れ、順次変化される角度Iに応じて、標準偏差が最小に
なる前記円周上の位置を求めれば、それが円周上の真の
比較アンテナ13の位置となる。これにより、北(座標
系の0度)からの角度Iが求まり、それが船首方位とな
る。
This standard deviation is supplied to the azimuth determining unit 47, and if the position on the circumference where the standard deviation is minimized is determined in accordance with the sequentially changed angle I, the true position on the circumference is obtained. This is the position of the comparison antenna 13. As a result, an angle I from north (0 degree in the coordinate system) is obtained, which is the heading.

【0029】これら一連の処理を一定時間毎、例えば毎
秒毎に行うことにより連続して船首方位を求めることが
出来る。なお、このように連続して船首方位を求める場
合には、角度Iの変化させる範囲は、前回に求められて
いる船首方位を中心にして狭い範囲に限定することが出
来る。
By performing these series of processes at regular intervals, for example, every second, the heading can be determined continuously. In the case where the heading is continuously determined in this manner, the range in which the angle I is changed can be limited to a narrow range around the previously obtained heading.

【0030】なお、以上の説明では、実際のアンテナの
位置での測定上の2重位相差の値と、仮のアンテナ位置
での計算上での2重位相差の値との差が一番小さい角度
Iが北(座標系の0度)からの船首方位としている。こ
のように、2重位相差を取ることにより、1重位相差の
比較だけでは取り除くことが出来なかった誤差成分を、
取り除くことが出来るから測定値に誤差成分が無くな
り、高精度に船首方位を検出することが出来る。
In the above description, the difference between the measured double phase difference value at the actual antenna position and the calculated double phase difference value at the temporary antenna position is the most significant. The small angle I is the heading from north (0 degrees in the coordinate system). As described above, by taking the double phase difference, the error component that could not be removed only by comparing the single phase difference,
Since it can be removed, there is no error component in the measured value, and the heading can be detected with high accuracy.

【0031】また、船首方位の検出精度が、多少低下し
ても許容される場合には、2重位相差に代えて1重位相
差を用いることが出来る。前述の例を引用すると、計算
上での1重位相差CP1(I)、CP2(I)、CP3
(I)、CP4(I)、CP5(I)と、測定上の1重位相差
OP1、OP2、0P3、0P4、0P5を用い、これ
らの差を計算し、差が最も小さくなる角度Iを、北(0
度)からの船首方位とする。
If the accuracy of detecting the heading can be tolerated even if it slightly decreases, a single phase difference can be used instead of the double phase difference. Referring to the above example, the calculated single phase differences CP1 (I), CP2 (I), CP3
Using (I), CP4 (I), CP5 (I) and the single phase difference OP1, OP2, 0P3, 0P4, 0P5 on the measurement, these differences are calculated, and the angle I at which the difference becomes the minimum is calculated as North (0
Heading from (degree).

【0032】この1重位相差にて方位検出をする場合に
は、2重検出に比べてその精度が低下するが、その分本
発明の移動体方位検出装置の演算量が少なくて済むか
ら、その方位検出の目的に応じて、利用することが出来
る。
When the azimuth is detected by the single phase difference, the accuracy is lower than that of the double detection, but the amount of calculation of the moving body azimuth detecting device of the present invention is correspondingly small. It can be used according to the purpose of the azimuth detection.

【0033】また、上記実施の形態では、船舶の船首方
位を求めることとして説明しているが、本発明は車両、
航空機などの移動体の方位検出に適用することが出来
る。
Further, in the above embodiment, the description has been made assuming that the heading of the ship is obtained.
The present invention can be applied to the detection of the direction of a moving object such as an aircraft.

【0034】[0034]

【発明の効果】本発明によれば、第1、第2のアンテ
ナ、及び第1、第2の衛星信号受信機を設け、複数衛星
の測定2重位相差と、円周上の各位置での複数衛星の計
算2重位相差との比較により、高速に精度良く且つ安価
に、船舶、車両、航空機など移動体の方位を求めること
が出来る効果がある。
According to the present invention, first and second antennas and first and second satellite signal receivers are provided, and the measured double phase difference between a plurality of satellites and each position on the circumference are measured. By comparing with the calculated double phase difference of a plurality of satellites, there is an effect that the azimuth of a moving body such as a ship, a vehicle or an aircraft can be obtained at high speed with high accuracy and at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2つのGPSアンテナの船舶上への設
置状況を示す図。
FIG. 1 is a diagram showing a situation where two GPS antennas of the present invention are installed on a ship.

【図2】本発明の移動体方位検出装置のブロック図。FIG. 2 is a block diagram of a moving body direction detecting device according to the present invention.

【図3】基準アンテナを中心とし比較アンテナを円周上
に配置した図。
FIG. 3 is a diagram in which a comparative antenna is arranged on a circumference around a reference antenna.

【図4】基準アンテナと比較アンテナとの1重位相差を
説明する図。
FIG. 4 is a diagram illustrating a single phase difference between a reference antenna and a comparison antenna.

【図5】潮流方向、船首方向と、進行方向との関係図。FIG. 5 is a diagram showing a relationship between a tidal current direction, a bow direction, and a traveling direction.

【符号の説明】[Explanation of symbols]

11 船舶 12 基準GPSアンテナ 13 比較GPSアンテナ 21 基準GPS受信機 22 位置計算部 23 衛星の方位角、仰角計算部 24 キャリア位相測定部 31 比較GPS受信機 32 キャリア位相測定部 41 方位計算処理器 42 円周上位置計算部 43 2重位相差計算部 44 測定2重位相差計算部 45 2重位相差の差の計算部 46 標準偏差計算部 47 方位決定部 DESCRIPTION OF SYMBOLS 11 Ship 12 Reference GPS antenna 13 Reference GPS antenna 21 Reference GPS receiver 22 Position calculation part 23 Azimuth and elevation angle calculation part of satellite 24 Carrier phase measurement part 31 Comparison GPS receiver 32 Carrier phase measurement part 41 Azimuth calculation processor 42 yen Perimeter position calculation unit 43 Double phase difference calculation unit 44 Measurement double phase difference calculation unit 45 Double phase difference difference calculation unit 46 Standard deviation calculation unit 47 Direction determination unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 移動体上に所定の距離を離して配置され
た、衛星信号を受ける第1及び第2のアンテナと、 この第1及び第2のアンテナからの衛星信号を受信し
て、その搬送波(キャリア)位相を測定する第1及び第
2の衛星信号受信機と、 その第1及び第2の衛星信号受信機で測定したキャリア
位相から複数衛星の測定2重位相差を得る2重位相差測
定手段と、 前記第1のアンテナを中心とし、第2のアンテナまでの
距離を半径とする円周上の位置と、前記第1のアンテナ
の位置と、前記複数衛星の位置に基づいて、複数衛星の
計算2重位相差を得る2重位相差計算手段と、 前記計算2重位相差と前記測定2重位相差とを比較する
比較手段とを備え、 前記円周上の位置を順次変えると共に、前記計算2重位
相差と前記測定2重位相差との差が最も小さいときの前
記円周上の位置を、真の第2のアンテナ位置とし、当該
移動体の方位を求めることを特徴とする移動体方位検出
装置。
A first antenna for receiving a satellite signal, which is arranged at a predetermined distance on a mobile body, and a satellite signal received from the first and second antennas; First and second satellite signal receivers for measuring a carrier (carrier) phase, and a double position for obtaining a measured double phase difference of a plurality of satellites from the carrier phases measured by the first and second satellite signal receivers Phase difference measuring means, based on the first antenna, a position on a circumference having a radius equal to the distance to the second antenna, a position of the first antenna, and a position of the plurality of satellites, A double phase difference calculating means for obtaining a calculated double phase difference of a plurality of satellites; and a comparing means for comparing the calculated double phase difference with the measured double phase difference, wherein the position on the circumference is sequentially changed. Together with the calculated double phase difference and the measured double phase difference There the position on the circumference when the smallest, and the true second antenna position, the moving body azimuth detecting device and obtains the azimuth of the moving body.
JP2000078599A 2000-03-21 2000-03-21 Moving body direction detection device Expired - Fee Related JP3502007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078599A JP3502007B2 (en) 2000-03-21 2000-03-21 Moving body direction detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078599A JP3502007B2 (en) 2000-03-21 2000-03-21 Moving body direction detection device

Publications (2)

Publication Number Publication Date
JP2001264406A true JP2001264406A (en) 2001-09-26
JP3502007B2 JP3502007B2 (en) 2004-03-02

Family

ID=18595987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078599A Expired - Fee Related JP3502007B2 (en) 2000-03-21 2000-03-21 Moving body direction detection device

Country Status (1)

Country Link
JP (1) JP3502007B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267042A (en) * 2005-03-25 2006-10-05 Furuno Electric Co Ltd Mobile object speed detector
JP2008216062A (en) * 2007-03-05 2008-09-18 Japan Radio Co Ltd Mobile-unit attitude measuring apparatus
KR101004789B1 (en) 2008-07-16 2011-01-04 엘아이지넥스원 주식회사 Method and apparatus for calculating azimuth by using GPS
JP2011080928A (en) * 2009-10-09 2011-04-21 Toyota Motor Corp Positioning system
JP2012202749A (en) * 2011-03-24 2012-10-22 Yokogawa Denshikiki Co Ltd Orientation detection device
JP2014145614A (en) * 2013-01-28 2014-08-14 Furuno Electric Co Ltd Turning round angular speed detection device, moving body, turning round angular speed detecting method, and turning round angular speed detection program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267042A (en) * 2005-03-25 2006-10-05 Furuno Electric Co Ltd Mobile object speed detector
JP2008216062A (en) * 2007-03-05 2008-09-18 Japan Radio Co Ltd Mobile-unit attitude measuring apparatus
KR101004789B1 (en) 2008-07-16 2011-01-04 엘아이지넥스원 주식회사 Method and apparatus for calculating azimuth by using GPS
JP2011080928A (en) * 2009-10-09 2011-04-21 Toyota Motor Corp Positioning system
JP2012202749A (en) * 2011-03-24 2012-10-22 Yokogawa Denshikiki Co Ltd Orientation detection device
JP2014145614A (en) * 2013-01-28 2014-08-14 Furuno Electric Co Ltd Turning round angular speed detection device, moving body, turning round angular speed detecting method, and turning round angular speed detection program

Also Published As

Publication number Publication date
JP3502007B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
US5933110A (en) Vessel attitude determination system and method
KR940009235B1 (en) On-board vehicle position detector
EP2848963B1 (en) Method and apparatus for calculating status, and movable body
US10197681B2 (en) State calculating device, method of calculating state, and state calculating program
CA2777803C (en) Ultra-short baseline gnss receiver
US10514469B2 (en) Attitude angle calculating device, method of calculating attitude angle, and attitude angle calculating program
CN107703526B (en) Baseline direction finding method, device and system
WO2008097346A4 (en) Method for fusing multiple gps measurement types into a weighted least squares solution
US5461387A (en) Position and direction finding instrument
JP2002054946A (en) Attitude sensor of object and integer bias re- determination method
JP3502007B2 (en) Moving body direction detection device
US10948292B2 (en) Sensor error calculating device, attitude angle calculating apparatus, method of calculating sensor error and method of calculating attitude angle
US6211821B1 (en) Apparatus and method for determining pitch and azimuth from satellite signals
US20170108590A1 (en) Triple difference formulation for formation flight
JP3044357B2 (en) Gyro device
US10976447B2 (en) Azimuth angle calculating device, and method of calculating azimuth angle
KR100976965B1 (en) Navigation device and posisitioning method thereof
JPS592870B2 (en) GPS gyroscope
US20080186232A1 (en) Method of and apparatus for true north azimuth determination using the combination of crossed loop antenna and radio positioning system technologies
JP2946050B2 (en) Gyro device
JP2946051B2 (en) Gyro device
KR100341801B1 (en) Urban vehicle navigation system using multiple antennas
JPH1194573A (en) Position attitude measuring device for mobile body
JP3853676B2 (en) Positioning device
JPH11325925A (en) Position correcting method of navigator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

R150 Certificate of patent or registration of utility model

Ref document number: 3502007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees