JP2001261851A - Anisotropic heat transfer material - Google Patents

Anisotropic heat transfer material

Info

Publication number
JP2001261851A
JP2001261851A JP2000078062A JP2000078062A JP2001261851A JP 2001261851 A JP2001261851 A JP 2001261851A JP 2000078062 A JP2000078062 A JP 2000078062A JP 2000078062 A JP2000078062 A JP 2000078062A JP 2001261851 A JP2001261851 A JP 2001261851A
Authority
JP
Japan
Prior art keywords
heat transfer
organic polymer
polymer layer
heat
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078062A
Other languages
Japanese (ja)
Other versions
JP4430779B2 (en
Inventor
Naoyuki Shimoyama
直之 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000078062A priority Critical patent/JP4430779B2/en
Publication of JP2001261851A publication Critical patent/JP2001261851A/en
Application granted granted Critical
Publication of JP4430779B2 publication Critical patent/JP4430779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic heat transfer material by which heat generating from a heat-generating substance is efficiently transferred to a radiator present in a distant position, and which optionally can be positioned conforming to the space-shape and the direction of the inside of an electronic apparatus, and has durability and electrical insulation. SOLUTION: The anisotropic heat transfer material comprises carbon fibers which transfer heat generating from a heat-generating substance to a distant radiator are covered with a gelled organic polymer layer covering the fibers and further with a multi-layer structure together with an organic polymer layer of a rubbery elastomer covering the outside, and has a connecting part where the carbon fibers in a matrix are arranged in one direction and buried in the both ends of the anisotropic heat transfer material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器内部に用
いられる電子部品等の発熱体が発する熱を離れた位置の
放熱体まで伝える異方性伝熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic heat transfer member for transferring heat generated by a heat generator such as an electronic component used in an electronic device to a radiator at a remote position.

【0002】[0002]

【従来の技術】従来、ノートパソコンなどの小型化の進
む電子機器においては、集積回路等の発熱体から発生し
た熱を放熱させるために、ヒートパイプ等の伝熱体と、
ヒートシンク、ファン等の放熱体とが、組み合わされて
利用されている。これは、小型の電子機器は、発熱体で
ある集積回路の上に放熱体を設けるための十分なスペー
スが確保できないため、電子部品の配置や残り少ないス
ペースを考慮して、発熱体から離れた位置に放熱体を設
け、発熱体から放熱体まで熱を伝える伝熱体を設置する
方法が用いられている。
2. Description of the Related Art Conventionally, in electronic equipment such as a notebook personal computer, which is being miniaturized, in order to radiate heat generated from a heating element such as an integrated circuit, a heat transfer element such as a heat pipe is provided.
A heat sink such as a heat sink or a fan is used in combination. This is because small electronic devices do not have enough space to provide a heat radiator on an integrated circuit that is a heat radiator. A method is used in which a heat radiator is provided, and a heat transfer member that transmits heat from the heat generator to the heat radiator is provided.

【0003】一方、炭素繊維は、その高い熱伝導率と熱
伝導異方性から伝熱体の材料としての利用が検討されて
きている。例えば、特開平9−262917号公報で
は、熱伝導率の高い炭素繊維の両端のみを炭素や金属で
固定した可撓型伝熱体が提案されている。これは、炭素
繊維の固定材料に熱伝導の高い炭素や金属を用いること
で、発熱体および放熱体と炭素繊維の接触熱抵抗を下げ
た高い熱伝導性のある伝熱体を得るものであり、さらに
末端以外の炭素繊維は特に固定されていないため自在に
曲げることができる可撓型伝熱体である。
[0003] On the other hand, carbon fibers have been studied for use as heat transfer materials because of their high thermal conductivity and thermal anisotropy. For example, Japanese Patent Application Laid-Open No. 9-262917 proposes a flexible heat transfer body in which only carbon fibers having high thermal conductivity are fixed at both ends with carbon or metal. By using carbon or metal with high thermal conductivity as the fixing material of carbon fiber, it is possible to obtain a heat conductor with high thermal conductivity with reduced contact thermal resistance between the heating element and the radiator and the carbon fiber. Further, since the carbon fibers other than the terminal are not particularly fixed, they are flexible heat transfer bodies that can be bent freely.

【0004】[0004]

【発明が解決しようとする課題】しかし、この可撓型伝
熱体は自在に曲げることができるが、炭素繊維の周囲を
保護していないため、曲げた時に破損し易く、組付け作
業性が悪いという問題や、さらに導電性のある炭素繊維
が、周囲の電子部品と接触して電子機器に悪影響を与え
る可能性があるという問題点等があった。また別に、複
数の炭素繊維が硬質樹脂で被覆保護された伝熱体もあっ
たが、炭素繊維の柔軟性を拘束してしまうために伝導体
の可撓性はなく、剛直なものであった。
However, this flexible heat transfer body can be bent freely, but since it does not protect the periphery of the carbon fiber, it is easily broken when bent, and the assembling workability is poor. There was a problem that the carbon fiber was bad, and there was a possibility that the conductive carbon fiber could come into contact with surrounding electronic components and adversely affect the electronic device. In addition, there was a heat conductor in which a plurality of carbon fibers were covered and protected with a hard resin. However, the conductor was not flexible and rigid because it restrained the flexibility of the carbon fibers. .

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
問題を解決するものであり、発熱体から発生する熱を離
れた位置にある放熱体まで効率よく伝える伝熱体であっ
て、電子機器内部のスペース形状および方向に合わせて
任意に伝熱体を配置することができ、且つ耐久性、電気
絶縁性を有する異方性伝熱体を提供するものである。す
なわち、発熱体から発生する熱を離れた放熱体へ伝える
炭素繊維が、可撓性の有機高分子層で覆われていること
を特徴とする異方性伝熱体である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and is directed to a heat transfer body that efficiently transmits heat generated from a heat generation body to a radiator at a remote position. It is an object of the present invention to provide an anisotropic heat transfer member having a durability and an electric insulation property, in which a heat transfer member can be arbitrarily arranged in accordance with a space shape and a direction in an electronic device. That is, the anisotropic heat transfer material is characterized in that carbon fibers that transmit heat generated from the heating element to a radiator that is separated are covered with a flexible organic polymer layer.

【0006】さらに、可撓性の有機高分子層が、炭素繊
維を覆うゲル状の有機高分子層と、さらにその外側を覆
うゴム状弾性体の有機高分子層との複層構造である異方
性伝熱体である。さらに、ゲル状の有機高分子層とゴム
状弾性体の有機高分子層との少なくとも一方に熱伝導性
充填剤が配合されている異方性伝熱体である。さらに、
ゲル状の有機高分子層が、シリコーンゲル層で、かつゴ
ム状弾性体の有機高分子層が、シリコーンゴム層である
異方性伝熱体である。さらに、上記記載の異方性伝熱体
の両端に、マトリックス中に炭素繊維が一方向に配列し
埋設された接合部を有する伝熱体である。
Further, the flexible organic polymer layer has a multilayer structure of a gel-like organic polymer layer covering carbon fibers and a rubber-like elastic organic polymer layer covering the outside thereof. It is an isotropic heat conductor. Further, it is an anisotropic heat transfer material in which a thermally conductive filler is blended in at least one of a gel organic polymer layer and a rubber elastic organic polymer layer. further,
The gel-like organic polymer layer is a silicone gel layer, and the rubber-like elastic organic polymer layer is a silicone rubber layer, which is an anisotropic heat transfer material. Furthermore, a heat transfer body having a joint portion in which carbon fibers are arranged and embedded in one direction in a matrix at both ends of the above-described anisotropic heat transfer body.

【0007】[0007]

【発明の実施の形態】以下に、本発明の詳細な説明をす
る。本発明の異方性伝熱体の代表的な形態は、図1に示
すように、異方性伝熱体1は、炭素繊維2が可撓性の有
機高分子層3内に配列されて埋設されているものであ
る。異方性伝熱体1は、一方の末端から入った熱を反対
側の末端に伝える。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. As shown in FIG. 1, a typical form of the anisotropic heat transfer material of the present invention is such that an anisotropic heat transfer material 1 has carbon fibers 2 arranged in a flexible organic polymer layer 3. It is buried. The anisotropic heat transfer body 1 transfers heat entered from one end to the other end.

【0008】本発明の伝熱体の代表的な形態は、図3に
示すように、異方性伝熱体1の両端に、発熱体8方向に
伝熱方向を向けるために、炭素繊維が埋設されている接
合体6、6が固着している伝熱体1である。異方性
伝熱体1および接合体6、6 には、炭素繊維が一方
向に配列して伝熱経路を形成している。
A typical form of the heat transfer body of the present invention is shown in FIG.
As shown, at both ends of the anisotropic heat transfer body 1,
In order to direct the heat transfer direction, the connection with embedded carbon fiber
Coalescing 61, 62Is the heat transfer body 1 that is fixed. anisotropy
Heat transfer body 1 and bonded body 61, 6 2Has carbon fiber
The heat transfer paths are arranged in the same direction.

【0009】異方性伝熱体と接合体は、公知の熱伝導性
接着剤や熱伝導性ゲルからなる固着層10にて固着され
ている。接合部は、二つで構成される。一つの接合体6
は、マトリックス中に炭素繊維が同一方向に配向して
おり、炭素繊維の一端は発熱体と接触する底面側に、も
う一端は異方性伝熱体と接触する側面側に向かっている
ため、発熱体から発生する熱を異方性伝熱体の末端に伝
えるのに効果的である。もう一つの接合体6は、マト
リックス中に炭素繊維が同一方向に配向しており、炭素
繊維の一端は放熱体と接触する底面側に、もう一端は異
方性伝熱体と接触する側面側に向かっているため、異方
性伝熱体の末端から伝わってくる熱を放熱体に伝えるの
に効果的である。
The anisotropic heat conductor and the joined body are fixed by a fixing layer 10 made of a known heat conductive adhesive or heat conductive gel. The joint is composed of two parts. One joint 6
1 is that the carbon fibers are oriented in the same direction in the matrix, and one end of the carbon fibers is directed to the bottom side in contact with the heating element and the other end is directed to the side surface in contact with the anisotropic heat transfer element. This is effective for transferring the heat generated from the heating element to the end of the anisotropic heat transfer element. Another assembly 6 2, carbon fibers in the matrix are oriented in the same direction, on the bottom side end of the carbon fibers in contact with the heat radiator, the side the other end in contact with the anisotropic heat transfer Since it is directed to the side, it is effective to transmit the heat transmitted from the end of the anisotropic heat transfer body to the radiator.

【0010】本発明の炭素繊維は、高熱伝導性を有する
長繊維状の炭素繊維であれば、繊維径、繊維の表面状
態、および繊維を作る原料の種類は特定しないが、繊維
方向において400W/m・K以上の熱伝導率を持つ炭
素繊維が好ましい。本発明の可撓性の有機高分子層は、
電気絶縁性、柔軟性を有する素材からなる有機高分子層
であればよいが、ポリエチレン、ポリエチレンテレフタ
レート等のポリオレフィン系、ポリ塩化ビニル系、シリ
コーン系、フッ素系等が挙げられる。これらの素材の樹
脂シート、熱収縮チューブ、ゴム状弾性体等を用いると
容易に層を形成することができる。
As long as the carbon fiber of the present invention is a long fiber carbon fiber having high thermal conductivity, the fiber diameter, the surface state of the fiber, and the type of the raw material for forming the fiber are not specified, but 400 W / f in the fiber direction. Carbon fibers having a thermal conductivity of at least m · K are preferred. The flexible organic polymer layer of the present invention,
Any organic polymer layer made of a material having electrical insulation and flexibility may be used, but examples thereof include polyolefins such as polyethylene and polyethylene terephthalate, polyvinyl chlorides, silicones, and fluorines. When a resin sheet, a heat-shrinkable tube, a rubber-like elastic body, or the like of these materials is used, a layer can be easily formed.

【0011】また、本発明の可撓性の有機高分子層を、
炭素繊維の間隙をゲル状の有機高分子で充填し、その外
側をゴム状弾性体で覆う複層構造にすることで、異方性
伝熱体を曲げた際に炭素繊維の切断を防ぐことができ
る。これらの素材は、耐熱性、電気絶縁性、柔軟性、加
工性等からゲルはシリコーンゲル、ゴム状弾性体はシリ
コーンゴムが好適である。さらに、柔軟に曲がるため
に、有機高分子層はなるべく薄厚であることがより好ま
しい。
Further, the flexible organic polymer layer of the present invention comprises
Filling the gaps between the carbon fibers with a gel-like organic polymer and covering the outside with a rubber-like elastic material to prevent the carbon fibers from being cut when the anisotropic heat transfer material is bent Can be. For these materials, silicone gel is suitable for the gel and silicone rubber is suitable for the rubber-like elastic body because of heat resistance, electrical insulation, flexibility, workability, and the like. Further, in order to bend flexibly, it is more preferable that the organic polymer layer is as thin as possible.

【0012】本発明の可撓性の有機高分子層は、熱伝導
性を上げるために熱伝導性充填剤を配合してもよい。熱
伝導性充填剤には、公知の高熱伝導性である金属やセラ
ミックス、有機繊維などが挙げられる。例えば、金属と
しては銀、銅、アルミニウム等、セラミックスとしては
窒化ケイ素、窒化ホウ素、酸化アルミニウム等、有機繊
維としてはポリベンゾイミダゾール等があり、またその
ほかにもグラファイト等の配合が可能である。
[0012] The flexible organic polymer layer of the present invention may contain a thermally conductive filler to increase thermal conductivity. Examples of the thermally conductive filler include known metals and ceramics having high thermal conductivity and organic fibers. For example, silver, copper, aluminum and the like are used as metals, silicon nitride, boron nitride, aluminum oxide and the like are used as ceramics, and polybenzimidazole is used as organic fibers. In addition, graphite and the like can be blended.

【0013】このような熱伝導性充填剤を可撓性の有機
高分子層中に分散配合することにより、熱伝導性をさら
に向上させることができる。ただし、異方性伝熱体は周
囲の電子部品に対して電気絶縁性である必要があるた
め、有機高分子層中に熱伝導性充填剤を配合する場合、
その少なくとも最外層には、導電性がある金属やグラフ
ァイト等の配合を避けることが好ましい。
By dispersing and blending such a thermally conductive filler in a flexible organic polymer layer, the thermal conductivity can be further improved. However, since the anisotropic heat conductor needs to be electrically insulating with respect to the surrounding electronic components, when a heat conductive filler is blended in the organic polymer layer,
It is preferable that at least the outermost layer avoid mixing a conductive metal or graphite.

【0014】本発明の接合体は、炭素繊維が一方向に配
向し埋設されていることで高い熱伝導性と熱伝導異方性
を有する。接合部のマトリックスは、エポキシ樹脂、フ
ェノール樹脂、シリコーンゴムなど液状の状態を経て任
意のブロック状に硬化することができ、100℃程度の
熱に耐えうる耐熱性高分子材料であれば限定するもので
はない。
The bonded article of the present invention has high thermal conductivity and high thermal conductivity anisotropy because carbon fibers are oriented and buried in one direction. The matrices of the joints are limited as long as they are heat-resistant polymer materials that can be cured into an arbitrary block shape through a liquid state such as epoxy resin, phenol resin, silicone rubber, and can withstand heat of about 100 ° C. is not.

【0015】また、接合部には上記の耐熱性高分子材料
以外に、熱伝導性のあるセラミックスを用いて硬化させ
たものでもよい。さらに熱伝導性を上げるために上記の
マトリックスに前述の熱伝導性充填剤を混ぜたものを用
いてもよい。以下、図に示す実施例を具体的に説明す
る。しかしこれによって発明が限定されるものではな
い。
In addition, the joint may be made of a material having thermal conductivity and cured in addition to the above-mentioned heat-resistant polymer material. To further increase the thermal conductivity, a mixture of the above-mentioned matrix and the above-mentioned thermally conductive filler may be used. Hereinafter, the embodiment shown in the drawings will be specifically described. However, this does not limit the invention.

【0016】[0016]

【実施例1】図2に実施例1の異方性伝熱体を示す。一
方向に配列した炭素繊維2を覆う可撓性の有機高分子層
3が、炭素繊維2を覆うシリコーンゲルからなる有機高
分子層4と、さらにその外側を覆うシリコーンゴムから
なる有機高分子層5との2層からなる複層構造である異
方性伝熱体1である。この異方性伝熱体1をを用いる
と、図5に示したように、ノート型パソコンにおける集
積回路の発熱体8から発生した熱を液晶モニターの裏面
の放熱体9に効率よく伝えることができた。
Embodiment 1 FIG. 2 shows an anisotropic heat transfer body of Embodiment 1. A flexible organic polymer layer 3 covering the carbon fibers 2 arranged in one direction is composed of an organic polymer layer 4 of silicone gel covering the carbon fibers 2 and an organic polymer layer of silicone rubber covering the outside thereof. 5 is an anisotropic heat transfer body 1 having a multilayer structure composed of two layers. By using this anisotropic heat conductor 1, as shown in FIG. 5, heat generated from the heat generator 8 of the integrated circuit in the notebook personal computer can be efficiently transmitted to the heat radiator 9 on the back surface of the liquid crystal monitor. did it.

【0017】[0017]

【実施例2】図3に実施例2の伝熱体を示す。実施例1
で得た異方性伝熱体1の両端に、エポキシ樹脂中に炭素
繊維1を一方向に配列し埋設させた接合体6を、それぞ
れ別体に形成して、熱伝導性接着剤による固着層10で
繋いだ伝熱体である。図3に示すような接合体を繋ぐこ
とによって、伝熱体端部の炭素繊維の向きを任意に設定
でき、発熱体および放熱体との接触面に対して平面平行
方向に異方性伝熱体端部を延ばして熱を伝えることがで
きた。
Embodiment 2 FIG. 3 shows a heat transfer body of Embodiment 2. Example 1
At each end of the anisotropic heat transfer body 1 obtained in the above, joined bodies 6 in which carbon fibers 1 are arranged in one direction in an epoxy resin and embedded are formed separately, and fixed by a heat conductive adhesive. Heat conductors connected by layer 10. By connecting the joined body as shown in FIG. 3, the direction of the carbon fiber at the end of the heat transfer body can be arbitrarily set, and the anisotropic heat transfer is performed in a plane parallel direction with respect to the contact surface with the heating body and the heat dissipation body. He was able to conduct heat by extending the body end.

【0018】[0018]

【実施例3】図4に実施例3の伝熱体を示す。異方性伝
熱体1の炭素繊維2を接合体6にも埋設させ、同一の炭
素繊維2で異方性伝熱体1と接合体6とを繋いだ伝熱体
である。本実施例は、炭素繊維よりも熱伝導率が低い熱
伝導性接着剤や熱伝導性ゲル等の固着層を用いていない
ので、固着層による熱の伝達のロスが無くなり、より多
くの熱を効率良く放熱体に伝えることができた。この異
方性伝熱体1を用いると、図5に示したように、ノート
型パソコンにおける集積回路の発熱体8から発生した熱
を液晶モニターの裏面の放熱体9に効率よく伝えること
ができた。
Third Embodiment FIG. 4 shows a heat transfer body according to a third embodiment. This is a heat transfer body in which the carbon fibers 2 of the anisotropic heat transfer body 1 are embedded in the bonded body 6 and the anisotropic heat transfer body 1 and the bonded body 6 are connected by the same carbon fiber 2. In the present embodiment, since a fixed layer such as a heat conductive adhesive or a heat conductive gel having a lower thermal conductivity than carbon fiber is not used, loss of heat transfer by the fixed layer is eliminated, and more heat is removed. The heat was able to be efficiently transmitted to the radiator. When this anisotropic heat transfer body 1 is used, as shown in FIG. 5, heat generated from the heat generation body 8 of the integrated circuit in the notebook personal computer can be efficiently transmitted to the heat radiator 9 on the back surface of the liquid crystal monitor. Was.

【0019】なお、接合体は、図6(ロ)に示すよう
に、接合体7の発熱体8との接触面を発熱体8の形状あ
るいは面積に合わせた形状とし、他方を伝熱体1の接合
面の大きさとするようにして、それぞれの接合面の大き
さを変えても良い。また、図6(イ)に示すように、接
合体6と伝熱体1との間に補助接合体11を介在させて
連結させるようにしても良い。このような構成とするこ
とにより、より伝熱効果をあげることが可能である。
As shown in FIG. 6 (b), the contact surface of the joined body 7 with the heating element 8 has a shape conforming to the shape or area of the heating element 8 and the other is connected to the heat transfer element 1 as shown in FIG. The size of each bonding surface may be changed so that the size of the bonding surface is the same. Further, as shown in FIG. 6A, an auxiliary joint body 11 may be interposed between the joint body 6 and the heat transfer body 1 for connection. With such a configuration, it is possible to further enhance the heat transfer effect.

【0020】[0020]

【発明の効果】本発明の異方性伝熱体は、炭素繊維の束
をシリコーンゴムなどの有機高分子層で覆い保護するこ
とにより、炭素繊維が周囲の電子部品と接触することが
無く、さらに組付け作業性が非常に向上する。また、炭
素繊維間の間隙をシリコーンゲルなどのゲル状の有機高
分子で充填することで、炭素繊維が切断され難くしかも
高い柔軟性をもつ効果がある。これにより、集積回路な
どから発生した熱をモニターの裏面等の放熱体に伝える
ことが可能となる。さらに、熱伝導率が400W/m・K以
上の炭素繊維の束を使用することで、より高い熱伝達能
力を発揮する。
The anisotropic heat transfer material of the present invention covers and protects a bundle of carbon fibers with an organic polymer layer such as silicone rubber, so that the carbon fibers do not come into contact with surrounding electronic components. Further, assembling workability is greatly improved. Further, by filling the gap between the carbon fibers with a gel-like organic polymer such as silicone gel, there is an effect that the carbon fibers are hardly cut and have high flexibility. Thus, heat generated from the integrated circuit or the like can be transmitted to a radiator such as the back surface of the monitor. Further, by using a bundle of carbon fibers having a thermal conductivity of 400 W / m · K or more, a higher heat transfer capability is exhibited.

【0021】本発明の伝熱体は、炭素繊維が配列して伝
熱経路を形成しているため、全面が熱くなる金属などに
比べて効率よく熱を運ぶことができ、高い熱輸送効果が
得られる。以上から、本発明の伝熱体および接合体は、
発熱体から放熱体に向かって大量の熱を運ぶことが可能
であり、さらに周辺の回路基板や電子部品に影響を与え
ることなく、また柔軟に曲がるため発熱体から放熱体ま
で小スペースでも自在に設置することができる。
In the heat transfer body of the present invention, since the carbon fibers are arranged to form a heat transfer path, heat can be transferred more efficiently than a metal or the like whose entire surface becomes hot, and a high heat transport effect can be obtained. can get. From the above, the heat transfer body and the joined body of the present invention are:
A large amount of heat can be transferred from the heating element to the heat radiator, and it does not affect the surrounding circuit boards and electronic components. Can be installed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性伝熱体の代表的な形態の斜視図FIG. 1 is a perspective view of a typical embodiment of the anisotropic heat transfer body of the present invention.

【図2】本発明の異方性伝熱体の実施例の斜視図FIG. 2 is a perspective view of an embodiment of the anisotropic heat transfer body of the present invention.

【図3】本発明の接合体を接着した伝熱体の代表的な形
態の縦断面図
FIG. 3 is a longitudinal sectional view of a typical form of a heat transfer body to which the joined body of the present invention is bonded.

【図4】本発明の接合体を付けた伝熱体の実施例の縦断
面図
FIG. 4 is a longitudinal sectional view of an embodiment of a heat transfer body provided with a joined body of the present invention.

【図5】本発明の実装例FIG. 5 is an implementation example of the present invention.

【図6】本発明の接合体を付けた伝熱体の別の実施例の
縦断面図
FIG. 6 is a longitudinal sectional view of another embodiment of the heat transfer body provided with the joined body of the present invention.

【符号の説明】[Explanation of symbols]

1 異方性伝熱体 2 炭素繊維 3 可撓性の有機高分子層 4 ゲル状の有機高分子層 5 ゴム状弾性体の有機高分子層 6,6, 7 接合体 8 発熱体 9 放熱体 10 固着層 11 補助接合体REFERENCE SIGNS LIST 1 anisotropic heat transfer material 2 carbon fiber 3 flexible organic polymer layer 4 gel-like organic polymer layer 5 organic polymer layer of rubber-like elastic body 6 1 , 6 2 , 7 bonded body 8 heating element 9 Heat radiator 10 Fixed layer 11 Auxiliary joint

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 83:04 H01L 23/36 M Fターム(参考) 4F072 AB10 AD47 4F100 AD11A AK01A AK52A AK52B AK52C AL09B AL09C AN02A AN02B AN02C BA03 BA06 BA10B BA10C BA23 BA23A CA23 DD31 DG01A GB41 JJ01 JK07B JK07C JK17 JK17A 5F036 AA01 BB21 BD21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C08L 83:04 H01L 23/36 MF Term (Reference) 4F072 AB10 AD47 4F100 AD11A AK01A AK52A AK52B AK52C AL09B AL09C AN02A AN02B AN02C BA03 BA06 BA10B BA10C BA23 BA23A CA23 DD31 DG01A GB41 JJ01 JK07B JK07C JK17 JK17A 5F036 AA01 BB21 BD21

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発熱体から発生する熱を離れた放熱体へ伝
える炭素繊維が、可撓性の有機高分子層内に一方向に配
列されて埋設されていることを特徴とする異方性伝熱
体。
1. Anisotropically characterized in that carbon fibers for transmitting heat generated from a heating element to a radiating element away from the heating element are arranged and buried in one direction in a flexible organic polymer layer. Heat transfer body.
【請求項2】可撓性の有機高分子層が、炭素繊維を覆う
ゲル状の有機高分子層と、さらにその外側を覆うゴム状
弾性体の有機高分子層との複層構造であることを特徴と
する請求項1に記載の異方性伝熱体。
2. The flexible organic polymer layer has a multilayer structure of a gel-like organic polymer layer covering carbon fibers and a rubber-like elastic organic polymer layer covering the outside thereof. The anisotropic heat transfer body according to claim 1, wherein:
【請求項3】ゲル状の有機高分子層とゴム状弾性体の有
機高分子層との少なくとも一方に熱伝導性充填剤が配合
されていることを特徴とする請求項2に記載の異方性伝
熱体。
3. The anisotropic material according to claim 2, wherein a thermally conductive filler is blended in at least one of the gel organic polymer layer and the rubber-like elastic organic polymer layer. Heat transfer material.
【請求項4】ゲル状の有機高分子層が、シリコーンゲル
層であり、かつゴム状弾性体の有機高分子層が、シリコ
ーンゴム層であることを特徴とする請求項2あるいは3
に記載の異方性伝熱体。
4. The organic polymer layer in a gel state is a silicone gel layer, and the organic polymer layer in a rubbery elastic body is a silicone rubber layer.
3. The anisotropic heat transfer material according to item 1.
【請求項5】請求項1、2、3あるいは4に記載の異方
性伝熱体の両端に、発熱体あるいは放熱体方向に伝熱方
向を向けるための、マトリックス中に炭素繊維が一方向
に配列し埋設された接合体を有することを特徴とする異
方性伝熱体。
5. A carbon fiber in a matrix for directing a heat transfer direction toward a heating element or a heat radiator at both ends of the anisotropic heat transfer element according to claim 1, 2, 3 or 4. An anisotropic heat transfer body, characterized in that the heat transfer body has a bonded body arranged and buried in the same.
JP2000078062A 2000-03-21 2000-03-21 Anisotropic heat transfer body Expired - Fee Related JP4430779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078062A JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078062A JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Publications (2)

Publication Number Publication Date
JP2001261851A true JP2001261851A (en) 2001-09-26
JP4430779B2 JP4430779B2 (en) 2010-03-10

Family

ID=18595523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078062A Expired - Fee Related JP4430779B2 (en) 2000-03-21 2000-03-21 Anisotropic heat transfer body

Country Status (1)

Country Link
JP (1) JP4430779B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767184B1 (en) * 2005-08-10 2007-10-15 재단법인서울대학교산학협력재단 Cooling device for electronic device and method of forming the same
WO2008041753A1 (en) * 2006-10-04 2008-04-10 Nikon Corporation Electronic device, electronic camera, light source device, illuminating device and projector device
JP2008090163A (en) * 2006-10-04 2008-04-17 Nikon Corp Electronic apparatus and electronic camera
JP2008257909A (en) * 2007-04-02 2008-10-23 Nikon Corp Light source device, electronic device, camera, illumination device and projector device
JP2011200428A (en) * 2010-03-25 2011-10-13 Olympus Medical Systems Corp Endoscope
EP2562807A1 (en) * 2011-08-22 2013-02-27 ABB Research Ltd Heat transfer in an electronic device
JP2014126659A (en) * 2012-12-26 2014-07-07 Brother Ind Ltd Developing device
WO2017003677A1 (en) * 2015-06-29 2017-01-05 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
KR20180064771A (en) * 2016-12-06 2018-06-15 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109413938A (en) * 2018-10-24 2019-03-01 航天材料及工艺研究所 A kind of efficient cooling means of composite material light and device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767184B1 (en) * 2005-08-10 2007-10-15 재단법인서울대학교산학협력재단 Cooling device for electronic device and method of forming the same
WO2008041753A1 (en) * 2006-10-04 2008-04-10 Nikon Corporation Electronic device, electronic camera, light source device, illuminating device and projector device
JP2008090163A (en) * 2006-10-04 2008-04-17 Nikon Corp Electronic apparatus and electronic camera
US7664386B2 (en) 2006-10-04 2010-02-16 Nikon Corporation Electronic device having light source and heat transmission member
US7920784B2 (en) 2006-10-04 2011-04-05 Nikon Corporation Electronic device, electronic camera, light source device, illumination device, and projector device
JP2008257909A (en) * 2007-04-02 2008-10-23 Nikon Corp Light source device, electronic device, camera, illumination device and projector device
JP2011200428A (en) * 2010-03-25 2011-10-13 Olympus Medical Systems Corp Endoscope
EP2562807A1 (en) * 2011-08-22 2013-02-27 ABB Research Ltd Heat transfer in an electronic device
JP2014126659A (en) * 2012-12-26 2014-07-07 Brother Ind Ltd Developing device
WO2017003677A1 (en) * 2015-06-29 2017-01-05 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
US10299407B2 (en) 2015-06-29 2019-05-21 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
KR20180064771A (en) * 2016-12-06 2018-06-15 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same
KR101914953B1 (en) * 2016-12-06 2018-11-06 광주과학기술원 Anisotropy polymer composite and method for manufacturing the same

Also Published As

Publication number Publication date
JP4430779B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US6257328B1 (en) Thermal conductive unit and thermal connection structure using the same
KR101538944B1 (en) Compliant multilayered thermally-conductive interface assemblies and memory modules including the same
JP2003168882A (en) Heat conductive sheet
JP5334818B2 (en) Connection structure
EP1632998A1 (en) High power electronic package with enhanced cooling characteristics
US7922518B1 (en) Connection structure
JP2001261851A (en) Anisotropic heat transfer material
JP2006074853A (en) Vehicle-mounted power converter
TW452945B (en) Thermally conductive mounting arrangement for securing an integrated circuit package to a heat sink
TWM377062U (en) Electronic device with a heat insulating structure
US5273439A (en) Thermally conductive elastomeric interposer connection system
JP2019040745A (en) Heat radiation structure and battery including the same
CN107529312A (en) Optical module with double-deck PCBA structures
CN111988958A (en) Hot graphite sponge
JPH1158591A (en) Heat-conductive sheet
JP6629689B2 (en) Thermal conductive connector and electronic device having the same
US10480833B2 (en) Heat-transferring and electrically connecting device and electronic device
JP2001160606A (en) Heat dissipating sheet and its manufacturing method
JPH06268113A (en) Heat radiating member for electronic apparatus
US9414527B2 (en) Thermal spreading for an externally pluggable electronic module
JP2002076217A (en) Heat radiating device
JPH07147467A (en) Heat radiating method for electronic component
JP2007142249A (en) Heat radiating structure for electric apparatus
JP2008244365A (en) Thermal connection structure and electronic appliance comprising the same
JPH03110892A (en) Heat-dissipating structure of electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees