JP2001261485A - Device and method for producing single crystal - Google Patents

Device and method for producing single crystal

Info

Publication number
JP2001261485A
JP2001261485A JP2000078603A JP2000078603A JP2001261485A JP 2001261485 A JP2001261485 A JP 2001261485A JP 2000078603 A JP2000078603 A JP 2000078603A JP 2000078603 A JP2000078603 A JP 2000078603A JP 2001261485 A JP2001261485 A JP 2001261485A
Authority
JP
Japan
Prior art keywords
single crystal
diameter
rotation speed
melt
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000078603A
Other languages
Japanese (ja)
Inventor
Ichiro Kobayashi
一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000078603A priority Critical patent/JP2001261485A/en
Publication of JP2001261485A publication Critical patent/JP2001261485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for producing BGO, with which the BGO is stably and efficiently grown without mixing of bubbles into inside the BGO, dividing of the BGO and a melt, and the occurrence of defects such as cores or heat strain when the BGO is grown. SOLUTION: The device for producing BGO is equipped with a pulling mechanism 24 for pulling an axis which has been brought into contact with the liquid surface of a melt 2 heated in a crystal growing furnace 100 while rotating the axis around its center and a melt stuck to the end of the axis, as a single crystal together with the axis, diameter calculating means 22 and 25 for calculating diameter of the single crystal pulled, first controlling means 23 to 25 for changing the pulling rate of the single crystal, the rotation speed of the axis and the heating amount according to the diameter calculated for the time until the single crystal is grown to a prescribed diameter, and second controlling means 23 to 25 which keep the pulling rate and the rotation speed constant and adjust only the heating amount to be supplied according to change of the diameter of the single crystal until the single crystal is grown to a prescribed length after the single crystal has been grown to the prescribed diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は単結晶の製造装
置、特に引き上げ法(チョクラルスキー法)を適用した
Bi12GeO20単結晶(以下、BGOと称す)の製造装
置及び単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal, and more particularly to an apparatus and a method for producing a Bi 12 GeO 20 single crystal (hereinafter referred to as BGO) to which a pulling method (Czochralski method) is applied. It is about.

【0002】[0002]

【従来の技術】従来からファラデー効果およびポッケル
ス効果を共に有する単結晶として、BGOが知られてい
る。一般に、BGOは引上げ法により製造されている。
図6は例えば特開平1−234399号公報に示された
単結晶育成炉の断面構造の模式図である。図6におい
て、1はBGO、2はBGO1の原料となる融液、3は
この融液2からBGO1を育成するための種結晶、4は
この種結晶3を先端に取り付けた引上げ軸、5は引上げ
軸4と同心円下に据付けた白金製るつぼ、6は白金製る
つぼ5を囲う耐火物、7は白金製アフターヒーター、8
は白金製アフターヒーター7を囲う耐火物、9は耐火物
6と耐火物8との間に設置されたスペーサ、10は加熱
用の高周波コイル、100は単結晶育成炉である。
2. Description of the Related Art BGO is conventionally known as a single crystal having both the Faraday effect and the Pockels effect. Generally, BGO is manufactured by a pulling method.
FIG. 6 is a schematic view of a sectional structure of a single crystal growing furnace disclosed in, for example, Japanese Patent Application Laid-Open No. 1-234399. In FIG. 6, 1 is BGO, 2 is a melt used as a raw material of BGO1, 3 is a seed crystal for growing BGO1 from this melt 2, 4 is a pulling shaft having this seed crystal 3 attached to the tip, 5 is A platinum crucible installed concentrically with the pulling shaft 4, 6 is a refractory surrounding the platinum crucible 5, 7 is a platinum afterheater, 8
Is a refractory surrounding the platinum afterheater 7, 9 is a spacer installed between the refractory 6 and the refractory 8, 10 is a high-frequency coil for heating, and 100 is a single crystal growing furnace.

【0003】次に動作について説明する。BGO1の原
料となる純度99.97%の酸化ビスマス(Bi23
と純度99.99%の二酸化ゲルマニウム(GeO2
とをBi12GeO20となる割合で混合し、白金製るつぼ
5に充填する。白金製るつぼ5は高周波コイル10から
の高周波誘導加熱で1000℃近くの高温に加熱される
ため、断熱性のある耐火物6で囲っている。
Next, the operation will be described. Bismuth oxide (Bi 2 O 3 ) with a purity of 99.97%, which is a raw material for BGO1
And 99.99% pure germanium dioxide (GeO 2 )
Are mixed at a ratio of Bi 12 GeO 20 and filled in a crucible 5 made of platinum. Since the platinum crucible 5 is heated to a high temperature of about 1000 ° C. by high-frequency induction heating from the high-frequency coil 10, it is surrounded by a refractory 6 having heat insulation.

【0004】白金製るつぼ5を介して高周波コイル10
で加熱されたBi12GeO20は溶融し、融液2となる。
この融液2を930℃に維持しつつ、引上げ軸4の先端
に取り付けた種結晶3を前記融液2に浸し、種結晶3を
回転させながら引上げることによりBGO1が育成でき
る。
A high-frequency coil 10 is connected via a platinum crucible 5.
The Bi 12 GeO 20 heated in the step is melted to form a melt 2.
While maintaining the melt 2 at 930 ° C., the seed crystal 3 attached to the tip of the pulling shaft 4 is immersed in the melt 2 and pulled up while rotating the seed crystal 3, whereby the BGO 1 can be grown.

【0005】このような加熱方式の場合、通常炉内の温
度勾配が大きと、育成するBGO1の結晶品質は結晶育
成炉100内の温度分布により大きく左右されるため
に、引上げたBGO1が冷却時に割れたり、結晶内に熱
歪みによる欠陥が発生してクラックの原因となる。
[0005] In the case of such a heating method, since the temperature gradient in the normal furnace is large and the crystal quality of the grown BGO1 is greatly influenced by the temperature distribution in the crystal growing furnace 100, the pulled BGO1 is cooled during cooling. Cracks and defects due to thermal strain occur in the crystal, which cause cracks.

【0006】これらを回避するため、白金製るつぼ5上
にスペーサ9を介して、白金製アフターヒーター7と断
熱性のある耐火物8を配置して結晶育成炉100内の温
度勾配を小さくする方法が取られている。
In order to avoid these problems, a method of reducing the temperature gradient in the crystal growing furnace 100 by disposing a platinum afterheater 7 and a refractory material 8 with heat insulation on a platinum crucible 5 via a spacer 9 via a spacer 9 is provided. Has been taken.

【0007】本例では融液2の液面からBGO1の引上
げ方向上方10mmまでの温度勾配を50〜75℃/c
mに調整し、それに引続く150mmに至るまでの温度
勾配を10℃/cm以下に調整している。また、BGO
1の引上げ速度は1mm/h、回転速度は温度勾配によ
り8〜10rpmの範囲にある一定値としている。
In this example, the temperature gradient from the liquid surface of the melt 2 to 10 mm above the BGO 1 in the pulling direction is 50 to 75 ° C./c.
m, and the subsequent temperature gradient up to 150 mm is adjusted to 10 ° C./cm or less. Also, BGO
The pulling speed of 1 is 1 mm / h, and the rotating speed is a constant value in the range of 8 to 10 rpm depending on the temperature gradient.

【0008】[0008]

【発明が解決しようとする課題】(1)従来技術の問題
点の説明 BGO1を育成するに当り、育成するBGO1の直径と
白金製るつぼ5の直径、及びBGO1の引上げ速度や回
転速度等の育成条件の設定によっては下記のような問題
点が発生した。 1.回転速度が速すぎBGO1と融液2の境界面(以
下、固液界面)の状態が凹面の場合に、BGO1内に数
〜数十μmの気泡が混入し易い。 2.更に凹面化が進むと単結晶の育成過程でBGO1と
融液2とが分断されることがある。 3.逆に回転速度が遅すぎ固液界面が凸面の場合にBG
O1内に変色した部分(以下、コアーと称す)が発生す
る。 4.BGO1の直径が大きくなると内部の熱放散が悪く
なり、歪み等の内部欠陥が発生する。 5.1のような現象を解消するために種結晶の引き上げ
速度を一義的に遅くすると種結晶から目標直径に成長す
るまでに長時間要する。
(1) Description of the problems of the prior art In growing BGO1, the diameter of the BGO1 to be grown, the diameter of the platinum crucible 5, and the growth speed and rotation speed of the BGO1 are raised. Depending on the setting of the conditions, the following problems occurred. 1. When the rotation speed is too high, when the state of the boundary surface between the BGO 1 and the melt 2 (hereinafter, the solid-liquid interface) is a concave surface, bubbles of several to several tens μm are easily mixed in the BGO 1. 2. When the concave surface is further advanced, the BGO 1 and the melt 2 may be separated during the process of growing the single crystal. 3. Conversely, if the rotation speed is too slow and the solid-liquid interface is convex,
A discolored portion (hereinafter referred to as a core) occurs in O1. 4. As the diameter of the BGO 1 increases, the internal heat dissipation deteriorates and internal defects such as distortion occur. If the pulling speed of the seed crystal is uniquely reduced to eliminate the phenomenon as described in 5.1, it takes a long time to grow from the seed crystal to the target diameter.

【0009】(2)発明の目的の説明 この発明は、上記のような問題点を解消するためになさ
れたもので、BGOを安定に且つ、効率的に育成するこ
とができる単結晶の製造装置及び単結晶の製造方法を得
ることを目的する。
(2) Description of the Object of the Invention The present invention has been made in order to solve the above problems, and has an apparatus for producing a single crystal capable of stably and efficiently growing BGO. And a method for producing a single crystal.

【0010】[0010]

【課題を解決するための手段】この発明に係る単結晶の
製造装置は、充填した単結晶原料を加熱して融液を作る
単結晶育成炉と、前記単結晶育成炉に加熱用電力を供給
する加熱電源と、前記単結晶育成炉中の融液の液面に垂
直に接触させた軸をその中心軸周りに回転させながら軸
端面に被着した融液を単結晶として前記軸と共に引き上
げる引上げ機構と、この引き上げた単結晶の直径を算出
する直径算出手段と、前記算出された単結晶の直径に応
じて前記単結晶が目標直径に成長するまで単結晶の引上
げ速度と前記軸の回転速度、及び前記加熱電源の出力を
変化させる第1の制御手段と、前記単結晶が目標直径に
成長後、前記単結晶が目標長に達するまでは、前記引上
げ速度と前記回転速度を一定とし、前記供給する加熱用
電力のみを前記単結晶の直径の変化に応じて変化させる
第2の制御手段とを備えたものである。この発明に係る
単結晶の製造装置における第1の制御手段は、前記単結
晶の直径が所定値以下の場合は前記引き上げ速度と回転
速度を一定値に設定すると共に、前記加熱電源の出力を
一定値で下げ、また、前記単結晶の直径が前記所定値以
上で、且つ、前記目標直径以下の場合は前記引き上げ速
度と回転速度を前記単結晶の直径に逆比例して下げると
共に、前記加熱電源の出力を結晶直径の増加に伴って増
加するように制御するものである。この発明に係る単結
晶の製造装置における第2の制御手段は、前記引き上げ
速度と回転速度を、前記単結晶の直径が前記所定値以下
の場合よりも低い引き上げ速度と回転速度で一定値に設
定すると共に、前記加熱電源の出力を前記単結晶の直径
の変化に応じて制御するものである。
According to the present invention, there is provided an apparatus for producing a single crystal, comprising: a single crystal growing furnace for heating a charged single crystal raw material to form a melt; and a heating power supply to the single crystal growing furnace. A heating power source, and pulling up the melt adhered to the shaft end face as a single crystal together with the shaft while rotating the shaft perpendicular to the liquid surface of the melt in the single crystal growing furnace around its central axis. A mechanism, diameter calculating means for calculating the diameter of the pulled single crystal, and a pulling speed of the single crystal and a rotation speed of the shaft until the single crystal grows to a target diameter according to the calculated diameter of the single crystal. And a first control means for changing the output of the heating power supply, after the single crystal has grown to a target diameter, until the single crystal reaches a target length, the pulling speed and the rotation speed are constant, Only the heating power to be supplied is It is obtained by a second control means for changing in response to changes in the diameter of the crystal. When the diameter of the single crystal is equal to or less than a predetermined value, the first control means in the apparatus for manufacturing a single crystal according to the present invention sets the pulling speed and the rotation speed to constant values, and keeps the output of the heating power supply constant. When the diameter of the single crystal is equal to or larger than the predetermined value and equal to or smaller than the target diameter, the pulling speed and the rotation speed are reduced in inverse proportion to the diameter of the single crystal, and the heating power Is controlled so as to increase as the crystal diameter increases. The second control means in the apparatus for producing a single crystal according to the present invention sets the pulling speed and the rotation speed to constant values at a lower pulling speed and a lower rotation speed than when the diameter of the single crystal is equal to or less than the predetermined value. In addition, the output of the heating power supply is controlled according to a change in the diameter of the single crystal.

【0011】この発明に係る単結晶の製造方法は、加熱
された単結晶育成炉中の融液を軸の端部に被着させ、そ
の軸をその中心周りに所定の回転速度で回転させながら
引上げ機構により前記融液を単結晶として引き上げる
時、前記単結晶の単位時間当たりの重量増加分から前記
単結晶の直径を算出する第1の工程と、前記単結晶が所
定の直径に成長後、目標直径に成長するまで前記単結晶
の引上げ速度と回転速度、及び前記単結晶育成炉の加熱
量を前記単結晶の直径に応じて変化させる第2の工程
と、前記単結晶が目標直径に成長後、前記単結晶が目標
長に達するまでは、前記引上げ速度と回転速度を一定と
して融液を前記引上げ機構で引き上げ、前記単結晶育成
炉の加熱量のみを前記単結晶の直径の変化に応じて変化
させる第3の工程とを備えものである。この発明に係る
単結晶の製造方法における第2の工程では、前記単結晶
の直径が所定値以下の場合は前記引き上げ速度と回転速
度を一定値に設定すると共に、前記加熱電源の出力を一
定値で下げ、また、前記単結晶の直径が前記所定値以上
で、且つ、前記目標直径以下の場合は前記引き上げ速度
と回転速度を前記単結晶の直径に逆比例して下げると共
に、前記加熱電源の出力を結晶直径の増加にとなって増
加するように制御するものである。この発明に係る単結
晶の製造方法における前記第3の工程では、前記引き上
げ速度と回転速度を、前記第2の工程において単結晶の
直径が所定値以下の場合よりも低い引き上げ速度と回転
速度で一定値に設定すると共に、前記加熱電源の出力を
前記単結晶の直径の変化に応じて制御するものである。
In the method for producing a single crystal according to the present invention, a melt in a heated single crystal growing furnace is applied to an end of a shaft, and the shaft is rotated around a center thereof at a predetermined rotation speed. A first step of calculating the diameter of the single crystal from a weight increase per unit time of the single crystal when the melt is pulled up as a single crystal by a pulling mechanism; and A second step of changing the pulling speed and rotation speed of the single crystal until the diameter of the single crystal grows, and the heating amount of the single crystal growing furnace according to the diameter of the single crystal, and after the single crystal has grown to a target diameter. Until the single crystal reaches the target length, the melt is pulled up by the pulling mechanism while keeping the pulling speed and the rotation speed constant, and only the heating amount of the single crystal growing furnace is changed according to the change in the diameter of the single crystal. And the third step of changing Is Emono. In the second step of the method for producing a single crystal according to the present invention, when the diameter of the single crystal is equal to or less than a predetermined value, the pulling speed and the rotation speed are set to constant values, and the output of the heating power supply is set to a constant value. When the diameter of the single crystal is equal to or larger than the predetermined value and equal to or smaller than the target diameter, the pulling speed and the rotation speed are reduced in inverse proportion to the diameter of the single crystal, and the heating power supply is reduced. The output is controlled so as to increase as the crystal diameter increases. In the third step of the method for producing a single crystal according to the present invention, the pulling speed and the rotation speed are set at a lower pulling speed and a lower rotation speed than when the diameter of the single crystal is equal to or less than a predetermined value in the second step. In addition to setting the constant value, the output of the heating power supply is controlled according to the change in the diameter of the single crystal.

【0012】[0012]

【発明の実施の形態】実施の形態1. (1)構成の詳細な説明 本実施の形態の詳細な動作説明を行う前に、本発明の概
要について説明する。BGO1と融液2の境界面(以
下、固液界面)の状態が凹面の場合にBGO1内に気泡
が混入し易く、さらに凹面化が進むとBGO1と融液2
が分断してしまい、逆に固液界面が凸面の場合はコアー
が発生することが、これまでのBGO1の製造結果から
分かってきた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 (1) Detailed Description of Configuration Before giving a detailed description of the operation of the present embodiment, an overview of the present invention will be described. When the state of the boundary surface between BGO 1 and melt 2 (hereinafter, the solid-liquid interface) is concave, air bubbles easily enter BGO 1, and when the surface is further concaved, BGO 1 and melt 2
Is broken, and conversely, when the solid-liquid interface is a convex surface, a core is generated from the results of the production of BGO1.

【0013】そこで、固液界面の状態は融液2の対流と
密接な関係にあり、白金製るつぼ5を加熱することで発
生する白金製るつぼ5内での融液2の自然対流とBGO
1の回転速度による融液2の強制対流とが打消し合うよ
うに制御すれば、固液界面の状態を平面に出来ることが
分かった。また、BGO1の直径が大きくなると内部の
熱放散が悪くなり、熱歪みを生じる。この現象を回避す
る為、引上げ速度を遅くすれば良いことが分かった。さ
らに、加熱用の高周波コイル10への供給電力を適正値
に減少させることでBGO1の成長を加速できることが
分かった。本発明の単結晶育成装置は引上げ法を適用し
てBGO1を育成するに当り、上記の結果を踏まえ、育
成時のBGO1の直径に応じてBGO1の引上げ速度と
回転速度及び加熱用の高周波コイル10への供給電力を
コンピュータ制御で自動的に変化させることにより、固
液界面の状態を平面に維持できるようにした。
Therefore, the state of the solid-liquid interface is closely related to the convection of the melt 2 and the natural convection of the melt 2 in the platinum crucible 5 generated by heating the platinum crucible 5 and the BGO.
It was found that the state of the solid-liquid interface can be made flat by controlling so that the forced convection of the melt 2 at the rotation speed of 1 cancels out. In addition, when the diameter of the BGO 1 increases, the internal heat dissipation deteriorates, and thermal distortion occurs. To avoid this phenomenon, it was found that the pulling speed should be reduced. Furthermore, it was found that the growth of BGO1 can be accelerated by reducing the power supplied to the heating high-frequency coil 10 to an appropriate value. In growing the BGO1 by applying the pulling method, the single crystal growing apparatus of the present invention takes into account the above results, and based on the diameter of the BGO1 at the time of growing, the pulling speed and rotation speed of the BGO1 and the high-frequency coil 10 for heating. The state of the solid-liquid interface can be maintained flat by automatically changing the supply power to the computer under computer control.

【0014】以下この発明の実施の形態1を添付図面に
従って説明する。図1は本実施の形態に係る単結晶製造
装置の構成を示すブロック図である。図1において、1
00は結晶育成炉であり、その内部の構成は図6に示し
た従来の結晶育成炉と同様であるのでその説明は省略す
る。20は結晶育成炉100内の高周波コイル10に電
力を供給する高周波加熱電源、21は高周波加熱電源2
0の電力を制御するための電源制御機構、4は図示しな
い回転機構によりBGO1を回転させながら引上げる引
上げ軸、22は引上げ軸4によって引き上げられるBG
O1の重さを測定する重量測定機構、23は引上げ軸4
の回転速度制御機構、24は引上げ軸4の引上げ速度制
御機構、25は電源制御機構21、重量測定機構22、
回転速度制御機構23、及び引上げ速度制御機構24を
集中管理するコンピュータ、26は前記各機構21〜2
4とコンピュータ25を接続する通信ケーブルである。
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a single crystal manufacturing apparatus according to the present embodiment. In FIG. 1, 1
Reference numeral 00 denotes a crystal growing furnace, the internal configuration of which is the same as that of the conventional crystal growing furnace shown in FIG. Reference numeral 20 denotes a high-frequency heating power supply for supplying power to the high-frequency coil 10 in the crystal growth furnace 100, and reference numeral 21 denotes a high-frequency heating power supply 2.
A power control mechanism for controlling the power of 0, a pull-up shaft 4 for pulling up while rotating the BGO 1 by a rotating mechanism (not shown), and a BG 22 pulled up by the pull-up shaft 4
A weight measuring mechanism for measuring the weight of O1;
, A pulling speed control mechanism for the pulling shaft 4, a power control mechanism 21, a weight measuring mechanism 22,
A computer 26 for centrally managing the rotation speed control mechanism 23 and the pulling speed control mechanism 24,
4 is a communication cable for connecting the computer 4 to the computer 25.

【0015】(2)動作の詳細な説明 (2−1)白金製るつぼ5内の融液2の対流についての
説明 BGO1の原料を白金製るつぼ5に充填し、950℃ま
で加熱するとBGO1の原料は溶融して融液2となる。
この融液2は白金製るつぼ5の壁面が加熱されているの
で、図2(a)に示すように、融液2は白金製るつぼ5
の壁面から中央部に流れる自然対流となっている。この
融液2に引上げ軸4に取付けた種結晶3を浸し、引上げ
軸4を高速に回転させると、図2(b)に示すように、
白金製るつぼ5内においては融液2の自然対流よりも種
結晶3の回転で生じる融液2の強制対流が勝り、融液2
は白金製るつぼ5の中央部から壁面に流れる状態とな
る。
(2) Detailed Description of Operation (2-1) Explanation of Convection of Melt 2 in Platinum Crucible 5 The raw material of BGO1 is charged into a platinum crucible 5 and heated to 950 ° C. Melts into a melt 2.
Since the wall of the platinum crucible 5 of this melt 2 is heated, as shown in FIG.
The natural convection flows from the wall to the center. When the seed crystal 3 attached to the pulling shaft 4 is immersed in the melt 2 and the pulling shaft 4 is rotated at a high speed, as shown in FIG.
In the platinum crucible 5, the forced convection of the melt 2 generated by the rotation of the seed crystal 3 exceeds the natural convection of the melt 2 and the melt 2
Flows from the central portion of the platinum crucible 5 to the wall surface.

【0016】(2−2)固液界面の形状と融液の対流の
相関についての説明 次に、BGO1を育成時の固液界面の形状と融液2の対
流30の相関について図3で説明する。図3(a)は自
然対流が強制対流よりも勝っている場合で、低温の融液
2は白金製るつぼ5の中央より底部に流れ込み、そして
底部より壁面に沿って上昇してからBGO1の中心部を
かすめ再び白金製るつぼ5の中央に流れ込むため、白金
製るつぼ5と同心円にあるBGO1の中心部は外周部よ
り白金製るつぼ5の中央に向けて固化が進むため、固液
界面は凸面になる。図3(b)は自然対流と強制対流が
平衡状態の場合で、融液2の表面温度が一定になるので
BGO1の中心部と外周部の固化が同時に進むため、固
液界面は平面になる。図3(c)は自然対流よりも強制
対流が勝る場合で、高温の融液2が白金製るつぼ5の壁
面から中央へ沸き上がるため、BGO1の中心部は外周
部より固化が遅れ、固液界面は凹面になる。
(2-2) Explanation of Correlation between Shape of Solid-Liquid Interface and Convection of Melt Next, the correlation between the shape of the solid-liquid interface and convection 30 of melt 2 when growing BGO 1 will be described with reference to FIG. I do. FIG. 3 (a) shows a case where natural convection is stronger than forced convection, in which the low-temperature melt 2 flows from the center of the platinum crucible 5 to the bottom and rises along the wall surface from the bottom before the center of the BGO 1. The center of the BGO 1 which is concentric with the platinum crucible 5 is solidified from the outer peripheral portion toward the center of the platinum crucible 5 because the portion flows into the center of the platinum crucible 5 again. Become. FIG. 3B shows a case in which natural convection and forced convection are in an equilibrium state, and since the surface temperature of the melt 2 is constant, the solidification of the center and the outer periphery of the BGO 1 proceeds simultaneously, so that the solid-liquid interface becomes flat. . FIG. 3 (c) shows a case where forced convection is superior to natural convection. Since the high-temperature melt 2 boils from the wall surface of the platinum crucible 5 to the center, the solidification of the center of the BGO 1 is delayed from that of the outer periphery, and the solid-liquid interface Becomes concave.

【0017】(2−3)BGOの製造についての説明 直径100mm、深さ100mmの白金製るつぼ5を用
いて、直径45mm、重量1500gのBGO1を製造
する場合の動作について、図4の制御フローチャートに
従って説明する。結晶育成炉100内の白金製るつぼ5
にBGO1の原料を充填し、高周波加熱電源20の出力
を徐々に増加させながら高周波コイル10に供給するよ
うに、コンピュータ25から電源制御機構21に指令を
出す。白金製るつぼ5を950℃まで加熱するとBGO
1の原料は完全に溶融され、融液2が得られる(ステッ
プS1)。次に、融液2の液面温度が種付け温度に適し
た930℃になるようにコンピュータ25から電源制御
機構21に指令を出して高周波加熱電源20の出力を制
御する(ステップS2)。次に、この融液2に直径3m
mの種結晶3を浸す(ステップS3)。この時、融液2
は前記の図2(a)の自然対流である。
(2-3) Description of Production of BGO The operation of producing BGO 1 having a diameter of 45 mm and a weight of 1500 g using a platinum crucible 5 having a diameter of 100 mm and a depth of 100 mm will be described with reference to the control flowchart of FIG. explain. Platinum crucible 5 in crystal growing furnace 100
Is supplied from the computer 25 to the power supply control mechanism 21 so as to supply the high frequency coil 10 with the raw material of the BGO 1 and gradually increase the output of the high frequency heating power supply 20. When the platinum crucible 5 is heated to 950 ° C, BGO
The raw material 1 is completely melted to obtain a melt 2 (step S1). Next, a command is issued from the computer 25 to the power supply control mechanism 21 to control the output of the high-frequency heating power supply 20 so that the liquid surface temperature of the melt 2 becomes 930 ° C. suitable for the seeding temperature (step S2). Next, a diameter of 3 m
The m seed crystals 3 are immersed (step S3). At this time, melt 2
Is the natural convection shown in FIG.

【0018】次に、BGO1の重量を重量測定機構22
からコンピュータ25に読込み、単位時間当りの重量増
加分からBGO1の直径dを算出する(ステップS
4)。BGO1の直径dが10mm以下の場合と10m
mを越え45mm未満の場合、及び目標直径の45mm
に到達後ではそれぞれ異なる制御に分岐する(ステップ
S5、S6)。
Next, the weight of the BGO 1 is measured by the weight measuring mechanism 22.
To the computer 25, and calculates the diameter d of the BGO 1 from the weight increase per unit time (step S
4). When the diameter d of BGO1 is 10 mm or less and 10 m
m and less than 45 mm, and 45 mm of the target diameter
After that, control branches to different controls (steps S5 and S6).

【0019】BGO1の直径dが目標直径に達さず、1
0mm以下の場合は、引上げ軸4の回転速度が20rp
mになるようにコンピュータ25から回転速度制御機構
23に指令を出す(ステップS7)。回転速度が20r
pmでは自然対流が強制対流に勝っており、固液界面は
凸面である(図3(a)参照)。本単結晶製造装置は種
結晶3の直径が10mmで自然対流と強制対流が平衡状
態になるが、BGO1を安定に育成させるために固液界
面は凸面を維持している。同時に引上げ速度が2mm/
hになるようにコンピュータ25から引上げ速度制御機
構24に指令を出す(ステップS7)。融液2が固化す
る際に放出する潜熱により融液2や結晶育成炉100内
雰囲気の温度が上昇しないよう高周波加熱電源20から
高周波コイル10に与える出力を一定値で下げて行くこ
とで(ステップS8)、種結晶3の直径は徐々に大きく
なってくる。
When the diameter d of BGO1 does not reach the target diameter, 1
0 mm or less, the rotation speed of the pulling shaft 4 is 20 rpm
A command is issued from the computer 25 to the rotation speed control mechanism 23 so that the rotation speed becomes m (step S7). Rotation speed is 20r
At pm, natural convection exceeds forced convection, and the solid-liquid interface is convex (see FIG. 3A). In the present single crystal production apparatus, natural convection and forced convection are in an equilibrium state when the diameter of the seed crystal 3 is 10 mm, but the solid-liquid interface maintains a convex surface in order to stably grow BGO1. At the same time, the pulling speed is 2mm /
A command is issued from the computer 25 to the pull-up speed control mechanism 24 so as to reach h (step S7). The output from the high-frequency heating power supply 20 to the high-frequency coil 10 is reduced at a constant value so that the temperature of the melt 2 and the atmosphere in the crystal growth furnace 100 does not increase due to the latent heat released when the melt 2 solidifies (step S8) The diameter of the seed crystal 3 gradually increases.

【0020】また、BGO1の直径dが10mmを越
え、目標直径の45mm未満の場合はBGO1の直径d
に逆比例して回転速度を20rpmから10rpmに下
げる(ステップS6,9)。これは、BGO1の直径d
が約10mmで固液界面が平面(図3(b)参照)にな
るが、直径dの増加に伴い自然対流より強制対流が勝
り、固液界面が凹面(図3(c)参照)になるのを避け
るためである。また、BGO1の直径dが大きくなるに
つれて内部の熱放散が悪くなるが、従来の技術で説明し
た通り、引上げ軸方向の温度勾配が大きいためBGO1
の中心部と外周部との温度差がさらに大きくなり熱歪み
を生じる。この熱歪みを回避するため、温度差が緩和す
る時間を設ける意味でBGO1の直径dに逆比例して引
上げ速度を2mm/hから1mm/hに下げる(ステッ
プS9)。回転速度と引上げ速度の制御と同期して、高
周波加熱電源20の出力をBGO1の直径dの二次関数
でPID制御することで(ステップS10)、固液界面
の面積増加に比例して増加する潜熱の影響をなくし、B
GO1の成長を加速できる。
If the diameter d of the BGO1 exceeds 10 mm and is less than the target diameter of 45 mm, the diameter d of the BGO1
The rotation speed is reduced from 20 rpm to 10 rpm in inverse proportion to (steps S6 and S9). This is the diameter d of BGO1
Is about 10 mm, the solid-liquid interface becomes flat (see FIG. 3 (b)), but as the diameter d increases, forced convection exceeds natural convection and the solid-liquid interface becomes concave (see FIG. 3 (c)). This is to avoid Further, as the diameter d of the BGO 1 increases, the internal heat dissipation deteriorates. However, as described in the related art, the temperature gradient in the direction of the pulling axis is large, so that the BGO 1 has a large temperature gradient.
The temperature difference between the central part and the outer peripheral part becomes larger, and thermal distortion occurs. In order to avoid this thermal distortion, the pulling speed is reduced from 2 mm / h to 1 mm / h in inverse proportion to the diameter d of the BGO 1 in order to provide time for the temperature difference to relax (step S9). By performing PID control of the output of the high-frequency heating power supply 20 with a quadratic function of the diameter d of the BGO 1 in synchronization with the control of the rotation speed and the pulling speed (step S10), the output increases in proportion to the increase in the area of the solid-liquid interface. Eliminate the effect of latent heat, B
The growth of GO1 can be accelerated.

【0021】目標直径の45mmに到達後の場合は引上
げ速度は1mm/hで、回転速度は10rpmで一定制
御とするが(ステップS11)、高周波加熱電源20の
出力は目標直径と重量からの算出直径値との差分による
PID制御を行うことで、直径45±1mmを維持でき
る(ステップS12)。目標重量の1500gに到達す
るまで、60秒周期で前記の直径に応じた制御処理(ス
テップSS4〜S12)を繰り返す(ステップS1
3)。目標重量の1500gに到達した後は(ステップ
S13)、1時間で引上げ速度を1mm/hから3mm
/hに、回転速度を10rpmから13rpmに増加さ
せ、高周波加熱電源20の出力を一定値で増加させるこ
とで、BGO1と融液2を切り離す(ステップS1
4)。ここで、引上げ速度と回転速度を1時間かけて変
化させる目的は結晶のねじれ防止と、BGO1の脱落防
止のためである。BGO1の単位時間当りの重量増加分
が零になることで、BGO1と融液2を切り離されたこ
とが分かる。BGO1と融液2とが切り離されたことを
確認後、高周波加熱電源20の出力を一定値で減少させ
(ステップS15)、約120時間で室温まで戻す。室
温になったBGO1を結晶育成炉100から取出して、
BGO1の製造が完了する。実施の形態1の単結晶の製
造装置を用い、目標直径における種結晶の回転速度を7
rpmから14rpmまでの8つの回転速度条件で単結
晶を育成した結果を図5の表に示す。表に示す通り、目
標直径での回転速度が10±1rpmでは固液界面形状
が平面であり、育成結果として、回転速度9rpmでは
コアーが少なく、気泡がない。回転速度10rpmでは
コアーがなく、気泡が少ない。回転速度11rpmでは
コアーがなく、気泡が少ない。依って、目標直径での回
転速度が10±1rpmでの育成結果は適正である。
After reaching the target diameter of 45 mm, the pulling speed is 1 mm / h, the rotation speed is 10 rpm, and constant control is performed (step S11). However, the output of the high-frequency heating power supply 20 is calculated from the target diameter and weight. By performing the PID control based on the difference from the diameter value, the diameter can be maintained at 45 ± 1 mm (step S12). Until the target weight of 1500 g is reached, the control process (steps SS4 to S12) corresponding to the diameter is repeated in a cycle of 60 seconds (step S1).
3). After reaching the target weight of 1500 g (step S13), the pulling speed is increased from 1 mm / h to 3 mm in one hour.
/ H, the rotation speed is increased from 10 rpm to 13 rpm, and the output of the high frequency heating power supply 20 is increased at a constant value, thereby separating the BGO 1 and the melt 2 (step S1).
4). Here, the purpose of changing the pulling speed and the rotation speed over one hour is to prevent the crystal from twisting and to prevent the BGO 1 from falling off. When the weight increase per unit time of BGO1 becomes zero, it can be understood that BGO1 and melt 2 are separated. After confirming that the BGO 1 and the melt 2 have been separated, the output of the high-frequency heating power supply 20 is reduced at a constant value (step S15), and the temperature is returned to room temperature in about 120 hours. The room temperature BGO1 is taken out of the crystal growing furnace 100,
The manufacture of BGO1 is completed. The rotation speed of the seed crystal at the target diameter is set to 7 using the single crystal manufacturing apparatus of the first embodiment.
The results of growing a single crystal under eight rotation speed conditions from rpm to 14 rpm are shown in the table of FIG. As shown in the table, when the rotation speed at the target diameter is 10 ± 1 rpm, the shape of the solid-liquid interface is flat, and as a result of the growth, at a rotation speed of 9 rpm, there are few cores and no bubbles. At a rotation speed of 10 rpm, there is no core and there are few bubbles. At a rotation speed of 11 rpm, there is no core and there are few bubbles. Therefore, the growth result when the rotation speed at the target diameter is 10 ± 1 rpm is appropriate.

【0022】しかし、回転速度が8rpm以下ではコア
ーが大きく、また、回転速度が12rpm以上では気泡
の混入が多くなり、BGO1と融液2とが分断されるこ
とがあり育成結果は適正ではない。
However, when the rotation speed is 8 rpm or less, the core is large, and when the rotation speed is 12 rpm or more, the inclusion of bubbles increases, and the BGO 1 and the melt 2 may be separated from each other.

【0023】[0023]

【発明の効果】以上のように、この発明によればBGO
の育成過程におけるBGOと融液の分断はもちろん、気
泡の混入、コアー、熱歪み等の欠陥を回避してBGOの
高品質化やBGO製造における歩留まりの向上と製造時
間の短縮が図れるので、生産性が大幅に改善できるとい
う効果がある。
As described above, according to the present invention, BGO
In addition to the separation of BGO and the melt during the growth process of BGO, it is possible to improve the quality of BGO, improve the yield in BGO production and shorten the production time by avoiding defects such as mixing of bubbles, cores, and thermal distortion. The effect is that the performance can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による単結晶育成装
置の構成ブロック図である。
FIG. 1 is a configuration block diagram of a single crystal growing apparatus according to a first embodiment of the present invention.

【図2】 白金製るつぼ内の融液の対流の説明図であ
る。
FIG. 2 is an explanatory diagram of convection of a melt in a platinum crucible.

【図3】 白金製るつぼ内の融液の対流と固液界面との
相関の説明図である。
FIG. 3 is an explanatory diagram of a correlation between a convection of a melt in a platinum crucible and a solid-liquid interface.

【図4】 この発明の実施の形態1における制御フロー
チャートである。
FIG. 4 is a control flowchart according to the first embodiment of the present invention.

【図5】 本実施の形態における結晶の育成条件と育成
結果を表した表である。
FIG. 5 is a table showing growth conditions and growth results of crystals in the present embodiment.

【図6】 従来の単結晶育成炉の断面構造の模式図であ
る。
FIG. 6 is a schematic view of a cross-sectional structure of a conventional single crystal growing furnace.

【符号の説明】[Explanation of symbols]

1 BGO、2 融液、3 種結晶、4 引上げ軸、5
白金製るつぼ、6、8 耐火物、7 白金製アフター
ヒーター、9 スペーサ、10 高周波コイル、20
高周波加熱電源、21 電源制御機構、22 重量読取
り機構、23回転速度制御機構、24 引上げ速度制御
機構、25 コンピュータ、26 通信ケーブル、10
0 結晶育成炉。
1 BGO, 2 melt, 3 seed crystal, 4 pulling axis, 5
Platinum crucible, 6, 8 refractory, 7 platinum after heater, 9 spacer, 10 high frequency coil, 20
High frequency heating power supply, 21 power supply control mechanism, 22 weight reading mechanism, 23 rotation speed control mechanism, 24 pulling speed control mechanism, 25 computer, 26 communication cable, 10
0 Crystal growth furnace.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充填した単結晶原料を加熱して融液を作
る単結晶育成炉と、前記単結晶育成炉に加熱用電力を供
給する加熱電源と、前記単結晶育成炉中の融液の液面に
垂直に接触させた軸をその中心軸周りに回転させながら
軸端面に被着した融液を単結晶として前記軸と共に引き
上げる引上げ機構と、この引き上げた単結晶の直径を算
出する直径算出手段と、前記算出された単結晶の直径に
応じて前記単結晶が目標直径に成長するまで単結晶の引
上げ速度と前記軸の回転速度、及び前記加熱電源の出力
を変化させる第1の制御手段と、前記単結晶が目標直径
に成長後、前記単結晶が目標長に達するまでは、前記引
上げ速度と前記回転速度を一定とし、前記供給する加熱
用電力のみを前記単結晶の直径の変化に応じて変化させ
る第2の制御手段とを備えたことを特徴とする単結晶の
製造装置。
1. A single crystal growth furnace for heating a charged single crystal raw material to form a melt, a heating power supply for supplying electric power for heating to the single crystal growth furnace, and a heating power supply for the melt in the single crystal growth furnace. A pull-up mechanism that pulls up the melt adhered to the shaft end surface as a single crystal together with the shaft while rotating the shaft perpendicular to the liquid surface around its central axis, and a diameter calculator that calculates the diameter of the pulled single crystal. First control means for changing a pulling speed of the single crystal, a rotation speed of the shaft, and an output of the heating power source until the single crystal grows to a target diameter according to the calculated diameter of the single crystal. After the single crystal has grown to the target diameter, until the single crystal reaches the target length, the pulling speed and the rotation speed are kept constant, and only the supplied heating power is used to change the diameter of the single crystal. Second control means that changes according to An apparatus for producing a single crystal, comprising:
【請求項2】 前記第1の制御手段は、前記単結晶の直
径が所定値以下の場合は前記引き上げ速度と回転速度を
一定値に設定すると共に、前記加熱電源の出力を一定値
で下げ、また、前記単結晶の直径が前記所定値以上で、
且つ、前記目標直径以下の場合は前記引き上げ速度と回
転速度を前記単結晶の直径に逆比例して下げると共に、
前記加熱電源の出力を結晶直径の増加に伴って増加する
ように制御することを特徴とする請求項1に記載の単結
晶の製造装置。
2. The method according to claim 1, wherein when the diameter of the single crystal is equal to or less than a predetermined value, the first control means sets the pulling speed and the rotation speed to constant values, and lowers the output of the heating power supply at a constant value. Further, the diameter of the single crystal is not less than the predetermined value,
And, when the diameter is equal to or less than the target diameter, while reducing the pulling speed and the rotation speed in inverse proportion to the diameter of the single crystal,
The apparatus for producing a single crystal according to claim 1, wherein the output of the heating power supply is controlled so as to increase as the crystal diameter increases.
【請求項3】 前記第2の制御手段は前記引き上げ速度
と回転速度を、前記単結晶の直径が前記所定値以下の場
合よりも低い引き上げ速度と回転速度で一定値に設定す
ると共に、前記加熱電源の出力を前記単結晶の直径の変
化に応じて制御することを特徴とする請求項1に記載の
単結晶の製造装置。
3. The second control means sets the pulling speed and the rotation speed to constant values at a lower pulling speed and a lower rotation speed than when the diameter of the single crystal is equal to or less than the predetermined value. The apparatus for producing a single crystal according to claim 1, wherein an output of a power supply is controlled according to a change in a diameter of the single crystal.
【請求項4】 加熱された単結晶育成炉中の融液を軸の
端部に被着させ、その軸をその中心周りに所定の回転速
度で回転させながら引上げ機構により前記融液を単結晶
として引き上げる時、前記単結晶の単位時間当たりの重
量増加分から前記単結晶の直径を算出する第1の工程
と、前記単結晶が所定の直径に成長後、目標直径に成長
するまで前記単結晶の引上げ速度と回転速度、及び前記
単結晶育成炉の加熱量を前記単結晶の直径に応じて変化
させる第2の工程と、前記単結晶が目標直径に成長後、
前記単結晶が目標長に達するまでは、前記引上げ速度と
回転速度を一定として融液を前記引上げ機構で引き上
げ、前記単結晶育成炉の加熱量のみを前記単結晶の直径
の変化に応じて変化させる第3の工程とを備えことを特
徴とする単結晶の製造方法。
4. A melt in a heated single crystal growing furnace is applied to an end of a shaft, and the melt is pulled by a pulling mechanism while rotating the shaft around a center thereof at a predetermined rotation speed. A first step of calculating a diameter of the single crystal from an increase in weight per unit time of the single crystal, and after growing the single crystal to a predetermined diameter, until the single crystal grows to a target diameter. A second step of changing a pulling speed and a rotation speed, and a heating amount of the single crystal growing furnace according to a diameter of the single crystal, and after the single crystal grows to a target diameter,
Until the single crystal reaches the target length, the melt is pulled up by the pulling mechanism while keeping the pulling speed and the rotation speed constant, and only the heating amount of the single crystal growing furnace is changed according to the change in the diameter of the single crystal. And a third step of producing the single crystal.
【請求項5】 前記第2の工程では、前記単結晶の直径
が所定値以下の場合は前記引き上げ速度と回転速度を一
定値に設定すると共に、前記加熱電源の出力を一定値で
下げ、また、前記単結晶の直径が前記所定値以上で、且
つ、前記目標直径以下の場合は前記引き上げ速度と回転
速度を前記単結晶の直径に逆比例して下げると共に、前
記加熱電源の出力をを結晶直径の増加に伴って増加する
ように制御することを特徴とする請求項4に記載の単結
晶の製造方法。
5. In the second step, when the diameter of the single crystal is equal to or less than a predetermined value, the pulling speed and the rotation speed are set to constant values, and the output of the heating power source is reduced by a constant value. When the diameter of the single crystal is equal to or larger than the predetermined value and equal to or smaller than the target diameter, the pulling speed and the rotation speed are reduced in inverse proportion to the diameter of the single crystal, and the output of the heating power source is reduced. The method for producing a single crystal according to claim 4, wherein the control is performed so as to increase as the diameter increases.
【請求項6】 前記第3の工程では、前記引き上げ速度
と回転速度を、前記第2の工程において単結晶の直径が
所定値以下の場合よりも低い引き上げ速度と回転速度で
一定値に設定すると共に、前記加熱電源の出力を前記単
結晶の直径の変化に応じて制御することを特徴とする請
求項4に記載の単結晶の製造方法。
6. In the third step, the pulling speed and the rotation speed are set to constant values at a lower pulling speed and rotation speed than when the diameter of the single crystal is equal to or less than a predetermined value in the second step. The method for producing a single crystal according to claim 4, wherein the output of the heating power source is controlled according to a change in the diameter of the single crystal.
JP2000078603A 2000-03-21 2000-03-21 Device and method for producing single crystal Pending JP2001261485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078603A JP2001261485A (en) 2000-03-21 2000-03-21 Device and method for producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078603A JP2001261485A (en) 2000-03-21 2000-03-21 Device and method for producing single crystal

Publications (1)

Publication Number Publication Date
JP2001261485A true JP2001261485A (en) 2001-09-26

Family

ID=18595991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078603A Pending JP2001261485A (en) 2000-03-21 2000-03-21 Device and method for producing single crystal

Country Status (1)

Country Link
JP (1) JP2001261485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054549A1 (en) * 2003-12-04 2005-06-16 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing system, silicon single crystal manufacturing method, and silicon single crystal
KR102064617B1 (en) 2013-09-30 2020-01-09 에스케이실트론 주식회사 Ingot growing controller and ingot growing control method for it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054549A1 (en) * 2003-12-04 2005-06-16 Shin-Etsu Handotai Co., Ltd. Silicon single crystal manufacturing system, silicon single crystal manufacturing method, and silicon single crystal
KR102064617B1 (en) 2013-09-30 2020-01-09 에스케이실트론 주식회사 Ingot growing controller and ingot growing control method for it

Similar Documents

Publication Publication Date Title
CN101445954A (en) Method for controlling temperature gradient and thermal history of a crystal-melt interface in growth process of czochralski silicon monocrystal
CN108779577A (en) The manufacturing method of monocrystalline silicon
JP4039059B2 (en) Semiconductor single crystal growth method
CN104073875A (en) Preparation method of large-size sapphire crystal dynamic temperature field
TWI812512B (en) Single crystal silicon crystal pulling control method and device, single crystal silicon crystal pulling furnace
JP2001261485A (en) Device and method for producing single crystal
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
JPS5930795A (en) Apparatus for pulling up single crystal
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JP2010248003A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN105603506B (en) The device and method of the terraced method growing large-size monocrystalline of dynamic temperature
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
JPS598696A (en) Preparation of single crystal
JPS5926996A (en) Preparation of single crystal
JPH10279391A (en) Method for growing silicon single crystal
JPH0544440B2 (en)
KR101339151B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JPH0377159B2 (en)
JPH04300281A (en) Production of oxide single crystal
JPS62167213A (en) Production of silicon polycrystalline ingot
JPS6011297A (en) Method and device for controlling growth of crystal
CN116876073A (en) Single crystal furnace heating structure and single crystal furnace
JPH08319195A (en) Production of lithium borate single crystal
CN116988153A (en) Method for simultaneous crystallization and purification of powdery magnesium fluoride
JPH0341432B2 (en)