JP2001254173A - Sintered sputtering target material for deposition of optical recording medium protective layer, showing excellent resistance to loss by fracture under high output sputtering condition - Google Patents

Sintered sputtering target material for deposition of optical recording medium protective layer, showing excellent resistance to loss by fracture under high output sputtering condition

Info

Publication number
JP2001254173A
JP2001254173A JP2000066368A JP2000066368A JP2001254173A JP 2001254173 A JP2001254173 A JP 2001254173A JP 2000066368 A JP2000066368 A JP 2000066368A JP 2000066368 A JP2000066368 A JP 2000066368A JP 2001254173 A JP2001254173 A JP 2001254173A
Authority
JP
Japan
Prior art keywords
protective layer
target material
recording medium
optical recording
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000066368A
Other languages
Japanese (ja)
Other versions
JP3915113B2 (en
Inventor
Terushi Mishima
昭史 三島
Kazuo Watanabe
和男 渡辺
Rie Mori
理恵 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000066368A priority Critical patent/JP3915113B2/en
Priority to TW090104765A priority patent/TW539754B/en
Priority to KR1020010012203A priority patent/KR20010096588A/en
Publication of JP2001254173A publication Critical patent/JP2001254173A/en
Application granted granted Critical
Publication of JP3915113B2 publication Critical patent/JP3915113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a cracking even in the case of a high output sputtering load and provide excellent resistance to a loss by fracture, to perform a high speed film deposition of a protective layer having characteristics equal to those of the conventional optical recording medium protective layer, and to improve the productivity. SOLUTION: From the observation of the structure under a scanning electron microscope, a target material for deposition of an optical recording medium protective layer has a structure which consists of, in the ratio to the whole, 4-20 mass % SiO2 constituting a network continuous phase and the balance essentially ZnS distributed as a disperse phase filling the meshes of the continuous phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体レーザー
などの光ビームを用いて、情報の記録や再生、さらに消
去を行う光ディスクなどの光記録媒体の構成層である保
護層をスパッタリング法にて形成するのに用いられるス
パッタリングターゲット焼結材(以下、ターゲット材と
云う)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a protective layer, which is a constituent layer of an optical recording medium such as an optical disk, on which information is recorded, reproduced, and erased by using a light beam such as a semiconductor laser by a sputtering method. The present invention relates to a sputtering target sintered material (hereinafter, referred to as a target material) used for the sputtering.

【0002】[0002]

【従来の技術】一般に、上記の光ディスクなどの光記録
媒体が、基本的に例えばポリカーボネイトの基板と、こ
れの表面にいずれもスパッタリング法により形成された
下部保護層、記録層、上部保護層、および反射層の構成
層からなることが知られている。また、上記の光記録媒
体が、例えば図3に概略縦断面図で示される高周波マグ
ネトロンスパッタリング装置を用い、まず、内部を循環
する冷却水によって冷却されたバッキングプレートに所
定の組成をもったターゲット材を取り付け、装置内を真
空排気装置にて排気した後、Arガスを導入して所定の
スッパッタガス圧に保持し、この状態でマッチングボッ
クスを介して設置された高周波電源にてターゲット材に
高周波電力を印加し、これによってターゲット材と、こ
れに対向し、かつ所定の間隔を設けて配置した、例えば
ポリカーボネイトの基板との間にプラズマを発生させ、
このプラズマ中のArイオンをターゲット材の表面に衝
突させてスパッタし、スパッタ粒子を基板表面にそれぞ
れ構成層として蒸着することにより形成されることも知
られている。
2. Description of the Related Art Generally, an optical recording medium such as the above-mentioned optical disk is basically composed of, for example, a polycarbonate substrate, and a lower protective layer, a recording layer, an upper protective layer, and a lower protective layer all formed on the surface of the substrate by a sputtering method. It is known that the reflective layer comprises a constituent layer. In addition, the above-mentioned optical recording medium is, for example, using a high-frequency magnetron sputtering apparatus shown in a schematic longitudinal sectional view in FIG. 3, and a target material having a predetermined composition is first placed on a backing plate cooled by cooling water circulating inside. After the inside of the apparatus is evacuated by a vacuum evacuation apparatus, Ar gas is introduced and maintained at a predetermined sputter gas pressure, and in this state, high-frequency power is applied to the target material by a high-frequency power supply installed through a matching box. Applied, thereby generating a plasma between the target material and the substrate, for example, a polycarbonate substrate opposed to the target material and arranged at a predetermined interval,
It is also known that Ar ions in the plasma collide against the surface of the target material to be sputtered, and sputtered particles are formed on the substrate surface by vapor deposition as constituent layers.

【0003】さらに、上記の光記録媒体の構成層である
保護層(下部保護層および上部保護層)の形成に、例え
ば特開平6−65725号公報に記載されるように、例
えば原料粉末として、いずれも10μm以下の平均粒径
および99.9質量%以上の純度を有する酸化けい素
(以下、SiO2で示す)粉末および硫化亜鉛(以下、
ZnSで示す)を用い、これら原料粉末を、質量%で
(以下、%は質量%を示す)、 SiO2:4〜20%、 ZnS:残り、 の割合に配合し、混合した後、ホットプレス焼結するこ
とにより製造され、かつ走査型電子顕微鏡による組織観
察で、相対的に含有割合の多いZnSが素地を形成し、
4〜20%の相対的に含有割合の少ないSiO2が分散
相を構成する組織を有するターゲット材が用いられてい
ることも知られている。
Further, as described in JP-A-6-65725, for example, as a raw material powder, a protective layer (a lower protective layer and an upper protective layer) as a constituent layer of the optical recording medium is formed. Each of them has a silicon oxide (hereinafter, referred to as SiO 2 ) powder having an average particle diameter of 10 μm or less and a purity of 99.9 mass% or more, and zinc sulfide (hereinafter, referred to as SiO 2 ).
Used are shown in ZnS), these raw material powders, by mass% (hereinafter,% represents mass%), SiO 2: 4~20% , ZnS: After blending rest, the ratio of, mixing, hot pressing It is manufactured by sintering, and by observation of the structure with a scanning electron microscope, ZnS having a relatively high content forms a base material,
It is also known that a target material having a structure in which SiO 2 having a relatively small content of 4 to 20% constitutes a dispersed phase is used.

【0004】[0004]

【発明が解決しようとする課題】一方、近年の上記の光
ディスクなどの光記録媒体の生産性の向上に対する要求
は強く、これに伴い、構成層の成膜速度も高速化の傾向
にあり、しかし高速成膜を行うためにはターゲット材に
印加する電力を高くして高出力スパッタ条件とする必要
があるが、特に上記の従来ターゲット材を用いて保護層
を形成するに際して、これの高速成膜を行う目的でスパ
ッタ条件を高出力スパッタ条件とすると、ターゲット材
に割れが発生し易くなり、比較的短時間で使用寿命に至
るのが現状である。
On the other hand, there is a strong demand for improvement in productivity of optical recording media such as the above-mentioned optical discs in recent years, and accordingly, the film forming speed of the constituent layers tends to be increased. In order to perform high-speed film formation, it is necessary to increase the power applied to the target material to achieve high-output sputtering conditions. In particular, when forming the protective layer using the above-described conventional target material, the high-speed film formation is performed. If the sputtering conditions are set to the high-power sputtering conditions for the purpose of performing the above, cracks are likely to occur in the target material, and the service life is currently reached in a relatively short time.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは,
上述の観点から、上記の光記録媒体保護層形成用の従来
ターゲット材に着目し、これの耐割損性向上を図るべく
研究を行った結果、 (a)上記の従来ターゲット材が高速成膜を行う目的で
印加した高スパッタ電力で割れが発生し易いのは、素地
を構成するZnS相が高いスパッタ衝撃に対してきわめ
て脆い性質を有することに原因があること。すなわち高
スパッタ電力の印加でターゲット材表面が受ける高いス
パッタ衝撃によって素地を構成するZnS相には無数の
微細なクラックが発生し、この微細なクラックはZnS
相が連続相(素地)を構成するために経時的に大きな割
れに発展し、この割れで使用寿命に至ること。 (b)上記の従来ターゲット材で分散相を構成するSi
2相は同ZnS相に比して耐スパッタ衝撃性のきわめ
てすぐれたものであること。 (c)したがって、SiO2で素地(連続相)を形成
し、ZnSを分散相とすれば、高スパッタ衝撃でZnS
相に微細なクラックが発生しても、このクラックの成長
は前記ZnS相を取り囲むように分布するSiO2相に
よって抑制されることから、前記クラックがターゲット
材を割損に至らしめる大きな割れには発展しないこと。 (d)しかし、相対的に含有割合の少ないSiO2で連
続相を形成したターゲット材を製造することは、通常の
製法、すなわち原料粉末として、いずれも通常の粒度を
有するZnS粉末とSiO2粉末を混合して燒結する方
法では不可能で、上記の従来ターゲット材のもつ組織と
なることは避けられないが、原料粉末として相互に粒度
の異なるZnS粉末とSiO2粉末、すなわち相対的に
粗粒のZnS粉末と微粒のSiO2粉末、望ましくはレ
ーザー回折・散乱法にて測定した平均粒径で1〜10μ
mのZnS粉末とJIS・R1626の「ファインセラ
ミックス粉体の気体吸着BET法による比表面積の測定
方法」により測定した平均粒径で5〜200nmのSi
2粉末を用い、これら原料粉末を、前記微粒のSiO2
粉末が相対的に粗粒のZnS粉末の表面にまぶされた状
態の混合粉末とし、この混合粉末を用いて、例えばホッ
トプレスにて燒結してターゲット材を製造すると、走査
型電子顕微鏡による組織観察で、相対的に含有割合の少
ないSiO 2が網目状連続相を構成し、かつ前記連続相
の網目を埋めた分散相としてZnSが分布する組織のタ
ーゲット材が得られ、この結果のターゲット材において
は、高いスパッタ衝撃によってZnS相に発生した微細
なクラックの成長および割れの伝播が前記連続相のSi
2相によって十分に抑制されることから、使用寿命に
至る割損の形成は皆無となり、すぐれた性能を長期に亘
って発揮するようになること。 以上(a)〜(d)に示される研究結果を得たのであ
る。
Means for Solving the Problems Therefore, the present inventors have proposed:
From the above point of view, the conventional optical recording medium protective layer forming
Focusing on the target material, aiming to improve its breakage resistance
As a result of research, (a) The purpose of the above-mentioned conventional target material is to form a film at high speed.
Cracks are likely to occur with the applied high sputtering power because
Phase constituting ZnS is extremely resistant to high sputtering impact
Is due to its brittle nature. Ie high
The high surface that the target material surface receives by applying the sputtering power
Innumerable ZnS phases constituting the substrate due to putter impact
Fine cracks are generated, and these fine cracks
The phase becomes large over time to form a continuous phase (base).
The cracks will lead to a service life. (B) Si constituting a dispersed phase with the above-mentioned conventional target material
OTwoThe phase is more sputter resistant than the ZnS phase
Being excellent. (C) Therefore, SiOTwoForming a base (continuous phase)
When ZnS is used as the dispersed phase, ZnS
Even if fine cracks occur in the phase, the growth of these cracks
Is SiO distributed around the ZnS phase.TwoIn phase
Therefore, since the cracks are suppressed,
Do not develop into large cracks that can lead to material breakage. (D) However, relatively low content of SiOTwoIn
Producing a sinter-forming target material is a common practice.
Production method, that is, as a raw material powder, all of the normal particle size
ZnS powder and SiOTwoThose who mix powder and sinter
It is impossible with the law, and the structure of the above-mentioned conventional target material
Although it is inevitable that
ZnS powder and SiOTwoPowder, ie relatively
Coarse-grain ZnS powder and fine-grain SiOTwoPowder, preferably
1 to 10μ in average particle size measured by laser diffraction / scattering method
m ZnS powder and JIS R1626 “FINECERA”
Measurement of specific surface area of mixed powder by gas adsorption BET method
5 to 200 nm in average particle diameter measured by
OTwoThese raw material powders are mixed with the fine SiO 2Two
Powder coated on relatively coarse ZnS powder
The mixed powder is in the form of
When the target material is manufactured by sintering with
Observation of the structure with a scanning electron microscope revealed that the content was relatively small.
No SiO TwoConstitutes a network-like continuous phase, and the continuous phase
Of ZnS distribution as a dispersed phase filling the mesh
Target material, and the resulting target material
Means fine particles generated in ZnS phase due to high sputtering impact
Crack growth and crack propagation are caused by the continuous phase Si
OTwoPhase is sufficiently suppressed, so that
No breakage is formed and excellent performance is maintained over a long period of time.
To be able to demonstrate. The research results shown in (a) to (d) above were obtained.
You.

【0006】この発明は、上記の研究結果に基づいてな
されたものであって、走査型電子顕微鏡による組織観察
で、全体に占める割合で4〜20%のSiO 2が網目状
連続相を構成し、残りが実質的に前記連続相の網目を埋
めた分散相として分布するZnSからなる組織を有す
る、高出力スパッタ条件ですぐれた耐割損性を発揮する
光記録媒体保護層形成用ターゲット材に特徴を有するも
のである。
The present invention has been made based on the above research results.
The structure was observed with a scanning electron microscope.
4-20% of the total SiO TwoIs mesh-like
Constitutes a continuous phase, the rest substantially filling the network of said continuous phase
Has a structure composed of ZnS distributed as a dispersed phase
Demonstrate excellent breakage resistance under high output sputtering conditions
The target material for forming the protective layer of the optical recording medium has characteristics.
It is.

【0007】なお、光記録媒体保護層形成用ターゲット
材において、SiO2の含有割合を4〜20%にしたの
は以下に示す理由からである。すなわち、ZnSは、光
記録媒体保護層に要求される高い光屈折率と光透過率、
さらに耐熱性を具備することから、光記録媒体保護層の
主要成分として用いられているが、反面ZnS単独で例
えば光ディスクの保護層を形成した場合、内部応力の高
い保護層となってしまい、この状態で前記光ディスクに
記録のためのレーザー照射を行うと、前記レーザー照射
に伴う急熱・急冷によって前記保護層に割れが発生し易
いものとなる。そこで、光記録媒体保護層ではZnSに
SiO2を含有させて、保護層中の残留内部応力を低減
するようにしている。したがって、ターゲット材におけ
るSiO2の含有割合が4%未満では、光記録媒体保護
層の含有割合も4%未満となってしまい、前記保護層に
おける内部応力の発生を抑制する作用が不充分となり、
一方その含有割合が20%を超えると、同じく光記録媒
体保護層の含有割合も20%を超えて高くなってしま
い、ZnSによってもたらされる上記の特性に低下傾向
が現れるようになることから、その含有割合を4〜20
%、望ましくは10〜15%と定めた。
The reason why the content of SiO 2 is set to 4 to 20% in the target material for forming the protective layer of the optical recording medium is as follows. That is, ZnS has a high light refractive index and light transmittance required for the optical recording medium protective layer,
Further, since it has heat resistance, it is used as a main component of the optical recording medium protective layer. However, when ZnS alone is used to form a protective layer of, for example, an optical disk, it becomes a protective layer having high internal stress. When laser irradiation for recording is performed on the optical disc in this state, cracks are likely to occur in the protective layer due to rapid heating and rapid cooling accompanying the laser irradiation. Therefore, in the optical recording medium protection layer, ZnS is made to contain SiO 2 to reduce the residual internal stress in the protection layer. Therefore, when the content ratio of SiO 2 in the target material is less than 4%, the content ratio of the optical recording medium protective layer is also less than 4%, and the effect of suppressing the generation of internal stress in the protective layer becomes insufficient.
On the other hand, if the content exceeds 20%, the content of the optical recording medium protective layer also becomes higher than 20%, and the above-mentioned characteristics brought by ZnS tend to decrease. Content ratio of 4 to 20
%, Preferably 10 to 15%.

【0008】[0008]

【発明の実施の態様】つぎに、この発明の光記録媒体保
護層形成用ターゲット材を実施例により具体的に説明す
る。原料粉末として、それぞれ表1に示される平均粒径
(ZnS粉末の平均粒径はレーザー回折・散乱法、Si
2粉末の平均粒径はJIS・R1626の「ファイン
セラミックス粉体の気体吸着BET法による比表面積の
測定方法」により測定)をもち、かついずれも99.9
9%以上の純度をもったZnS粉末およびSiO2粉末
を用意し、まずこれら原料粉末のうちのZnS粉末をミ
キサーに装入して、1000r.p.m.の回転数で攪
拌しながら、前記ZnS粉末に対する体積比で0.1〜
0.3の範囲内の所定の割合のメチレンクロライドを加
え、ついで予め前記SiO2粉末をメチレンクロライド
に同じく体積比で1:10〜15の範囲内の所定の割合
に配合してなるSiO2粉末分散溶液を、同じく表1に
示される配合割合となるように滴下しながら加えた後、
さらに5分間混合し、この混合粉末をホットプレート上
で60℃の温度で乾燥して前記ZnS粉末の表面に前記
SiO2粉末がまぶされた状態とし、これを黒鉛型に充
填した状態でホットプレス装置に装入し、1.3Pa以
下の真空中、温度:1423K、圧力:34.3MP
a、保持時間:6時間の条件で燒結することにより、実
質的に配合割合と同じ組成をもち、かつ直径:125m
m×厚さ:5mmの寸法をもった本発明ターゲット材1
〜7をそれぞれ製造した。
Next, the target material for forming an optical recording medium protective layer of the present invention will be described in detail with reference to examples. As the raw material powder, the average particle diameter shown in Table 1 (the average particle diameter of the ZnS powder was determined by a laser diffraction / scattering method,
The average particle size of the O 2 powder has a value determined by JIS R1626 “Measurement method of specific surface area of fine ceramics powder by gas adsorption BET method”, and both are 99.9.
A ZnS powder and a SiO 2 powder having a purity of 9% or more are prepared. First, ZnS powder of these raw material powders is charged into a mixer, and 1000 r. p. m. While stirring at a rotation speed of 0.1 to 0.1, the volume ratio to the ZnS powder is 0.1 to
Methylene chloride predetermined percentage in the range of 0.3 was added and then 1 advance the SiO 2 powder same volume of methylene chloride: 10 to 15 SiO 2 powder by blending a predetermined ratio in the range of After adding the dispersion solution dropwise while also having the compounding ratio shown in Table 1,
The mixture was further mixed for 5 minutes, and the mixed powder was dried on a hot plate at a temperature of 60 ° C., so that the surface of the ZnS powder was covered with the SiO 2 powder. Charged in a press machine, in a vacuum of 1.3 Pa or less, temperature: 1423K, pressure: 34.3MP
a, Holding time: 6 hours by sintering, having substantially the same composition as the compounding ratio, and diameter: 125 m
mx thickness: target material 1 of the present invention having a dimension of 5 mm
To 7 were each manufactured.

【0009】また、比較の目的で、原料粉末として、そ
れぞれ表1に示される平均粒径をもち、かついずれも9
9.99%以上の純度をもったZnS粉末およびSiO
2粉末を用い、これら原料粉末を同じく表1に示される
配合割合に配合し、ミキサーに装入して、2000r.
p.m.の回転数で10分間混合して混合粉末とする以
外は同一の条件で実質的に配合割合と同じ組成をもった
従来ターゲット材1〜7をそれぞれ製造した。
For the purpose of comparison, the raw material powders each have the average particle size shown in Table 1
ZnS powder and SiO having a purity of 9.99% or more
These raw material powders were mixed in the same mixing ratio as shown in Table 1 using 2 powders, and charged into a mixer.
p. m. The conventional target materials 1 to 7 having substantially the same composition as the compounding ratio were manufactured under the same conditions except that the mixed powder was obtained by mixing at 10 rpm for 10 minutes.

【0010】この結果得られた各種のターゲット材につ
いて、その組織を走査型電子顕微鏡(倍率:3000
倍)を用いて観察したところ、本発明ターゲット材1〜
7は、いずれも図1に示される本発明ターゲット材4の
組織模写図に示される通り、相対的に含有割合の少ない
SiO2相が網目状連続相を形成し、かつ相対的に含有
割合の多いZnS相が前記連続相の網目を埋めた分散相
として分布する組織を示し、一方従来ターゲット材1〜
7は、いずれも図2に示される従来ターゲット材4の組
織模写図に示される通り、相対的に含有割合の多いZn
S相が素地を形成し、相対的に含有割合の少ないSiO
2相が分散相を構成する組織を示した。
With respect to the various target materials obtained as a result, their structures were examined with a scanning electron microscope (magnification: 3000).
Times), the target materials 1 to 5 of the present invention were observed.
7 shows that the SiO 2 phase having a relatively low content forms a network-like continuous phase and the relatively low content of the SiO 2 phase, as shown in the microstructure of the target material 4 of the present invention shown in FIG. A texture in which a large amount of ZnS phase is distributed as a dispersed phase filling the network of the continuous phase is shown.
7 is Zn having a relatively high content ratio as shown in the microstructure of the conventional target material 4 shown in FIG.
S phase forms a base material, SiO with relatively low content
The structure in which the two phases constitute the dispersed phase was shown.

【0011】ついで、この結果得られた本発明ターゲッ
ト材1〜7および従来ターゲット材1〜7について、光
記録媒体保護層の特性評価基準となる光屈折率および光
透過率に及ぼす影響を調べた。すなわち、上記の本発明
ターゲット材1〜7および従来ターゲット材1〜7のそ
れぞれを、無酸素銅製の水冷バッキングプレートにハン
ダ付けした状態で、図3に示される構造をもった高周波
マグネトロンスパッタリング装置に装着し、まず装置内
を真空排気装置にて6.7×10-5Paの真空雰囲気と
した後、Arガスを導入して装置内雰囲気を0.2Pa
のスパッタガス圧とし、引き続いて高周波電源よりマッ
チングボックスを介してターゲット材に1000Wのス
パッタ電力を印加して、前記ターゲット材と対向し、か
つ50mmの間隔を設けて平行配置した直径:30mm
×厚さ:0.5mmのガラス基板と前記ターゲット材間
にプラズマを発生させ、プラズマ中のArイオンを前記
ターゲット材の表面に衝突させて前記ターゲット材をス
パッタし、スパッタ粒子を前記基板表面に蒸着すること
により厚さ:90nmの光記録媒体保護層を形成した。
この結果形成された光記録媒体保護層の光屈折率および
光透過率を評価する目的で、波長:780nmのレーザ
ー光を用い、屈折率および消衰係数を測定した。この測
定結果を表1に示した。
Next, the effects of the thus obtained target materials 1 to 7 of the present invention and the conventional target materials 1 to 7 on the light refractive index and light transmittance, which are criteria for evaluating the characteristics of the protective layer of the optical recording medium, were examined. . That is, the above-described target materials 1 to 7 of the present invention and the conventional target materials 1 to 7 were soldered to a water-cooled backing plate made of oxygen-free copper, and then applied to a high-frequency magnetron sputtering apparatus having a structure shown in FIG. At first, the inside of the apparatus was evacuated to a vacuum atmosphere of 6.7 × 10 −5 Pa, and then the atmosphere in the apparatus was changed to 0.2 Pa by introducing Ar gas.
Then, a sputtering power of 1000 W is applied to the target material from a high-frequency power source through a matching box from a high-frequency power supply, and the diameter of the target material is 30 mm, opposed to the target material and arranged in parallel at a distance of 50 mm.
X Thickness: Plasma is generated between a glass substrate having a thickness of 0.5 mm and the target material, and Ar ions in the plasma collide with the surface of the target material to sputter the target material. An optical recording medium protective layer having a thickness of 90 nm was formed by vapor deposition.
For the purpose of evaluating the light refractive index and light transmittance of the optical recording medium protective layer formed as a result, the refractive index and the extinction coefficient were measured using a laser beam having a wavelength of 780 nm. The measurement results are shown in Table 1.

【0012】ついで、上記の各種ターゲット材の耐割損
性を評価する目的で、ターゲット材へのスパッタ電力の
印加条件を、上記の1000Wから200Wづつ上げて
行き、この間上昇スパッタ電力毎に1分間保持する条件
とする以外は、上記の光記録媒体保護層形成条件と同一
の条件でスパッタを行い、前記ターゲット材に割れが発
生した時点の印加スパッタ電力(割れ発生臨界スパッタ
電力)を測定した。この測定結果を表1も示した。な
お、表1には上記ターゲット材の理論密度比も併せて示
した。
Then, in order to evaluate the crack resistance of the various target materials described above, the conditions for applying the sputtering power to the target material are increased by 200 W from the above-mentioned 1000 W, and during this period, for one minute for each increased sputtering power. Sputtering was performed under the same conditions as those for forming the optical recording medium protective layer except that the conditions were maintained, and the applied sputter power (crack generation critical sputter power) at the time when the target material cracked was measured. Table 1 also shows the measurement results. Table 1 also shows the theoretical density ratio of the target material.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【発明の効果】表1に示される結果から、本発明ターゲ
ット材1〜7は、いずれもこれを構成するSiO2相が
網目状連続相を形成することによって、前記SiO2
が分散相を構成し、連続相(素地)はZnS相からなる従
来ターゲット材1〜7に比して耐割損性が著しく向上
し、しかも本発明ターゲット材1〜7を用いて形成され
た光記録媒体保護層の屈折率および消衰係数と前記従来
ターゲット材1〜7を用いて形成されたそれとの間にほ
とんど変化が見られず、同等の光屈折率および光透過率
をもった光記録媒体保護層が形成されることが明らかで
ある。上述のように、この発明のターゲット材は、高出
力スパッタの負荷によっても割れの発生が抑制され、す
ぐれた耐割損性を示すことから、従来光記録媒体保護層
と同等の特性を具備した保護層の高速成膜を可能とし、
生産性の向上に寄与するものである。
From the results shown in Table 1 according to the present invention, the present invention target material 1-7 by SiO 2 phase constituting this both to form a net-like continuous phase, wherein the SiO 2 phase a dispersed phase The continuous phase (substrate) has significantly improved cracking resistance as compared with the conventional target materials 1 to 7 made of a ZnS phase, and furthermore, protects the optical recording medium formed by using the target materials 1 to 7 of the present invention. An optical recording medium protective layer having almost no change between the refractive index and extinction coefficient of the layer and those formed using the conventional target materials 1 to 7, and having the same light refractive index and light transmittance. It is clear that is formed. As described above, the target material of the present invention has the same characteristics as those of the conventional optical recording medium protective layer because the generation of cracks is suppressed even by the load of high-power spatter, and it exhibits excellent breakage resistance. Enables high-speed deposition of a protective layer,
This contributes to improving productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明ターゲット材4の走査型電子顕微鏡(倍
率:3000倍)による組織模写図である。
FIG. 1 is a micrograph of the structure of a target material 4 of the present invention, taken by a scanning electron microscope (magnification: 3000 times).

【図2】従来ターゲット材4の走査型電子顕微鏡(倍
率:3000倍)による組織模写図である。
FIG. 2 is a micrograph of a structure of a conventional target material 4 taken by a scanning electron microscope (magnification: 3000 times).

【図3】高周波マグネトロンスパッタリング装置を例示
する概略縦断面図である。
FIG. 3 is a schematic longitudinal sectional view illustrating a high-frequency magnetron sputtering apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 理恵 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 4G030 AA37 AA56 CA01 4K029 BA46 BA51 BC00 BC08 BD12 CA05 DC09 5D121 AA03 EE03 EE09 EE11 EE13 EE14 GG30  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Rie Mori 1-297 Kitabukuro-cho, Omiya-shi, Saitama F-term in Mitsubishi Materials Research Laboratory (reference) 4G030 AA37 AA56 CA01 4K029 BA46 BA51 BC00 BC08 BD12 CA05 DC09 5D121 AA03 EE03 EE09 EE11 EE13 EE14 GG30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走査型電子顕微鏡による組織観察で、全
体に占める割合で4〜20質量%の酸化けい素が網目状
連続相を構成し、残りが実質的に前記連続相の網目を埋
めた分散相として分布する硫化亜鉛からなる組織を有す
ることを特徴とする、高出力スパッタ条件ですぐれた耐
割損性を発揮する光記録媒体保護層形成用スパッタリン
グターゲット焼結材。
In a microscopic observation with a scanning electron microscope, 4 to 20% by mass of silicon oxide constitutes a network-like continuous phase, and the remainder substantially fills the network of the continuous phase. A sputtering target sintered material for forming a protective layer of an optical recording medium, which has a structure composed of zinc sulfide distributed as a dispersed phase and exhibits excellent crack resistance under high-power sputtering conditions.
JP2000066368A 2000-03-10 2000-03-10 Sputtering target sintered material for forming an optical recording medium protective layer Expired - Lifetime JP3915113B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000066368A JP3915113B2 (en) 2000-03-10 2000-03-10 Sputtering target sintered material for forming an optical recording medium protective layer
TW090104765A TW539754B (en) 2000-03-10 2001-03-01 Sintered sputtering target material for formation of an optical recording medium protective layer showing excellent resistance to fracture under high output sputtering condition
KR1020010012203A KR20010096588A (en) 2000-03-10 2001-03-09 Sputtering target sintering material for protection layer of optical record medium exhibiting distinguished endurance against crack in high power sputter condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066368A JP3915113B2 (en) 2000-03-10 2000-03-10 Sputtering target sintered material for forming an optical recording medium protective layer

Publications (2)

Publication Number Publication Date
JP2001254173A true JP2001254173A (en) 2001-09-18
JP3915113B2 JP3915113B2 (en) 2007-05-16

Family

ID=18585739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066368A Expired - Lifetime JP3915113B2 (en) 2000-03-10 2000-03-10 Sputtering target sintered material for forming an optical recording medium protective layer

Country Status (1)

Country Link
JP (1) JP3915113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099156A1 (en) * 2001-06-01 2002-12-12 Nikko Materials Company, Limited Sputtering target for forming phase change optical disc protective film and optical recording medium having phase change optical disc protective film formed using that target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099156A1 (en) * 2001-06-01 2002-12-12 Nikko Materials Company, Limited Sputtering target for forming phase change optical disc protective film and optical recording medium having phase change optical disc protective film formed using that target
CN1295375C (en) * 2001-06-01 2007-01-17 日矿金属株式会社 Sputtering target for forming phase change type optical disk protective film and optical recording medium with phase change type optical disk protective film formed thereon by using target

Also Published As

Publication number Publication date
JP3915113B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
KR101967945B1 (en) Sb-te based alloy sintered compact sputtering target
JP5088464B2 (en) Sputtering target for forming a high-strength optical recording medium protective film
JPWO2009078306A1 (en) Thin film mainly composed of titanium oxide, sintered compact sputtering target suitable for production of thin film mainly composed of titanium oxide, and method for producing thin film mainly composed of titanium oxide
JP2006299307A (en) Sputtering target for forming protective film of optical recording medium
JP3915109B2 (en) Sputtering target material for forming an optical recording medium protective layer
TW554062B (en) ZnS-SiO2 sputtering target material and optical recording medium using the same to form ZnS-SiO2 phase transition type optical disk protective film
JP2001254173A (en) Sintered sputtering target material for deposition of optical recording medium protective layer, showing excellent resistance to loss by fracture under high output sputtering condition
JP2001355065A (en) Sputtering target for depositing optical recording medium protective film exhibiting excellent cracking-off resistance under direct current sputtering condition
JP2002206165A (en) Sputtering target sintered material for forming photorecording medium protective layer exhibiting excellent cracking resistance in high output sputtering condition
TW593718B (en) Sputtering target for forming optical recording protective film and manufacturing method for the same
JP2002161359A (en) Sintered sputtering target material for forming protective layer of light media, showing superior fracture resistance under high-power sputtering condition
JP3468136B2 (en) Sputtering target for forming optical recording medium protective film
TWI237668B (en) ZnS-SiO2 sputtering target and optical recording medium having ZnS-SiO2 phase-change type optical disc protective film formed through use of that target
JP2002161357A (en) Sintered sputtering target material for forming protective layer of light media, showing superior fracture resistance under high-power sputtering condition
JP2002180244A (en) Sputtering target sintered material for forming photorecording medium protective layer exhibiting excellent cracking damage resistance in high output sputtering condition
JP2002180246A (en) Sputtering target sintered material for forming photorecording medium protective layer exhibiting excellent cracking damage resistance in high output sputtering condition
JP2002180245A (en) Sputtering target sintered material for photorecording medium protective layer exhibiting excellent cracking damage resistance in high output sputtering condition
JP3915110B2 (en) Sputtering target material for forming an optical recording medium protective layer
JP2001098363A (en) Sputtering target material for forming optical recording medium protective layer exhibiting excellent cracking resistance under high output sputtering condition
JP2001181833A (en) Sputtering target for deposit optical recording medium protective film free from sputtering crack
JP4469434B2 (en) Sputtering target, protective film and optical recording medium using the same
JP4579224B2 (en) Method of manufacturing sputtering target for forming phase change type optical disk protective film
JPH1081960A (en) Sputtering target for forming optical recording protective coating with limited generation of particle
JP4807679B2 (en) Powder for sintering sputtering target
KR20010096588A (en) Sputtering target sintering material for protection layer of optical record medium exhibiting distinguished endurance against crack in high power sputter condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3915113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

EXPY Cancellation because of completion of term