JP2001257492A - Flexible heat dissipator - Google Patents

Flexible heat dissipator

Info

Publication number
JP2001257492A
JP2001257492A JP2000068515A JP2000068515A JP2001257492A JP 2001257492 A JP2001257492 A JP 2001257492A JP 2000068515 A JP2000068515 A JP 2000068515A JP 2000068515 A JP2000068515 A JP 2000068515A JP 2001257492 A JP2001257492 A JP 2001257492A
Authority
JP
Japan
Prior art keywords
heat
flexible
radiator
heat transfer
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068515A
Other languages
Japanese (ja)
Inventor
Akira Naito
朗 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polymatech Co Ltd
Original Assignee
Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polymatech Co Ltd filed Critical Polymatech Co Ltd
Priority to JP2000068515A priority Critical patent/JP2001257492A/en
Publication of JP2001257492A publication Critical patent/JP2001257492A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a flexible heat dissipator for dissipating heat generated from an electronic component efficiently, in which a heat transfer passage can be set freely and the thermal resistance on a heat transfer passage for transferring the heat from a liquid crystal display section is low. SOLUTION: The heat dissipator for transferring heat generated from an electronic component in an electronic apparatus to the outside thereof comprises a heat transfer body composed of flexible thermally conductive fibers having one end provided with a heat receiving part encapsulating a liquid and the other end provided with a heat dissipating part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、パソコン、携帯用
電子機器等の電子機器内に設置され、電子機器内部の電
子部品から発生する熱を、電子機器外部に伝える放熱器
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator which is installed in an electronic device such as a personal computer or a portable electronic device and transmits heat generated from electronic components inside the electronic device to the outside of the electronic device.

【従来の技術】近年の電子機器の発展はめざましく、特
にパーソナルコンピュータや携帯端末は、高機能化、高
集密度化の一途をたどっている。これにともない、機器
内部の電子部品も高機能化し、同時に熱を発生するよう
になっている。ところが、電子部品は熱に弱いため、こ
の発生した熱を機器外部へ放出する必要がある。従来
は、機器内部に冷却ファンを取付け電子部品上に風流を
起こし機器内部の熱を外部へ送り出していた。特にノー
トパソコンはいろいろな対策がなされている。図7に示
すような一般的なノートパソコンは、外形寸法がA4ま
たはB5ノートサイズで、厚さ50ミリまたはそれ以下
であって、キーボードを含む本体部13と、液晶表示部
14を含む蓋体部15とからなり、本体部と蓋体部とを
蝶番10等によって取付け、蓋体部が自由開閉できるも
のである。このノートパソコンの総消費電力のうち60
パーセント程度が本体部で消費され、残りの40パーセ
ントが液晶表示部で消費されている。そして、ノートパ
ソコンの内部のICやCPU等の電子部品が発する熱の
放散を行うために、冷却ファンに加え種々のヒートシン
ク、もしくはヒートパイプ等が使用されている。従来の
放熱器(ヒートパイプ)の実装例は、図6に示すよう
に、ノートパソコンには、ヒートパイプ11、冷却ファ
ン12および蝶番10が一体化された放熱器が設置され
ており、伝熱経路は、発熱体であるCPU8から、形状
付随性のある熱伝導性ゴム9、ヒートパイプ11、冷却
ファン12、蝶番10、蓋体部15の順となっている。
ヒートシンクは、電子部品上に設けられ、電子部品の熱
を本体内部空間に放熱する構造のものである。ヒートパ
イプは受熱プレートと熱放散プレートの両方を搭載し、
電子部品に受熱プレートが接して受けた熱を、熱放散プ
レートから本体内部空間に放熱する構造のものか、また
は熱放散プレートを本体部底面、または蝶番を介して蓋
体部に配置してノートパソコンの外部に放熱する構造の
ものである。
2. Description of the Related Art In recent years, the development of electronic devices has been remarkable. In particular, personal computers and portable terminals have been steadily becoming higher in function and higher in density. Along with this, the electronic components inside the equipment have also become highly functional and generate heat at the same time. However, since electronic components are vulnerable to heat, it is necessary to release the generated heat to the outside of the device. Conventionally, a cooling fan has been installed inside the device to generate a wind current on the electronic components to send out the heat inside the device to the outside. Various measures have been taken especially for notebook computers. A general notebook personal computer as shown in FIG. 7 has an external size of A4 or B5 notebook size, a thickness of 50 mm or less, a main body 13 including a keyboard, and a lid including a liquid crystal display unit 14. The main body and the lid are attached to each other by a hinge 10 or the like so that the lid can be freely opened and closed. 60% of the total power consumption of this laptop
About percent is consumed by the main body, and the remaining 40 percent is consumed by the liquid crystal display. In addition to cooling fans, various heat sinks or heat pipes are used in order to dissipate heat generated by electronic components such as ICs and CPUs in the notebook personal computer. As shown in FIG. 6, in a conventional radiator (heat pipe) mounting example, a radiator in which a heat pipe 11, a cooling fan 12, and a hinge 10 are integrated in a notebook personal computer is installed. The path is from the CPU 8, which is a heating element, to the heat conductive rubber 9, which has an accompanying shape, the heat pipe 11, the cooling fan 12, the hinge 10, and the lid 15 in this order.
The heat sink has a structure provided on the electronic component and radiating heat of the electronic component to the internal space of the main body. The heat pipe has both a heat receiving plate and a heat dissipation plate,
A structure in which the heat received by the heat-receiving plate in contact with the electronic component is radiated from the heat-dissipating plate to the internal space of the main unit, or the heat-dissipating plate is placed on the bottom surface of the main unit or on the lid via the hinge to make the notebook It has a structure that dissipates heat to the outside of a personal computer.

【発明が解決しようとする課題】しかしながら、ヒート
シンクは、構造上、本体内部空間に多くのスペースを必
要とするため小型化に適しなかった。一方、ヒートパイ
プは、構造上、本体内部空間に放熱する前者構造の場
合、本体内部空間に多くのスペースを必要とするため小
型化に沿わなかったし、ヒートパイプ全体が均一温度に
なるように作用するため、使用可能な上限温度の異なる
電子部品が密集する回路配置の場合、放熱効果の低い電
子部品が生じた。ノートパソコンの外部に放熱する後者
構造の場合、前者同様に使用可能な上限温度の異なる電
子部品が密集する回路配置の場合、放熱効果の低い電子
部品が生じたり、さらに熱放散プレートが蝶番を介し配
置された場合、密着性が悪いため可撓部の接触熱抵抗が
大きくなり放熱能力が弱くなった。これらの問題は、単
に構造上の問題だけではなく放熱器の特性として、熱伝
導性が等方性であること、また柔軟性すなわち自由度の
高い可撓性を持たないことが原因であった。
However, the heat sink is not suitable for miniaturization because it requires a large space inside the main body due to its structure. On the other hand, in the case of the heat pipe, the former structure, which dissipates heat to the internal space of the main body, requires a lot of space in the internal space of the main body, so it was not suitable for miniaturization, and the temperature of the entire heat pipe became uniform. Therefore, in the case of a circuit arrangement in which electronic components having different usable upper temperatures differ from each other, some electronic components have a low heat radiation effect. In the case of the latter structure, which dissipates heat to the outside of the notebook PC, as in the former case, in the case of a circuit arrangement in which electronic components that can be used at different maximum temperatures are dense, electronic components with low heat dissipation effect may occur, and the heat dissipation plate may be connected via hinges. In the case of the arrangement, the contact heat resistance of the flexible portion was increased due to poor adhesion, and the heat dissipation ability was weakened. These problems were caused not only by a structural problem but also by a heat radiator having characteristics such as isotropic thermal conductivity and lack of flexibility, that is, high flexibility. .

【課題を解決するための手段】本発明は、上記課題を解
決するため、電子部品から発生する熱を効率よく放熱
し、かつ自由に伝熱経路を設定できるフレキシブルな放
熱器であり、例えばノートパソコンにおける電子部品等
の発熱源の配置変更をすることなく、また、液晶表示部
などへ熱を移動させる伝熱経路上の熱抵抗が小さい放熱
器を提供するものである。すなわち、電子機器内の電子
部品から発生する熱を電子機器外へ伝える放熱器におい
て、可撓性の熱伝導性繊維からなる伝熱体の一端に受熱
部と、他端に放熱部を有するフレキシブル放熱器であ
る。さらに、受熱部および放熱部が、内部に液体が封入
されている容器であることを特徴とするフレキシブル放
熱器である。さらに、受熱部および放熱部に、伝熱体が
挿入されているフレキシブル放熱器である。さらに、伝
熱体が、可撓性の絶縁材で被覆されているフレキシブル
放熱器である。さらに、可撓性の熱伝導性繊維が、カー
ボン繊維からなる伝熱体であるフレキシブル放熱器であ
る。本発明の伝熱体としては、可撓性のある熱伝導性の
高い繊維なら全て用いることができる。好ましくは、熱
伝導性が20W/mk以上の繊維が良く、例えば、カー
ボン繊維、ポリエチレン繊維、ポリベンザゾール繊維な
どが挙げられる。なかでも、繊維の径方向よりも軸方向
に熱伝導性が良い、熱伝導異方性を有する繊維が好適で
ある。特に、径方向の熱伝導性に対し軸方向に500〜
1000倍の熱伝導性を示すカーボン繊維が好ましい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is a flexible radiator capable of efficiently radiating heat generated from electronic components and freely setting a heat transfer path. An object of the present invention is to provide a radiator having a small heat resistance on a heat transfer path for transferring heat to a liquid crystal display or the like without changing the arrangement of heat sources such as electronic components in a personal computer. That is, in a radiator that transmits heat generated from an electronic component in an electronic device to the outside of the electronic device, a radiator having a heat receiving portion at one end of a heat transfer body made of a flexible heat conductive fiber and a radiating portion at the other end. It is a radiator. Furthermore, the flexible radiator is characterized in that the heat receiving section and the heat radiating section are containers in which liquid is sealed. Furthermore, it is a flexible radiator in which a heat transfer body is inserted into the heat receiving section and the heat radiating section. Further, the heat radiator is a flexible radiator covered with a flexible insulating material. Further, the flexible heat conductive fiber is a flexible radiator which is a heat transfer body made of carbon fiber. As the heat conductor of the present invention, any flexible fiber having high heat conductivity can be used. Preferably, fibers having a thermal conductivity of 20 W / mk or more are good, and examples thereof include carbon fibers, polyethylene fibers, and polybenzazole fibers. Among them, fibers having heat conduction anisotropy, which has better heat conductivity in the axial direction than in the radial direction of the fibers, are preferable. In particular, thermal conductivity in the radial direction is 500 to 500 in the axial direction.
Carbon fibers exhibiting 1000 times the thermal conductivity are preferred.

【発明の実施の形態】本発明は、図1に示すように、可
撓性の熱伝導性繊維からなる伝熱体1の一端に受熱部2
と、他端に放熱部3とを有するフレキシブル放熱器であ
る。受熱部2と放熱部3は同じ構成であり、電子部品等
の発熱源と接する一端を受熱部2とし、熱放散プレート
等の放熱部材と接する他端を放熱部3とした。さらに、
図2に示すように、伝熱体1は熱伝導性繊維5の束を可
撓性の絶縁材4で被覆した構成が、剪断やねじり等の応
力による破損や、傷による破断から保護することができ
好ましい。本発明の受熱部や放熱部の構成は、図3に示
すように、熱伝導体からなる中空状の容器6で、熱伝導
性繊維5が挿入固着され、内部に液体7が封入されてい
る。本発明は、上記構成に限られるものではなく、受熱
部の熱吸収の効率が良くなるように集熱プレートを設置
したり、伝熱体の全長の一部または全部に補強材を巻き
付てもかまわない。また電子部品との接触部分には、熱
伝導性ゴムや熱伝導性グリス等を介することで、更に接
触熱抵抗を低減できる。なお、本発明の放熱器は、端部
の受熱部、放熱部に液体を封入したことでサイフォン効
果が得られ、受熱部、伝熱体、放熱部間の接触熱抵抗が
低減される。端部の熱伝導性繊維は受熱部、放熱部の各
容器内に充満しており、従来のヒートパイプにおいてみ
られたような、電子機器内において設置される向きに熱
伝導性が左右されない。本発明の受熱部および放熱部を
構成する容器の材料は、熱伝導性の大きいヒートパイプ
で用いられる材料がよく、好ましくは、熱伝導性が20
W/mk以上の材料が良い。例えば銅、アルミニウム等
の金属が挙げられる。さらにその表面には、耐腐食性等
の理由からニッケルメッキなどが施されていてもかまわ
ない。本発明の受熱部および放熱部の内部に封入される
液体は、ヒートパイプで用いられているような低沸点の
液体であれば全て用いることができ、例えば水、アルコ
ール、代替フロン等の単体または混合物が挙げられる。
本発明の可撓性の絶縁材は、電気絶縁性の有機高分子で
あれば全て用いることができ、耐熱性を考慮するとシリ
コーンゴムが最も好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, the present invention relates to a heat transfer member 1 made of a flexible heat conductive fiber.
And a radiator having a radiator 3 at the other end. The heat receiving section 2 and the heat radiating section 3 have the same configuration. One end in contact with a heat source such as an electronic component is the heat receiving section 2, and the other end in contact with a heat radiating member such as a heat dissipation plate is the heat radiating section 3. further,
As shown in FIG. 2, the heat transfer body 1 has a structure in which a bundle of heat conductive fibers 5 is covered with a flexible insulating material 4 to protect the heat transfer body 1 from damage due to stress such as shearing or torsion, and breakage due to scratches. Is preferred. As shown in FIG. 3, the structure of the heat receiving portion and the heat radiating portion of the present invention is such that a heat conductive fiber 5 is inserted and fixed in a hollow container 6 made of a heat conductor, and a liquid 7 is sealed inside. . The present invention is not limited to the above-described configuration, and a heat collecting plate may be installed so as to improve the heat absorption efficiency of the heat receiving unit, or a reinforcing material may be wound around part or all of the entire length of the heat transfer body. It doesn't matter. Further, the contact thermal resistance can be further reduced by interposing a heat conductive rubber, a heat conductive grease, or the like in a contact portion with the electronic component. In the radiator of the present invention, a siphon effect is obtained by filling a liquid into the heat receiving portion and the heat radiating portion at the ends, and the contact thermal resistance between the heat receiving portion, the heat transfer member, and the heat radiating portion is reduced. The heat conductive fiber at the end is filled in each container of the heat receiving part and the heat radiating part, and the heat conductivity does not depend on the direction in which it is installed in the electronic device as seen in the conventional heat pipe. The material of the container constituting the heat receiving portion and the heat radiating portion of the present invention is preferably a material used for a heat pipe having high thermal conductivity, and preferably has a thermal conductivity of 20.
A material of W / mk or more is good. Examples include metals such as copper and aluminum. Further, the surface may be plated with nickel or the like for reasons such as corrosion resistance. The liquid sealed in the heat receiving portion and the heat radiating portion of the present invention can be used as long as it is a liquid having a low boiling point as used in a heat pipe, for example, water, alcohol, a simple substance such as CFC substitute or the like. Mixtures are mentioned.
As the flexible insulating material of the present invention, any electrically insulating organic polymer can be used, and silicone rubber is most preferable in consideration of heat resistance.

【実施例】本発明における実施例を図4に示す。長手方
向に熱伝導性繊維5であるカーボン繊維の束をシリコー
ンゴムからなる絶縁材4で包み込んだ伝熱体1の両端部
に、それぞれアルミニウム製の受熱部2と放熱部3を設
けた。受熱部および放熱部の内部には、液体7として低
沸点であるエタノールを封入した。そして、熱伝導性繊
維5の末端が液体7に浸る状態で受熱部2、放熱部3内
に挿入し、伝熱体1と受熱部2および放熱部3を固着さ
せた。なお、受熱部2、放熱部3にはアルミニウム製の
プレートを備えた。本発明のフレキシブル放熱器の実装
例は図5に示すようになり、伝熱経路は、発熱体である
CPU8から、形状付随性のある熱伝導性ゴム9、本発
明のフレキシブル放熱器、蓋体部15の順となってい
る。フレキシブル性を生かして、他の電線ケーブルと同
様に蝶番10の付近を経た配置をとることで、放熱部材
である蓋体部へ熱を伝えて放散させることができた。評
価試験として、CPU、グラフィックチップ等に負荷を
与えるベンチマークテストを連続2時間行ない、本発明
のフレキシブル放熱器と従来の放熱器(ヒートパイプ)
との比較を行なった。なお、放熱部には蓋体部を接触固
定させ、蓋体部の温度を測定することで熱伝導性を評価
した。
FIG. 4 shows an embodiment of the present invention. At both ends of a heat transfer body 1 in which a bundle of carbon fibers as heat conductive fibers 5 is wrapped with an insulating material 4 made of silicone rubber in the longitudinal direction, a heat receiving portion 2 and a heat radiating portion 3 made of aluminum are provided, respectively. Ethanol having a low boiling point was sealed as the liquid 7 inside the heat receiving portion and the heat radiating portion. Then, the end of the heat conductive fiber 5 was inserted into the heat receiving section 2 and the heat radiating section 3 in a state of being immersed in the liquid 7, and the heat transfer body 1, the heat receiving section 2, and the heat radiating section 3 were fixed. The heat receiving unit 2 and the heat radiating unit 3 were provided with aluminum plates. The mounting example of the flexible radiator of the present invention is as shown in FIG. 5, and the heat transfer path is from the CPU 8, which is a heating element, to the heat conductive rubber 9 having an accompanying shape, the flexible radiator of the present invention, and the lid. The order of the parts 15 is as follows. By taking advantage of the flexibility, and by arranging the cable through the vicinity of the hinge 10 as in the case of the other electric cables, heat could be transmitted to the lid portion as a heat radiation member and dissipated. As an evaluation test, a benchmark test for applying a load to a CPU, a graphic chip, and the like is continuously performed for two hours, and a flexible radiator of the present invention and a conventional radiator (heat pipe) are used.
And a comparison was made. In addition, the heat conduction part was evaluated by measuring the temperature of the lid part by fixing the lid part to the heat radiation part.

【表1】 また同じ構成で、ノートパソコンを横倒しにすること
で、放熱器が直立し、更に発熱体であるCPUが放熱器
の上側に位置する場合の蓋体部の温度を測定した。
[Table 1] Further, with the same configuration, the radiator was erected by turning the notebook personal computer sideways, and the temperature of the lid was measured when the CPU, which is a heating element, was positioned above the radiator.

【表2】 表1の測定結果から、本発明のフレキシブル放熱器は蝶
番による熱抵抗がない分、蝶番を介するヒートパイプよ
りも熱伝熱性が高かった。表2の測定結果から、比較例
では直立したヒートパイプの上側に発熱体が有るため、
ヒートパイプ内部の液体が発熱体と離れてしまい、熱伝
導能力の低下が見られた。本発明のフレキシブル放熱器
は、熱伝導性繊維であるカーボン繊維がウィック的役割
を果たすように受熱部、放熱部内に挿入されているた
め、表1における測定結果との差異が小さかった。つま
り、設置される向きに熱伝導性が依存しないことがわか
った。
[Table 2] From the measurement results in Table 1, the heat radiator of the present invention had higher thermal conductivity than the heat pipe through the hinge because there was no thermal resistance due to the hinge. From the measurement results in Table 2, in the comparative example, since there is a heating element above the upright heat pipe,
The liquid inside the heat pipe was separated from the heating element, and the heat conduction ability was reduced. In the flexible radiator of the present invention, the difference from the measurement result in Table 1 was small because the carbon fiber as the heat conductive fiber was inserted into the heat receiving portion and the heat radiating portion so as to play a wick role. That is, it was found that the thermal conductivity did not depend on the installation direction.

【発明の効果】本発明は、電子部品等から発生する熱を
効率よく機器本体外に放熱するものであり、かつ伝熱経
路を自由に設定できるフレキシブル放熱器である。例え
ばヒートパイプのように、決められた伝熱経路に拘束さ
れることはなく、ノートパソコン本体内の熱を電子部品
等の発熱体の配置の変更も必要なく、さらに伝熱経路構
造が原因となる熱抵抗が発生することなく、蓋体部等へ
効率良く熱を移動させるための手段を提供できる。
The present invention is a flexible radiator capable of efficiently radiating heat generated from electronic components and the like to the outside of a device body and capable of freely setting a heat transfer path. For example, unlike a heat pipe, it is not constrained by a fixed heat transfer path, heat inside the notebook PC body does not need to be changed in the arrangement of heating elements such as electronic components, and the heat transfer path structure causes It is possible to provide a means for efficiently transferring heat to the lid or the like without generating excessive thermal resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の上面図FIG. 1 is a top view of the present invention.

【図2】本発明の伝熱体の切断面図FIG. 2 is a cross-sectional view of the heat transfer body of the present invention.

【図3】本発明の受熱部又は放熱部の断面図FIG. 3 is a sectional view of a heat receiving portion or a heat radiating portion of the present invention.

【図4】本発明のフレキシブル放熱器の実施例FIG. 4 shows an embodiment of a flexible radiator according to the present invention.

【図5】本発明のフレキシブル放熱器の実装例FIG. 5 is a mounting example of the flexible radiator of the present invention.

【図6】従来の放熱器の実装例FIG. 6 is a mounting example of a conventional radiator.

【図7】代表的なノートパソコンの模式図FIG. 7 is a schematic diagram of a typical notebook computer.

【符号の説明】[Explanation of symbols]

1 伝熱体 2 受熱部 3 放熱部 4 絶縁材 5 熱伝導性繊維 6 容器 7 液体 8 CPU 9 熱伝導性ゴム 10 蝶番 11 ヒートパイプ 12 冷却ファン 13 本体部 14 液晶表示部 15 蓋体部 DESCRIPTION OF SYMBOLS 1 Heat transfer body 2 Heat receiving part 3 Heat radiating part 4 Insulation material 5 Thermal conductive fiber 6 Container 7 Liquid 8 CPU 9 Thermal conductive rubber 10 Hinge 11 Heat pipe 12 Cooling fan 13 Main body part 14 Liquid crystal display part 15 Lid part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電子機器内の電子部品から発生する熱を
電子機器外へ伝える放熱器において、可撓性の熱伝導性
繊維からなる伝熱体の一端に熱伝導性の受熱部、そして
他端に熱伝導性の放熱部を有することを特徴とするフレ
キシブル放熱器。
1. A radiator for transmitting heat generated from an electronic component in an electronic device to the outside of the electronic device, wherein one end of a heat conductive body made of a flexible heat conductive fiber is provided at one end of the heat conductive member, A flexible heat radiator having a heat conductive heat radiating portion at an end.
【請求項2】 受熱部および放熱部が、内部に液体が封
入されている容器であることを特徴とする請求項1に記
載のフレキシブル放熱器。
2. The flexible radiator according to claim 1, wherein the heat receiving section and the heat radiating section are containers in which a liquid is sealed.
【請求項3】 受熱部および放熱部に、伝熱体の端部が
挿入されていることを特徴とする請求項1あるいは2に
記載のフレキシブル放熱器。
3. The flexible radiator according to claim 1, wherein ends of the heat transfer member are inserted into the heat receiving portion and the heat radiating portion.
【請求項4】 伝熱体が、柔軟性の絶縁材で被覆されて
いることを特徴とする請求項1、2あるいは3に記載の
フレキシブル放熱器。
4. The flexible radiator according to claim 1, wherein the heat transfer body is covered with a flexible insulating material.
【請求項5】 柔軟性の熱伝導性繊維が、カーボン繊維
であることを特徴とする請求項1、2、3あるいは4に
記載のフレキシブル放熱器。
5. The flexible radiator according to claim 1, wherein the flexible heat conductive fiber is a carbon fiber.
JP2000068515A 2000-03-13 2000-03-13 Flexible heat dissipator Pending JP2001257492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068515A JP2001257492A (en) 2000-03-13 2000-03-13 Flexible heat dissipator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068515A JP2001257492A (en) 2000-03-13 2000-03-13 Flexible heat dissipator

Publications (1)

Publication Number Publication Date
JP2001257492A true JP2001257492A (en) 2001-09-21

Family

ID=18587563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068515A Pending JP2001257492A (en) 2000-03-13 2000-03-13 Flexible heat dissipator

Country Status (1)

Country Link
JP (1) JP2001257492A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076952A1 (en) * 2003-02-27 2004-09-10 Laserfront Technologies, Inc. Heat sunk, laser module, laser device, and laser-processing device
JP2006194548A (en) * 2005-01-17 2006-07-27 Furukawa Electric Co Ltd:The Heat pipe joint and heat pipe with heat pipe joint
JP2008218448A (en) * 2007-02-28 2008-09-18 Nec Corp Heat dissipation structure for electronic apparatus, and electronic apparatus
WO2008127521A1 (en) * 2007-04-12 2008-10-23 Hewlett-Packard Development Company, L.P. Cooling system with flexible heat transport element
JP2016184693A (en) * 2015-03-26 2016-10-20 Necプラットフォームズ株式会社 Heat radiation mechanism and electronic apparatus
CN114390867A (en) * 2022-01-14 2022-04-22 四川九洲电器集团有限责任公司 Six-degree-of-freedom heat transfer device, assembly method thereof and heat transfer method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076952A1 (en) * 2003-02-27 2004-09-10 Laserfront Technologies, Inc. Heat sunk, laser module, laser device, and laser-processing device
JP2006194548A (en) * 2005-01-17 2006-07-27 Furukawa Electric Co Ltd:The Heat pipe joint and heat pipe with heat pipe joint
JP2008218448A (en) * 2007-02-28 2008-09-18 Nec Corp Heat dissipation structure for electronic apparatus, and electronic apparatus
WO2008127521A1 (en) * 2007-04-12 2008-10-23 Hewlett-Packard Development Company, L.P. Cooling system with flexible heat transport element
JP2016184693A (en) * 2015-03-26 2016-10-20 Necプラットフォームズ株式会社 Heat radiation mechanism and electronic apparatus
CN114390867A (en) * 2022-01-14 2022-04-22 四川九洲电器集团有限责任公司 Six-degree-of-freedom heat transfer device, assembly method thereof and heat transfer method

Similar Documents

Publication Publication Date Title
US5847925A (en) System and method for transferring heat between movable portions of a computer
US6507488B1 (en) Formed hinges with heat pipes
US20140098489A1 (en) Heat dissipating apparatus for folding electronic devices
US6189602B1 (en) Electronic device with improved heat dissipation
US6031716A (en) Computer incorporating heat dissipator with hinged heat pipe arrangement for enhanced cooling capacity
JPH0563385A (en) Electronic apparatus and computer provided with heat pipe
US6847113B2 (en) Electronic apparatus with plate-like member having plural recesses containing heat accumulating material
TWM377062U (en) Electronic device with a heat insulating structure
CN107787167B (en) A kind of mobile terminal
CN104994712A (en) Mobile terminal and method for dissipating heat of mobile terminal
CN101384154A (en) Heat radiating assembly
JP2001257492A (en) Flexible heat dissipator
US20030210524A1 (en) Computer assembly for facilitating heat dissipation
Belarbi et al. Experimental investigation on controlled cooling by coupling of thermoelectric and an air impinging jet for CPU
US7954541B2 (en) Heat dissipation module
TWI264272B (en) A battery module for electrical apparatus
US8363398B2 (en) Electronic device with heat dissipation casing
CN110536586A (en) A kind of immersion cooling device
JP3688582B2 (en) Electronic equipment cooling device
Mochizuki et al. Hinged heat pipes for cooling notebook PCs
JP2008244365A (en) Thermal connection structure and electronic appliance comprising the same
JP6907672B2 (en) Heat dissipation device
US20060215366A1 (en) Apparatus, system, and method for removing excess heat from a component
JP2001356842A (en) Heat radiating mechanism of information equipment
US20040159935A1 (en) Thermally optimized conductive block