JP2001253746A - Method for determining mixing proportion in csg construction method - Google Patents

Method for determining mixing proportion in csg construction method

Info

Publication number
JP2001253746A
JP2001253746A JP2000067323A JP2000067323A JP2001253746A JP 2001253746 A JP2001253746 A JP 2001253746A JP 2000067323 A JP2000067323 A JP 2000067323A JP 2000067323 A JP2000067323 A JP 2000067323A JP 2001253746 A JP2001253746 A JP 2001253746A
Authority
JP
Japan
Prior art keywords
value
amount
cement
aggregate
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000067323A
Other languages
Japanese (ja)
Other versions
JP4510985B2 (en
Inventor
Kenichi Jinmon
謙一 陣門
Norihiko Kunimine
紀彦 国峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP2000067323A priority Critical patent/JP4510985B2/en
Publication of JP2001253746A publication Critical patent/JP2001253746A/en
Application granted granted Critical
Publication of JP4510985B2 publication Critical patent/JP4510985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00198Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mix proportion determination method for producing a CSG mixture which is capable of expressing prescribed strength and has good workability with respect to execution of construction work by using simple quality control procedure. SOLUTION: This mix proportion determination method comprises: sieving crushed stone or a material generated in the site to classify it into at least two kinds of classified aggregate; finding such a mixing ratio range of the two kinds of classified aggregate; as to provide mixed aggregate in a ratio within the range, with a solid volume percentage value within a prescribed range; preparing the respective samples of a plurality of CSG mixtures each containing the mixed aggregate in a ratio within the above range; adopting the mixing ratio of the aggregate (mixture) in such a mixture sample having a minimum VC value, as the mixing proportion of the aggregate (mixture); preparing the respective samples of a plurality of CSG mixtures having their respective unit water contents and unit cement contents, while using the classified aggregate (mixture) in the above mixing proportion; with respect to these CSG mixtures, finding correlation of the unit water content with the VC value and correlation of the unit cement content with the VC value, from the data on these samples; also, finding such an initial VC value as to provide a VC value which is measured after the lapse of a prescribed time and equal to or lower than a prescribed value; and finding such a unit water content and a cement content as to provide an initial VC value equal to or lower than the above initial VC value, from these correlations of the unit contents with the VC value, to adopt the found unit water content and unit cement content as the mixing proportion of water and mixing proportion of cement, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粘土やシルトを含
む砂礫又は砕石などの骨材と、セメントと、水とを含む
材料を練り混ぜて構造物を構築する、いわゆるCSG工
法において、各材料の配合比率を求める方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called CSG method for kneading aggregates such as gravel or crushed stone containing clay or silt, materials containing cement and water, and constructing a structure. And a method for determining the compounding ratio of

【0002】[0002]

【従来の技術】CSG工法は、河床砂礫などの現地発生
材にセメントと水を添加混合し、これをダンプトラック
で施工現場まで搬送し、ブルドーザーで敷き均し、振動
ローラーで転圧することにより構造物を構築するもので
ある。またCSG工法で用いる混合材料は、ソイルセメ
ントよりも大きな強度を有し、RCD用コンクリートよ
りも強度が小さい、中間的な強度範囲をめざすものであ
る。
2. Description of the Related Art In the CSG method, cement and water are added to and mixed with locally generated material such as riverbed sand and gravel, transported to a construction site by a dump truck, spread with a bulldozer and leveled by a vibrating roller. It builds things. Further, the mixed material used in the CSG method aims at an intermediate strength range in which the strength is higher than that of the soil cement and lower than that of the concrete for RCD.

【0003】[0003]

【発明が解決しようとする課題】つまり、CSG工法の
特徴は、粘土やシルトを含む砂礫又は砕石などの現地発
生材を洗浄することなく、分級もしないでそのまま用い
る点にあり、それ故に、コストの大幅な低減が可能であ
るという利点を有する。しかしながら、CSG工法に
は、天然材料特有の品質のばらつきに起因する品質管理
や施工管理の難しさといった問題点も内在している。
In other words, the feature of the CSG method is that the locally generated material such as gravel or crushed stone containing clay or silt is used without cleaning and without classification, and therefore the cost is reduced. Has the advantage that a significant reduction in However, the CSG method also has problems such as difficulty in quality control and construction management due to the variation in quality peculiar to natural materials.

【0004】本発明は上記従来技術の問題点に着目し、
これを解決せんとしたものであり、その課題は、簡単な
品質管理により、所定強度を発現可能で且つ良好な施工
性を有するCSG混合材料を得るための配合決定方法を
提供することにある。
The present invention focuses on the above-mentioned problems of the prior art,
It is an object of the present invention to provide a method for determining a mixture for obtaining a CSG mixed material having a predetermined strength and good workability by simple quality control.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、土を含む砂礫又は砕石などの骨材と、
セメントと、水とを含む材料を練り混ぜて構造物を構築
するために、各材料の配合比率を求める方法であって、
粘土・シルトを含む砂礫又は砕石などの骨材を採取後に
洗浄すること無くふるい分けて分級し、該分級した骨材
のそれぞれからサンプルを採取してふるい分け試験及び
実積率試験を行ない、実積率が所定範囲の値を示す分級
骨材の混合比の範囲を求め、該混合比の範囲で混合した
分級骨材に含まれる細骨材の空隙と粗骨材の空隙とを求
めて、少なくとも各空隙をそれぞれ埋め得るセメントペ
ースト量とモルタル量を定め、該セメントペースト量と
該モルタル量を充たす量のセメントと水を、前記範囲内
の複数の混合比で混合した分級骨材と練り混ぜて複数の
混練物のサンプルを生成し、VC試験により最小VC値
を示す混練物のサンプルに含まれる分級骨材の混合比を
配合比率となし、前記配合比率の細骨材を含む分級骨材
の混合物と、所定量のセメントと、複数の単位量の水と
からなる混練物のサンプルを生成し、各サンプルでVC
試験を行なってVC値と単位水量との関係を求め、前記
配合比率の細骨材を含む分級骨材の混合物と、所定量の
水と、複数の単位量のセメントとからなる混練物のサン
プルを生成し、各サンプルでVC試験を行なってVC値
と単位セメント量との関係を求め、前記配合比率で混合
した分級骨材の混合物と、所定量のセメントと、所定量
の水とを混合して混練物のサンプルを生成し、該サンプ
ルでVC試験を行なって所定時間後のVC値が所定以下
になる初期VC値を求め、前記VC値と単位水量の関係
から、前記初期VC値以下の値を示す単位水量を求めて
配合比率となし、前記VC値と単位セメント量の関係か
ら、前記初期VC値以下の値を示す単位セメント量を求
めて配合比率とすることを特徴とする配合決定方法が提
供される。
In order to solve the above-mentioned problems, according to the present invention, an aggregate such as gravel or crushed stone containing soil,
In order to construct a structure by kneading a material containing cement and water, a method of determining a mixing ratio of each material,
After collecting aggregates such as gravel or crushed stone including clay and silt, they are sieved without washing and classified without washing, samples are collected from each of the classified aggregates, and sieving tests and actual volume tests are performed. Determine the range of the mixing ratio of the classified aggregate showing a value of the predetermined range, determine the voids of the fine aggregate and the coarse aggregate contained in the classified aggregate mixed in the range of the mixing ratio, at least each of Determine the amount of cement paste and the amount of mortar that can fill the voids respectively, and knead the cement aggregate and the amount of cement and water that satisfies the amount of the mortar with the classified aggregate mixed at a plurality of mixing ratios within the above range to obtain a plurality of pieces. A mixture of the classified aggregates including the fine aggregate having the above-mentioned mixture ratio is obtained by forming a mixture ratio of the classified aggregates contained in the kneaded sample showing the minimum VC value by the VC test. And predetermined And cement, to produce a sample of the kneaded product consisting of water of a plurality of unit volume, VC in each sample
A test was performed to determine the relationship between the VC value and the unit water amount, and a sample of a kneaded mixture composed of a mixture of classified aggregates including fine aggregates in the above-described mixing ratio, a predetermined amount of water, and a plurality of unit amounts of cement was obtained. Is generated, a VC test is performed on each sample to determine the relationship between the VC value and the unit cement amount, and a mixture of the classified aggregate mixed at the mixing ratio, a predetermined amount of cement, and a predetermined amount of water are mixed. To produce a sample of the kneaded material, a VC test is performed on the sample to determine an initial VC value at which the VC value after a predetermined time becomes equal to or less than a predetermined value, and from the relationship between the VC value and the unit water amount, the initial VC value or less is obtained. A unit water amount indicating the value of the above is determined to be a compounding ratio, and from the relationship between the VC value and the unit cement amount, a unit cement amount indicating a value equal to or less than the initial VC value is obtained and set as a compounding ratio. A decision method is provided.

【0006】ここで、前記骨材を分級する工程は、手間
をかけずに、しかも廃棄される材料が可能な限り少なく
なるように行なうものであり、したがって、採取した砕
石あるいは現地発生材を洗浄せずに、粒径にしたがって
2〜3種類程度にふるい分けるものである。ふるいの呼
び寸法等の分級の基準は、採取した砕石あるいは現地発
生材の質に応じて適宜定めることができる。砕石を用い
る場合には、例えば、次の2工程により2種類に分級す
ることができる。採取した砕石から所定粒径以上の大
きな石を除去する工程と、大きな石が除去された砕石
を所定呼び寸法のふるいで分級して所定粒径で2種類に
分級する工程。なお、以上の2工程により得られた骨材
に含まれる粘土・シルトが所要量よりも少ない場合に
は、第3の工程として、粒径が2.5mm以下で粘土
・シルトを含む細骨材をふるい分ける工程を行なっても
良い。河床砂礫を用いる場合には、上記の2工程に
より2種類に分級することが好ましい。
[0006] Here, the step of classifying the aggregate is performed without any trouble and in such a manner as to reduce the amount of discarded material as much as possible. Therefore, the collected crushed stone or locally generated material is washed. Instead, they are sieved into about 2 to 3 types according to the particle size. The criteria for classification, such as the nominal size of the sieve, can be determined as appropriate according to the quality of the crushed stone or the locally generated material. When crushed stone is used, for example, it can be classified into two types by the following two steps. A step of removing large stones having a predetermined particle size or more from the collected crushed stones, and a step of classifying the crushed stones from which the large stones have been removed with a sieve having a predetermined nominal size and classifying them into two types with a predetermined particle size. When the amount of clay and silt contained in the aggregate obtained in the above two steps is smaller than the required amount, as a third step, fine aggregate having a particle size of 2.5 mm or less and containing clay and silt is used. May be performed. When using riverbed gravel, it is preferable to classify into two types by the above two steps.

【0007】前記ふるい分け試験はJIS A 1102の規定に
したがって実施する。このふるい分け試験では、少なく
とも、各粒径の重量百分率が所定値以内になっているか
を確認する。
[0007] The sieving test is performed in accordance with the provisions of JIS A1102. In this sieving test, it is checked whether at least the weight percentage of each particle size is within a predetermined value.

【0008】また前記実積率試験とは、JIS A 1102の規
定にしたがって実施する。この実積率試験では、少なく
とも、材料がある容積のなかで、どの程度まで密実に詰
まっているかを確認する。この実積率試験では、正確に
容積が測定された容器内に試料を充填し、ジッギングな
どの方法で、容器内の骨材を密実にすることにより実積
率を求める。
[0008] The actual product rate test is performed in accordance with the provisions of JIS A1102. In this real-life rate test, it is checked at least to what extent the material is tightly packed in a certain volume. In this actual loading rate test, a sample is filled in a container whose volume has been accurately measured, and the aggregate in the container is made dense by a method such as jigging to obtain an actual loading rate.

【0009】前記分級した骨材のそれぞれからサンプル
を採取してふるい分け試験及び実積率試験を行ない、実
積率が所定範囲の値を示す分級骨材の混合比の範囲を求
める工程においては、実積率がほぼピークを示すような
分級骨材の混合比の範囲を求めることが好ましい。また
本工程においては、ふるい分け試験から得られた粒度分
布の範囲を確認し、この粒度分布の範囲内で、かつ実積
率がピークを示すように分級骨材の混合比の範囲を定め
ることが好ましい。実積率がピークを示す粒度は後工程
でセメント、水を添加しても最も密実な配合である。密
実な配合のCSG混練物を作ることにより、水密性、耐
久性、強度などの点において優れた品質の構造物が得ら
れる。
In the step of collecting a sample from each of the classified aggregates and performing a sieving test and an actual load rate test to determine a range of the mixture ratio of the classified aggregates having an actual load rate within a predetermined range, It is preferable to determine the range of the mixing ratio of the classified aggregates so that the actual product ratio substantially shows a peak. In this step, the range of the particle size distribution obtained from the sieving test is confirmed, and within this range of the particle size distribution, the range of the mixing ratio of the classified aggregate may be determined so that the actual product ratio shows a peak. preferable. The particle size at which the actual volume ratio shows a peak is the most precise blending even if cement and water are added in a later step. By producing a CSG kneaded product having a solid blend, a structure having excellent quality in terms of water tightness, durability, strength, and the like can be obtained.

【0010】前記細骨材とは、5mmふるいを85%以
上が通り抜けて、かつ10mmふるいを100%が通り
抜ける骨材であり、前記細骨材率とは、式1にて求めら
れるものである。
The fine aggregate is an aggregate in which 85% or more passes through a 5 mm sieve and 100% passes through a 10 mm sieve. The fine aggregate ratio is obtained by the following equation (1). .

【式1】 また前記分級骨材の混合比は、細骨材率がほぼ25〜3
5%になるように定めることが好ましい。これは、細骨
材率がほぼ25〜35%で、実積率は最大になり、最も
密実な配合が可能になるからである。
(Equation 1) Further, the mixing ratio of the classified aggregate is such that the fine aggregate ratio is approximately 25-3.
It is preferable to set it to 5%. This is because the fine aggregate ratio is approximately 25 to 35%, the actual product ratio is maximized, and the most precise blending becomes possible.

【0011】前記セメントペースト量とモルタル量を定
める工程では、前記細骨材の空隙を埋め得る以上のセメ
ントペースト量がCSG混練物に含まれ、かつ前記粗骨
材の空隙を埋め得る以上のモルタル量がCSG混練物に
含まれるように、セメントと水の単位量を求めるもので
あって、CSG混練物1m3に用いる細骨材と粗骨材の
空隙容積を求めることにより算出することができる。
In the step of determining the amount of cement paste and the amount of mortar, the amount of cement paste that can fill the voids of the fine aggregate is included in the CSG kneaded material and the amount of mortar that can fill the voids of the coarse aggregate. The amount of cement and water is determined so that the amount is included in the CSG kneaded material, and can be calculated by determining the void volume of fine aggregate and coarse aggregate used for 1 m 3 of CSG kneaded material. .

【0012】前記VC試験とは、従来、硬練りコンクリ
ートのコンシステンシーを評価する方法の一つとして採
用されているものである。ここでは、分級骨材の混合物
にセメントと水を添加混合してなるCSG混練物をモー
ルドに詰め込み、このモールドに約50Hz、振幅1m
m程度の振動を与え、モルタルが表面に浮き上がるまで
の時間を測定するものであり、この時間を前記VC値と
する。
The VC test is conventionally employed as one of the methods for evaluating the consistency of hardened concrete. Here, a CSG kneaded product obtained by adding and mixing cement and water to a mixture of classified aggregates is packed in a mold, and the mold is filled with about 50 Hz and an amplitude of 1 m.
The time until the mortar rises to the surface by applying vibration of about m is measured, and this time is defined as the VC value.

【0013】本発明において、前記VC値と単位セメン
ト量の関係から前記初期VC値を示す単位セメント量を
求めて配合比率とする工程に加えて、さらに、前記配合
比率の細骨材を含む分級骨材の混合物と、所定量の水
と、複数の単位量のセメントとからなる混練物のサンプ
ルを生成し、各サンプルについて圧縮試験を行なって単
位セメント量と圧縮強度の関係を求め、圧縮強度が所定
以上になることをも条件として、単位セメント量の配合
比率を定めることができる。ここで、各サンプルについ
て圧縮試験を行なって単位セメント量と圧縮強度の関係
を求める工程において、前記単位セメント量は、水セメ
ント比あるいはセメント水比として求めることも含み、
これら何れかと圧縮強度の関係を求めても良い。この場
合、圧縮強度が所定以上になるような水セメント比ある
いはセメント水比を求めて、この比率から単位セメント
量の配合比率を定めるものである。また各サンプルにつ
いて行なう圧縮試験は、所定時間経過後に行なって二回
以上測定しても良く、これにより、各サンプルの圧縮強
度の経時変化が判るので、経時的な強度発現も考慮して
単位セメント量の配合比率を定めることができて、CS
G混練物の更なる品質安定性が可能になる。
[0013] In the present invention, in addition to the step of obtaining the unit cement amount indicating the initial VC value from the relationship between the VC value and the unit cement amount to determine the compounding ratio, the method further comprises the classifying step including the fine aggregate having the compounding ratio. A sample of a kneaded product composed of a mixture of aggregates, a predetermined amount of water, and a plurality of unit amounts of cement is generated, and a compression test is performed on each sample to determine a relationship between the unit cement amount and the compressive strength. Can be determined on condition that the ratio of the cement is equal to or more than a predetermined value. Here, in the step of performing a compression test on each sample to determine the relationship between the unit cement amount and the compressive strength, the unit cement amount includes obtaining a water cement ratio or a cement water ratio,
The relationship between any of these and the compressive strength may be obtained. In this case, a water-cement ratio or a cement-water ratio is determined so that the compressive strength is equal to or higher than a predetermined value, and the mixing ratio of the unit cement amount is determined from this ratio. In addition, the compression test performed on each sample may be performed two or more times after a predetermined time has elapsed, and the change in the compression strength of each sample with time can be determined. The amount can be determined by the CS
Further quality stability of the G-kneaded material becomes possible.

【0014】また本発明では、前記骨材を分級する工程
において、シルト及び粘土を含み、かつ5mmふるいを
85%以上が通過し、かつ10mmふるいを100%通
過する材料を、前記分級骨材の一つとしてふるい分けて
も良い。かような工程により、たとえ、砕石などを含む
現地発生材が、細粒分や微粒分の足りないものであった
としても、これら細粒分などの量を最適な配合に調整す
ることができて、安定した品質のCSG混練物を得るこ
とが可能になる。
Further, in the present invention, in the step of classifying the aggregate, a material containing silt and clay, which pass at least 85% through a 5 mm sieve, and pass 100% through a 10 mm sieve, is used as a material for the classified aggregate. It may be sieved as one. Through such a process, even if the locally generated material, including crushed stone, is insufficient for fine particles or fine particles, the amount of fine particles can be adjusted to the optimal blending. As a result, it becomes possible to obtain a CSG kneaded material of stable quality.

【0015】[0015]

【実施例】以下、添付図面に基づいて実施例を説明する
が、本発明はこれに限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the accompanying drawings, but the present invention is not limited to these embodiments.

【0016】〈分級工程〉本実施例では、採取後の砕石
を洗浄せずに、粒径80〜40mmの粗骨材G1と、粒径
40〜0mmの粗骨材G2(細骨材も含む)との二種類に
ふるい分けて分級した。また本実施例では、CSG材料
の細粒分および微粒分の調整を目的として、砕石から骨
材を製造する場合に産出されるダスト分であって、従
来、骨材製造時に廃棄物として処理される、粒径2.5
〜0mmの細骨材S(以下、本実施例において「ダスト」
ということもある)を使用した。なお、粘土・シルトな
どの細粒分および微粒分が多量に混入している現地発生
材を用いる場合には、二種類にふるい分けて分級するこ
とも可能であり、細骨材Sのようなダストを別途使用し
なくても良いことがある。
<Classification Step> In this embodiment, the coarse aggregate G1 having a particle size of 80 to 40 mm and the coarse aggregate G2 having a particle size of 40 to 0 mm (including fine aggregates are also included) without washing the crushed stone after collection. ) And classified. In the present embodiment, dust is produced in the case of producing aggregate from crushed stone for the purpose of adjusting fine particles and fine particles of the CSG material, and is conventionally treated as waste during the production of aggregate. 2.5, particle size 2.5
~ 0 mm fine aggregate S (hereinafter referred to as "dust"
Sometimes used). In the case of using locally generated materials containing a large amount of fine particles and fine particles, such as clay and silt, it is also possible to classify the materials by sieving them into two types. May not need to be used separately.

【0017】〈分級骨材の混合比の目安を求める工程〉 粗骨材G1,G2の混合比 粗骨材G1と粗骨材G2を、異なる比率で混合して複数
のサンプルを生成し、各サンプルについてふるい分け試
験を行ない、試験結果を図1に示した。ふるい分け試験
では、呼び寸法の異なる複数のふるいを用いて、各粒径
毎ごとの含有率を求めた。図1において、標準粒度とし
て示した折れ線は、日本土木学会のコンクリート標準示
方書における最大粒径80mmの粗骨材の粒度を示すもので
あり、したがって、各粒径の重量百分率がコンクリート
標準示方書の粒度分布の範囲内になることを確認して、
粗骨材の混合比G1:G2を1:2と定めた。
<Step of Determining Estimated Mixing Ratio of Classified Aggregate> Mixing Ratio of Coarse Aggregate G1, G2 Coarse aggregate G1 and coarse aggregate G2 are mixed at different ratios to generate a plurality of samples. A sieving test was performed on the sample, and the test results are shown in FIG. In the sieving test, the content for each particle size was determined using a plurality of sieves having different nominal dimensions. In FIG. 1, the polygonal line shown as the standard particle size shows the particle size of the coarse aggregate having a maximum particle size of 80 mm in the Concrete Standard Specification of the Japan Society of Civil Engineers. Therefore, the weight percentage of each particle size is expressed in the Concrete Standard Specification. Confirm that it is within the range of the particle size distribution of
The mixing ratio G1: G2 of the coarse aggregate was set to 1: 2.

【0018】細骨材Sの混合比の目安 次に、粗骨材G1,G2を1:2で混合した混合物と、
粗骨材G2とからサンプルを採取して、ふるい分け試験
を行なった。試験結果は粗骨材G2の細骨材率が15.
2%であり、粗骨材G1,G2の混合物の細骨材率が1
2.6%であった。細骨材Sの混合比の目安を求めるた
め、粗骨材G1,G2を1:2で混合した混合物に、細
骨材Sを異なる比率で混合した場合の細骨材率を算出
し、その結果を図2(a)(b)に示した。細骨材Sの
混合比は、粗骨材G1,G2の混合物に対して5%きざ
みで0〜50%、すなわちG1:G2:S=1:2:0
〜1.5の範囲とした。以上のように細骨材Sの混合比
を変えると、細骨材率は12.6から45.1%まで変化
する。なお、図2(a)(b)において、細骨材Sを
「ダスト」と記載した。また粗骨材G1,G2が1:2
の混合物に、細骨材Sを5%きざみで5〜50%まで
(G1:G2:S=1:2:0.15〜1.5)混合して
サンプルを生成し、実積率試験を行ない、その試験結果
を図3(a)(b)に示した。試験結果から、細骨材S
の混合比20〜35%(G1:G2:S=1:2:0.
60〜1.05)程度で、絶乾単位容積重量、すなわち
実積率がピークを示すことが判る。この細骨材Sの混合
比20〜35%において、細骨材率は26.3〜35.6
%であり、分級骨材の混合比はG1:G2:S=1:
2:0.6〜1.05である。なお、図3(a)(b)に
おいて、細骨材Sを「ダスト」と記載した。以上の結果
から、実積率がピークを示す、分級骨材の混合比G1:
G2:S=1:2:0.6〜1.05、細骨材率25〜3
5%程度をCSG混練物のサンプル生成時の目安とす
る。
Estimated Mixing Ratio of Fine Aggregate S Next, a mixture obtained by mixing coarse aggregates G1 and G2 at a ratio of 1: 2,
A sample was collected from the coarse aggregate G2 and subjected to a sieving test. The test results show that the fine aggregate ratio of coarse aggregate G2 is 15.
2%, and the fine aggregate ratio of the mixture of the coarse aggregates G1 and G2 is 1
2.6%. In order to obtain a measure of the mixing ratio of the fine aggregate S, the fine aggregate ratio when the fine aggregate S is mixed at a different ratio to the mixture obtained by mixing the coarse aggregates G1 and G2 at 1: 2 is calculated. The results are shown in FIGS. The mixing ratio of the fine aggregate S is 0 to 50% in 5% increments with respect to the mixture of the coarse aggregates G1 and G2, that is, G1: G2: S = 1: 2: 0.
~ 1.5. When the mixing ratio of the fine aggregate S is changed as described above, the fine aggregate ratio changes from 12.6 to 45.1%. In FIGS. 2A and 2B, the fine aggregate S is described as “dust”. The coarse aggregates G1 and G2 are 1: 2.
The mixture is mixed with fine aggregate S in 5% increments from 5 to 50% (G1: G2: S = 1: 2: 0.15 to 1.5) to produce a sample, and the actual product rate test is performed. The test results were shown in FIGS. 3 (a) and 3 (b). From the test results, the fine aggregate S
20-35% (G1: G2: S = 1: 2: 0.
60 to 1.05), it can be seen that the absolute dry weight per unit volume, that is, the actual product ratio shows a peak. At a mixing ratio of the fine aggregate S of 20 to 35%, the fine aggregate ratio is 26.3 to 35.6.
%, And the mixture ratio of the classified aggregate is G1: G2: S = 1:
2: 0.6 to 1.05. In FIGS. 3A and 3B, the fine aggregate S is described as “dust”. From the above results, the mixture ratio G1:
G2: S = 1: 2: 0.6 to 1.05, fine aggregate ratio 25 to 3
Approximately 5% is used as a standard when generating a sample of the CSG kneaded material.

【0019】〈CSG混練物試験用サンプルのセメント
量と水量を定める工程〉混合比G1:G2:S=1:
2:0.6〜1.20の範囲で分級骨材からサンプル採取
して、各サンプルに含まれる細骨材の空隙容積と、粗骨
材の空隙容積とを求め、この結果から、細骨材の空隙を
埋め得るセメントペースト量と、粗骨材の空隙を埋め得
るモルタルペースト量とが判かり、CSG混練物に含ま
れるセメントペースト量とモルタルペースト量が、これ
以上になるように、単位セメント量と単位セメント量と
を決める。上述した細骨材の空隙容積と、粗骨材の空隙
容積と、セメントペースト量と、モルタルペースト量
と、単位セメント量と、単位水量との関係を表1に示し
た。
<Step of Determining Cement Amount and Water Amount of CSG Kneaded Material Test Sample> Mixing Ratio G1: G2: S = 1:
2: Samples were collected from the classified aggregate in the range of 0.6 to 1.20, and the void volume of the fine aggregate and the void volume of the coarse aggregate contained in each sample were determined. The amount of cement paste that can fill the voids in the aggregate and the amount of mortar paste that can fill the voids in the coarse aggregate are known, and the amount of cement paste and the amount of mortar paste contained in the CSG kneaded product are set to be greater than this. Determine the cement amount and the unit cement amount. Table 1 shows the relationship among the void volume of the fine aggregate, the void volume of the coarse aggregate, the cement paste amount, the mortar paste amount, the unit cement amount, and the unit water amount.

【表1】 [Table 1]

【0020】〈分級骨材の配合比率を定める工程〉図4
に記載したように、単位セメント量が120kg/m3、80kg
/m3、40kg/m3の配合をそれぞれA配合、B配合、C配
合として、CSG混練物のサンプルを生成した。これら
各サンプルについてVC試験を行なってそれぞれVC値
を求め、各サンプルに含まれる細骨材S(ダスト)の混
合率と、各VC値との関係を図5に示した。この図5か
ら、VC値は、所定の細骨材Sの混合率(ダスト混合
率)において最小となることが判る。VC値が小さいほ
ど締固め作業は行いやすいので、最小VC値を示す細骨
材Sの混合率を最適な配合比率として決定する。表2に
は、A配合、B配合、C配合における最適な配合比率と
してのダスト混合率(細骨材Sの混合率)と細骨材率を
示した。
<Step of Determining Mixing Ratio of Classified Aggregate> FIG.
As described, the amount of the unit cement 120 kg / m 3, 80 kg
Samples of the CSG kneaded product were produced by using the A / m 3 and 40 kg / m 3 compositions as A composition, B composition, and C composition, respectively. A VC test was performed on each of these samples to determine VC values, and the relationship between the mixing ratio of fine aggregate S (dust) contained in each sample and each VC value is shown in FIG. From FIG. 5, it can be seen that the VC value is minimum at a predetermined fine aggregate S mixing ratio (dust mixing ratio). Since the compaction work is easier to perform as the VC value is smaller, the mixing ratio of the fine aggregate S exhibiting the minimum VC value is determined as the optimum mixing ratio. Table 2 shows the dust mixing ratio (the mixing ratio of the fine aggregate S) and the fine aggregate ratio as the optimum mixing ratios in the A, B, and C formulations.

【表2】 [Table 2]

【0021】〈VC値と単位水量の関係〉上記A配合
(単位セメント量120kg/m3)、B配合(単位セメント
量80kg/m3)、C配合(単位セメント量40kg/m3)にお
いて、単位水量を120〜160kg/m3の範囲で変え、CSG
混練物のサンプルを生成し、各サンプルについてVC値
を求めた。試験から得られたVC値と単位水量との関係
を図6に示した。
<Relationship between VC value and unit water amount> In the above A composition (unit cement quantity 120 kg / m 3 ), B composition (unit cement quantity 80 kg / m 3 ), and C composition (unit cement quantity 40 kg / m 3 ), changing the unit water content in the range of 120~160kg / m 3, CSG
Samples of the kneaded material were produced, and the VC value was determined for each sample. FIG. 6 shows the relationship between the VC value obtained from the test and the unit water amount.

【0022】〈VC値と単位セメント量の関係〉単位水
量をそれぞれ100〜160kg/m3として、単位セメン
ト量を40〜120kg/m3の範囲で変え、CSG混練物
のサンプルを生成し、各サンプルについてVC試験を行
なってVC値を求めた。試験から得られたVC値と単位
セメント量との関係は、前記〈VC値と単位水量の関
係〉における図6に示した。試験結果から、単位セメン
ト量が一定の場合、単位水量とVC値の対数は逆比例
し、所要のワーカビリティーを得るための最適単位水量
と最適セメント量の組み合わせが求められる。
<Relationship between VC Value and Unit Cement Amount> The unit water amount was set to 100 to 160 kg / m 3 , and the unit cement amount was changed in the range of 40 to 120 kg / m 3 to produce a CSG kneaded sample. A VC test was performed on the sample to determine a VC value. The relationship between the VC value obtained from the test and the unit cement amount is shown in FIG. 6 in the above <Relationship between VC value and unit water amount>. From the test results, when the unit cement amount is constant, the logarithm of the unit water amount and the VC value are inversely proportional, and a combination of the optimal unit water amount and the optimal cement amount for obtaining required workability is obtained.

【0023】〈VC値の経時変化〉次に、表3に示した
配合でCSG混練物のサンプルを生成し、各サンプルに
ついて所定時間経過ごとにVC試験を行なってVC値を
求めた。試験番号1,2は初期VC値が40秒前後のC
SG混練物、試験番号3,4は初期VC値が数秒のCS
G混練物についての試験結果である。
<Changing of VC Value with Time> Next, samples of the kneaded CSG were prepared according to the composition shown in Table 3, and a VC test was performed on each sample at predetermined time intervals to determine the VC value. Test Nos. 1 and 2 are C with an initial VC value of around 40 seconds.
SG kneaded materials, Test Nos. 3 and 4 have CS with initial VC value of several seconds.
It is a test result about G kneaded material.

【表3】 試験から得られた所定時間経過ごとのVC値を図7に示
した。図7から判るように、初期VC値によってVC値
の経時変化に差異が見られる。すなわち、VC値が12
0秒になるまでの経過時間は、初期VC値が40秒前後
のCSG混練物では30分程度であり、初期VC値が数
秒程度のCSG混練物では2時間以上であった。また単
位セメント量によってVC値の経時変化に差異が見られ
る。すなわち、VC値が120秒になるまでの経過時間
が、単位セメント量が120kg/m3の場合には約2時間で
あるのに対して、単位セメント量が80kg/m3の場合には
約3時間となっている。VC値が120秒となるCSG
混練物では、実際の施工時に、ブルドーザーや振動ロー
ラーによる締固めを行なっても、密度増加が少なくなる
などの施工の困難性が予想される。施工性の観点から考
えると、時間経過に対するVC値の増加率は緩やかなほ
うが良く、したがって、初期VC値が数秒程度であり、
かつ単位セメント量が少ないCSG混練物のほうが優れ
ていることが判る。
[Table 3] FIG. 7 shows the VC values at predetermined time intervals obtained from the test. As can be seen from FIG. 7, there is a difference in the temporal change of the VC value depending on the initial VC value. That is, the VC value is 12
The elapsed time until reaching 0 second was about 30 minutes for the CSG kneaded material having an initial VC value of about 40 seconds, and was 2 hours or more for the CSG kneaded material having an initial VC value of about several seconds. Further, there is a difference in the change over time of the VC value depending on the unit cement amount. That is, while the elapsed time until the VC value becomes 120 seconds is about 2 hours when the unit cement amount is 120 kg / m 3 , it is about 2 hours when the unit cement amount is 80 kg / m 3. 3 hours. CSG with VC value of 120 seconds
In the case of the kneaded material, even if compaction is performed with a bulldozer or a vibrating roller during actual construction, it is expected that construction will be difficult such as a decrease in density. From the viewpoint of workability, it is better that the rate of increase of the VC value with respect to the passage of time is gradual, so that the initial VC value is about several seconds,
It can be seen that the CSG kneaded material having a small unit cement amount is more excellent.

【0024】〈水セメント比と圧縮強度の関係〉次に、
表4に示したA,B,C配合でCSG混練物のサンプル
を生成し、各サンプルについて7日及び28日経過後に
圧縮試験を行ない、図8に水セメント比と圧縮強度の関
係を示した。
<Relationship between water cement ratio and compressive strength>
Samples of the CSG kneaded material were produced with the blending of A, B, and C shown in Table 4, and a compression test was performed on each sample after 7 days and 28 days. FIG. 8 shows the relationship between the water cement ratio and the compressive strength. .

【表4】 試験結果から、単位セメント量が120kg/m3、80kg/
m3、40kg/m3のいずれの場合にも、セメント水比に比例
して圧縮強度が増加することが判る。また単位セメント
量120kg/m3と、単位セメント量80kg/m3とおいては圧
縮強度に大きな差異が生じない一方で、単位セメント量
40kg/m3では圧縮強度が小さいことが判る。さらに、各
サンプルの7日強度と28日強度を比較すると、単位セ
メント量が120kg/m3と80kg/m3のサンプルでは長期強
度が十分期待できるが、単位セメント量40kg/m3のサン
プルでは強度発現が小さいことが判る。以上の結果か
ら、単位セメント量は少なくとも80kg/m3以上であれば
良いと思われる。
[Table 4] From the test results, the unit cement amount was 120 kg / m 3 , 80 kg /
It can be seen that in both cases of m 3 and 40 kg / m 3 , the compressive strength increases in proportion to the cement water ratio. While there is no significant difference in compressive strength between the unit cement amount of 120 kg / m 3 and the unit cement amount of 80 kg / m 3 , the unit cement amount is
It can be seen that the compressive strength is small at 40 kg / m 3 . Furthermore, comparing the 7-day strength and the 28-day strength of each sample, the samples with unit cement amounts of 120 kg / m 3 and 80 kg / m 3 can be expected to have sufficient long-term strength, but the samples with unit cement amount of 40 kg / m 3 It turns out that intensity | strength expression is small. From the above results, it is considered that the unit cement amount should be at least 80 kg / m 3 or more.

【0025】〈配合の決定〉図7に示したVC値の経時
変化から、初期VC値は数秒程度(0〜20秒程度)が
好ましいことが判かる。このようなVC値を示す単位水
量は、図6(VC値と単位水量の関係図)から160kg/m
3程度であると判断できる。また単位セメント量は、図
8の水セメント比と圧縮強度の関係からは80kg/m3以上
であれば良いと思われ、両方の結果から80kg/m3に定め
ることができる。ダスト混合率(細骨材Sの混合率)
は、単位セメント量が80kg/m3のB配合と同じ、30
%(G1:G2:S=1:2:0.9)に定め、その際
の細骨材率は32.5%になる。
<Determination of Formulation> From the change with time of the VC value shown in FIG. 7, it can be seen that the initial VC value is preferably about several seconds (about 0 to 20 seconds). The unit water amount indicating such a VC value is 160 kg / m from FIG. 6 (a diagram showing the relationship between the VC value and the unit water amount).
It can be determined that it is about 3 . The unit cement amount is considered to be 80 kg / m 3 or more from the relationship between the water cement ratio and the compressive strength in FIG. 8, and can be set to 80 kg / m 3 from both results. Dust mixing ratio (mixing ratio of fine aggregate S)
Is the same as B composition with a unit cement amount of 80 kg / m 3 , 30
% (G1: G2: S = 1: 2: 0.9), and the fine aggregate ratio at that time is 32.5%.

【0026】[0026]

【発明の効果】本発明では、土を含む砂礫又は砕石など
材料を未洗浄でふるい分けて分級し、実積率が所定範囲
の値を示す分級骨材の混合比の範囲を求め、この混合比
の範囲で混合した分級骨材を含む複数のCSG混練物の
サンプルを生成し、このCSG混練物サンプルのうちで
最小VC値を示すサンプルに含まれる分級骨材の混合比
を配合比率となし、この配合比率の分級骨材の混合物か
ら、それぞれ複数の単位水量と複数の単位セメント量で
CSG混練物のサンプルを生成し、各サンプルから各単
位量(単位水量と単位セメント量)とVC値の関係を求
め、さらに、所定時間後のVC値が所定以下になる初期
VC値を求め、VC値と各単位量の関係から初期VC値
以下の値を示す単位水量と単位セメント量を求めて、そ
れぞれ配合比率とする。以上のような簡単な管理工程に
よって、使用する現地発生材が如何なる品質であって
も、良好な施工性を有する所定品質のCSG混練物を得
ることが可能になる。
According to the present invention, a material such as gravel or crushed stone containing soil is sieved and classified without being washed, and a range of a mixture ratio of the classified aggregate having an actual volume ratio within a predetermined range is determined. A sample of a plurality of CSG kneaded materials including the classified aggregate mixed in the range of is generated, and the mixing ratio of the classified aggregate included in the sample showing the minimum VC value among the CSG kneaded material samples is defined as the mixing ratio, From the mixture of the classified aggregates having this mixing ratio, a sample of the CSG kneaded material is generated with a plurality of unit water amounts and a plurality of unit cement amounts, and each unit amount (unit water amount and unit cement amount) and VC value of the VC value are calculated from each sample. Determine the relationship, further, determine the initial VC value after a predetermined time after the VC value is equal to or less than a predetermined value, determine a unit water amount and a unit cement amount indicating a value equal to or less than the initial VC value from the relationship between the VC value and each unit amount, The mixing ratio and That. With the simple management process as described above, it is possible to obtain a CSG kneaded material of a predetermined quality having good workability, regardless of the quality of the locally generated material used.

【0027】また本発明において、配合比率で混合した
分級骨材と、複数の単位量のセメントとを含むCSG混
練物のサンプルを生成し、各サンプルについて所定時間
経過後に圧縮試験を行なって単位セメント量と圧縮強度
の関係を求め、圧縮強度が所定以上になることをも条件
として、単位セメント量の配合比率を定めるので、簡単
な管理工程によって、所定強度を発現することができる
CSG混練物を得ることが可能になる。
Further, in the present invention, a sample of a CSG kneaded material containing the classified aggregate mixed in the compounding ratio and a plurality of unit amounts of cement is produced, and a compression test is performed on each sample after a lapse of a predetermined time, and the unit cement The relationship between the amount and the compressive strength is determined, and the mixing ratio of the unit cement amount is determined on condition that the compressive strength is equal to or more than a predetermined value. It is possible to obtain.

【0028】さらに、本発明では、骨材を分級する工程
において、シルト及び粘土を含み、かつ5mmふるいを
85%以上が通過し、かつ10mmふるいを100%通
過する材料を分級骨材の一つとしてふるい分けるので、
たとえ、現地発生材が細粒分および微粒分の足りないも
のであっても、これら細粒分などの量を調整することが
できて、安定した品質のCSG混練物を得ることが可能
になる。
Further, in the present invention, in the step of classifying the aggregate, a material containing silt and clay and passing through 85% or more of a 5 mm sieve and passing 100% of a 10 mm sieve is classified as one of the classified aggregates. Sifted as
Even if the locally generated material is insufficient for fine particles and fine particles, the amount of these fine particles and the like can be adjusted, and a CSG kneaded material of stable quality can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】粗骨材のサンプルでふるい分け試験を行なった
結果を示すグラフである。
FIG. 1 is a graph showing the results of a sieving test performed on a sample of coarse aggregate.

【図2】(a)(b)は細骨材混合比(ダスト混合比)
と細骨材率の関係を示す表とグラフである。
FIGS. 2A and 2B are fine aggregate mixing ratios (dust mixing ratios).
It is the table | surface and the graph which show the relationship between a fine aggregate ratio.

【図3】(a)(b)は細骨材混合比(ダスト混合比)
と絶乾単位容積重量の関係を示す表とグラフである。
FIG. 3 (a) and (b) are fine aggregate mixing ratios (dust mixing ratios).
3 is a table and a graph showing the relationship between and the absolute dry weight per unit volume.

【図4】分級骨材の配合比率を定める工程において用い
たCSG混練物サンプルの配合を示す一覧表である。
FIG. 4 is a table showing the composition of the CSG kneaded material sample used in the step of determining the composition ratio of the classified aggregate.

【図5】細骨材混合比(ダスト混合比)とVC値の関係
を示すグラフである。
FIG. 5 is a graph showing a relationship between a fine aggregate mixing ratio (dust mixing ratio) and a VC value.

【図6】単位水量とVC値の関係を示すグラフである。FIG. 6 is a graph showing a relationship between a unit water amount and a VC value.

【図7】VC値の経時変化を示すグラフである。FIG. 7 is a graph showing a change over time of a VC value.

【図8】水セメント比と圧縮強度の関係を示すグラフで
ある。
FIG. 8 is a graph showing a relationship between a water cement ratio and compressive strength.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 20/00 C04B 20/00 B E02D 3/12 102 E02D 3/12 102 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 20/00 C04B 20/00 B E02D 3/12 102 E02D 3/12 102

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 土を含む砂礫又は砕石などの骨材と、セ
メントと、水とを含む材料を練り混ぜて構造物を構築す
るために、各材料の配合比率を求める方法であって、 粘土・シルトを含む砂礫又は砕石などの骨材を採取後に
洗浄すること無くふるい分けて分級し、該分級した骨材
(以下、分級骨材という)のそれぞれからサンプルを採
取してふるい分け試験及び実積率試験を行ない、実積率
が所定範囲の値を示す分級骨材の混合比の範囲を求め、 該混合比の範囲で混合した分級骨材に含まれる細骨材の
空隙と粗骨材の空隙とを求めて、少なくとも各空隙をそ
れぞれ埋め得るセメントペースト量とモルタル量を定
め、 該セメントペースト量と該モルタル量を充たす量のセメ
ントと水を、前記範囲内の複数の混合比で混合した分級
骨材と練り混ぜて複数の混練物のサンプルを生成し、V
C試験により最小VC値を示す混練物のサンプルに含ま
れる分級骨材の混合比を配合比率となし、 前記配合比率で混合した分級骨材の混合物と、所定量の
セメントと、複数の単位量の水とからなる混練物のサン
プルを生成し、各サンプルでVC試験を行なってVC値
と単位水量との関係を求め、 前記配合比率で混合した分級骨材の混合物と、所定量の
水と、複数の単位量のセメントとからなる混練物のサン
プルを生成し、各サンプルでVC試験を行ないVC値と
単位セメント量との関係を求め、 前記配合比率の細骨材を含む分級骨材の混合物と、所定
量のセメントと、所定量の水とを混合して混練物のサン
プルを生成し、該サンプルでVC試験を行ない所定時間
後のVC値が所定以下になる初期VC値を求め、 前記VC値と単位水量の関係から、前記初期VC値以下
の値を示す単位水量を求めて配合比率となし、 前記VC値と単位セメント量の関係から、前記初期VC
値以下の値を示す単位セメント量を求めて配合比率とす
ることを特徴とする配合決定方法。
1. A method for determining a mixing ratio of each material in order to construct a structure by kneading an aggregate such as gravel or crushed stone including soil, a material including cement and water, and constructing a structure.・ After collecting aggregates such as gravel or crushed stone including silt, they are sieved without washing and classified without washing, samples are collected from each of the classified aggregates (hereinafter referred to as classified aggregates), sieving test and actual product ratio. A test is performed to determine the range of the mixing ratio of the classified aggregates whose actual loading ratio shows a value within a predetermined range, and the gap of the fine aggregate and the gap of the coarse aggregate contained in the classified aggregate mixed within the range of the mixing ratio. Is determined, the amount of cement paste and the amount of mortar capable of filling at least each void are determined, and the cement and the amount of cement and water satisfying the amount of the mortar are mixed at a plurality of mixing ratios within the above-described range. Knead with the aggregate Producing a plurality of samples of the kneaded material,
The mixture ratio of the classified aggregate contained in the sample of the kneaded material showing the minimum VC value by the C test is defined as a mixing ratio. The mixture of the classified aggregate mixed at the mixing ratio, a predetermined amount of cement, and a plurality of unit amounts A sample of a kneaded material consisting of water is generated, a VC test is performed on each sample to determine a relationship between the VC value and a unit water amount, and a mixture of the classified aggregate mixed in the mixing ratio and a predetermined amount of water are mixed. A sample of the kneaded material comprising a plurality of unit amounts of cement is generated, and a VC test is performed on each sample to determine a relationship between the VC value and the unit cement amount. A mixture, a predetermined amount of cement, and a predetermined amount of water are mixed to produce a sample of the kneaded material, and a VC test is performed on the sample to determine an initial VC value at which a VC value after a predetermined time becomes equal to or less than a predetermined value. Relationship between VC value and unit water volume From the above, a unit water amount showing a value equal to or less than the initial VC value is obtained and defined as a compounding ratio. From the relationship between the VC value and the unit cement amount, the initial VC amount is calculated.
A blending determination method, wherein a blending ratio is determined by calculating a unit cement amount showing a value equal to or less than the value.
【請求項2】 前記VC値と単位セメント量の関係から
前記初期VC値を示す単位セメント量を求めて配合比率
とする工程に加えて、 さらに、前記配合比率で混合した分級骨材の混合物と、
所定量の水と、複数の単位量のセメントとからなる混練
物のサンプルを生成し、各サンプルについて圧縮試験を
行なって単位セメント量と圧縮強度の関係を求め、圧縮
強度が所定以上になることをも条件として、単位セメン
ト量の配合比率を定めることを特徴とする請求項1記載
の配合決定方法。
2. In addition to the step of obtaining the unit cement amount indicating the initial VC value from the relationship between the VC value and the unit cement amount to obtain a blending ratio, further comprising a mixture of the classified aggregate mixed at the blending ratio. ,
A sample of a kneaded material consisting of a predetermined amount of water and a plurality of unit amounts of cement is generated, and a compression test is performed on each sample to determine a relationship between the unit cement amount and the compressive strength, and the compressive strength is equal to or more than a predetermined value 2. The method according to claim 1, wherein the mixing ratio of the unit cement amount is determined under the following conditions.
【請求項3】 前記骨材を洗浄すること無くふるい分け
て分級する工程において、シルトおよび粘土を含み、か
つ5mmふるいを85%以上が通過し、かつ10mmふ
るいを100%通過する材料を、前記分級骨材の一つと
してふるい分けることを特徴とする請求項1記載の配合
決定方法。
3. In the step of sieving and classifying the aggregate without washing, a material containing silt and clay, which pass at least 85% through a 5 mm sieve and 100% through a 10 mm sieve, is subjected to the classification. 2. The method according to claim 1, wherein the mixture is sieved as one of the aggregates.
JP2000067323A 2000-03-10 2000-03-10 Formulation determination method in CSG method Expired - Lifetime JP4510985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000067323A JP4510985B2 (en) 2000-03-10 2000-03-10 Formulation determination method in CSG method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000067323A JP4510985B2 (en) 2000-03-10 2000-03-10 Formulation determination method in CSG method

Publications (2)

Publication Number Publication Date
JP2001253746A true JP2001253746A (en) 2001-09-18
JP4510985B2 JP4510985B2 (en) 2010-07-28

Family

ID=18586535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000067323A Expired - Lifetime JP4510985B2 (en) 2000-03-10 2000-03-10 Formulation determination method in CSG method

Country Status (1)

Country Link
JP (1) JP4510985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105112A (en) * 2017-12-14 2019-06-27 清水建設株式会社 Strength determination method and strength determination system for low strength soil cement
JP2020016048A (en) * 2018-07-24 2020-01-30 五洋建設株式会社 W/c setting method and device therefor in deep mixing method
JP2021035900A (en) * 2019-08-22 2021-03-04 鹿島建設株式会社 Csg and csg construction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202913A (en) * 1990-11-30 1992-07-23 Mitsui Fudousan Kensetsu Kk Banking material
JPH07206490A (en) * 1994-01-24 1995-08-08 Kajima Corp Soil mortar
JPH10101398A (en) * 1996-08-01 1998-04-21 Yamaguchi Onoda Remikon Kk Roadbed surface layer composition and roadbed surface layer material using the same, treatment of roadbed surface layer using the same
JPH11269867A (en) * 1998-03-25 1999-10-05 Komatsu Ltd Self-propelled soil cement manufacturing system and execution method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202913A (en) * 1990-11-30 1992-07-23 Mitsui Fudousan Kensetsu Kk Banking material
JPH07206490A (en) * 1994-01-24 1995-08-08 Kajima Corp Soil mortar
JPH10101398A (en) * 1996-08-01 1998-04-21 Yamaguchi Onoda Remikon Kk Roadbed surface layer composition and roadbed surface layer material using the same, treatment of roadbed surface layer using the same
JPH11269867A (en) * 1998-03-25 1999-10-05 Komatsu Ltd Self-propelled soil cement manufacturing system and execution method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105112A (en) * 2017-12-14 2019-06-27 清水建設株式会社 Strength determination method and strength determination system for low strength soil cement
JP2020016048A (en) * 2018-07-24 2020-01-30 五洋建設株式会社 W/c setting method and device therefor in deep mixing method
WO2020022216A1 (en) * 2018-07-24 2020-01-30 五洋建設株式会社 W/c setting method for deep-layer mixing method and device for same
JP2021035900A (en) * 2019-08-22 2021-03-04 鹿島建設株式会社 Csg and csg construction method
JP7430595B2 (en) 2019-08-22 2024-02-13 鹿島建設株式会社 CSG and CSG construction method

Also Published As

Publication number Publication date
JP4510985B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
González-Taboada et al. Tools for the study of self-compacting recycled concrete fresh behaviour: Workability and rheology
Bassani et al. Long-term resilient and permanent deformation behaviour of Controlled Low-Strength Materials for pavement applications
JP2016065417A (en) Quality management method of cast-in-place porous concrete
CN109987898A (en) A kind of Cement Stable Macadam Mixture and its preparation process
JP2008308391A (en) Method for designing mix proportion of porous concrete
Cai et al. A novel approach to evaluate the clogging resistance of pervious concrete
US6379031B1 (en) Method for manufacturing concrete
Mistry et al. A new mixing technique for randomly distributed fibre-reinforced expansive soil
Cabrera et al. Aggregate grading design for porous asphalt
JP2001253746A (en) Method for determining mixing proportion in csg construction method
JP4104303B2 (en) Method for determining concrete mix
RU2578700C1 (en) Method of determining composition of concrete mixture
Anum et al. Properties of different grades of concrete using mix design method
JP4054848B2 (en) Method for producing fluidized soil
Cheung et al. Engineering controlled low strength materials using scrap tire rubber
JP3172910B2 (en) A method for manufacturing a foundation using a mass of concrete, which is construction waste material, such as gravel or foundation material for asphalt pavement
JP6207704B2 (en) Concrete production method
JP6869644B2 (en) Manufacturing method of porous concrete
JP2704251B2 (en) Method for determining the characteristics of a mixture using liquids, powders and granules, and method for adjusting the mixture
JP3920158B2 (en) Ground improvement method
JP2003002725A (en) Construction material using site generated rock material
JP3993914B2 (en) Method for determining the blending ratio for manufacturing a cured product using a large amount of fine powder
JP4638279B2 (en) Manufacturing method of recycled concrete
JP2018193716A (en) Strength estimation method for foot protection part
Hattani et al. Evaluating the Impact of Material Selections, Mixing Techniques, and On-site Practices on Performance of Concrete Mixtures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4510985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term