JP2001252986A - Apparatus and method for optical shaping - Google Patents

Apparatus and method for optical shaping

Info

Publication number
JP2001252986A
JP2001252986A JP2000065006A JP2000065006A JP2001252986A JP 2001252986 A JP2001252986 A JP 2001252986A JP 2000065006 A JP2000065006 A JP 2000065006A JP 2000065006 A JP2000065006 A JP 2000065006A JP 2001252986 A JP2001252986 A JP 2001252986A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
crystal mask
dimensional
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000065006A
Other languages
Japanese (ja)
Other versions
JP3784232B2 (en
Inventor
Takashi Miyoshi
隆志 三好
Terutake Hayashi
照剛 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000065006A priority Critical patent/JP3784232B2/en
Publication of JP2001252986A publication Critical patent/JP2001252986A/en
Application granted granted Critical
Publication of JP3784232B2 publication Critical patent/JP3784232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an optical shaping with high degree of freedoms of shaping, a high accuracy and a high speed in a non-laminate by a surface exposure by using a liquid crystal mask and a visible light. SOLUTION: As a light source 1, an Ar+ laser is used. A beam size of a light is enlarged by a collimator 2 as an incident light. An incident light having a uniform intensity distribution via a 1/4 wavelength late 3 and a 1/2 wavelength plate 4 is transmitted through a liquid crystal mask 5, and then a noise such as a primarily diffracted light or the like is removed by a spatial frequency filter 7 via a lens 6. A liquid crystal image is contracted and focused on a base plate 81 by an operation of a contraction optical system by the lens 6 or the like. A visible light curable resin is disposed as an object 10 to be a stereo lithography on the plate 81, and a material is cured in a non-deposit layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光造形装置及び光
造形方法に係り、特に、可視光光源及び液晶パネルを用
いて、造形対象物(例えば、樹脂)の3次元形状を非積
層・一体で光造形する光造形装置及び光造形方法関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical shaping apparatus and an optical shaping method, and more particularly, to a method of non-stacking and integrating a three-dimensional shape of an object (for example, resin) using a visible light source and a liquid crystal panel. The present invention relates to a stereolithography apparatus and a stereolithography method for stereolithography with the use of a stereolithography.

【0002】[0002]

【従来の技術】光造形技術は、例えば、医療や工業の分
野での製品又は部品形状の試作や小規模生産のための簡
易型作成などの分野で広く用いられており、高精度化や
適用分野の拡大に対する期待が高まってきている。ま
た、光造形技術は、様々な分野で利用される技術である
ため、対象となる製作物の形状や寸法、材質も多様とな
る。
2. Description of the Related Art Stereolithography is widely used, for example, in the fields of prototyping products or parts in the medical and industrial fields, and making simple molds for small-scale production. Expectations for the expansion of the field are increasing. In addition, since the stereolithography technology is a technology used in various fields, the shapes, dimensions, and materials of target products vary.

【0003】また、一般に、工業製品等の新製品開発に
おいて、リードタイムの短縮が重要である。製品及びそ
の部品は、通常CADで設計されて、開発段階で試作品
を正確に早く作成することが望まれる。従来より、3次
元CADデータに基づくNC工作機械による加工で、製
品又は部品を直接切削する技術の他に、積層造形法によ
るラピッドプロトタイピングが進歩をとげている。
In general, it is important to reduce the lead time in the development of new products such as industrial products. Products and their parts are usually designed by CAD, and it is desired to produce a prototype accurately and quickly in the development stage. 2. Description of the Related Art Conventionally, rapid prototyping by an additive manufacturing method has been advanced in addition to a technology of directly cutting a product or a part by machining using an NC machine tool based on three-dimensional CAD data.

【0004】積層造形法には、光硬化樹脂法(光造形
法)、奮発レーザ光(熱硬化)焼結法、インクジェット
ノズル堆積法、押出堆積法、切断されたシートを積層す
る方法など、多種類の方法がある。いずれの方法も、所
望の3次元形状を得るために、3次元CADデータを2
次元のシート状のデータとして、複数の層を積み重ねる
ようにしたものである。特に、光硬化樹脂法では、3次
元CADデータから2次元スライスデータを作成し、レ
ーザ光を2次元で造形対象物としての樹脂上を走査し、
樹脂を硬化させることで造形する。
[0004] Lamination molding methods include a photocuring resin method (optical molding method), a burst laser beam (thermosetting) sintering method, an inkjet nozzle deposition method, an extrusion deposition method, and a method of laminating cut sheets. There are different ways. In either method, three-dimensional CAD data is converted into two in order to obtain a desired three-dimensional shape.
A plurality of layers are stacked as dimensional sheet-like data. In particular, in the photo-curing resin method, two-dimensional slice data is created from three-dimensional CAD data, and a laser beam is two-dimensionally scanned on a resin as a modeling object,
It is formed by curing the resin.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
積層造形法では、所望の造形品の寸法精度を向上するた
めには、層の数を増やす必要があり、製造時間及びコス
トが増大することになる。また、樹脂の硬化が順次硬化
であるため、硬化の際の収縮により、精度を落とす場合
がある。さらに、複雑な構造や空中に浮かぶような部分
には、支持物を配置し、加工後にそれを取り除く工程が
必要となる。
However, in the conventional additive manufacturing method, it is necessary to increase the number of layers in order to improve the dimensional accuracy of a desired molded product, which leads to an increase in manufacturing time and cost. Become. Further, since the curing of the resin is performed sequentially, the precision may be reduced due to shrinkage during the curing. In addition, a step of arranging a support and removing it after processing is required for a complicated structure or a portion that floats in the air.

【0006】また、処理時間・工程の短縮のために、液
晶パネルを用いた一括面露光による光造形法が提案され
たものの、紫外線を用いる必要があるため液晶が損傷又
は破壊される場合がある。また、この光造形法では、回
折光や散乱光が発生し、結像が不鮮明となり、造形物の
寸法精度が良くない。
[0006] In order to shorten the processing time and process, a stereolithography method by batch exposure using a liquid crystal panel has been proposed, but the liquid crystal may be damaged or destroyed due to the necessity of using ultraviolet rays. . Further, in this optical shaping method, diffracted light and scattered light are generated, the image is unclear, and the dimensional accuracy of the formed object is not good.

【0007】本発明は、以上の点に鑑み、精密部品やマ
イクロマシニング用の製品又は部品などのような小型形
状、中型形状の造形からマイクロ形状の造形までカバー
できる光造形装置及び光造形方法を提供することを目的
とする。
In view of the above, the present invention provides an optical shaping apparatus and an optical shaping method capable of covering from small-sized, medium-sized to micro-shaped shaping such as precision parts and products or parts for micromachining. The purpose is to provide.

【0008】本発明は、液晶マスクと可視光を用いて、
面露光による非積層での造形を、高い造形自由度、高精
度、高速で実現することを目的とする。本発明は、液晶
表示階調による造形深さを制御することで、露光像の強
度変調を容易とすることを目的とする。
[0008] The present invention uses a liquid crystal mask and visible light,
It is an object of the present invention to realize non-lamination modeling by surface exposure with high modeling flexibility, high accuracy, and high speed. SUMMARY OF THE INVENTION It is an object of the present invention to facilitate the intensity modulation of an exposure image by controlling the modeling depth based on the liquid crystal display gradation.

【0009】また、本発明は、造形データの作成を容易
とし、異なる形状の複数部品を同時に作成可能とするこ
とで、多品種少量生産に適した光造形装置及び光造形方
法を提供することを目的とする。
Another object of the present invention is to provide an optical molding apparatus and an optical molding method suitable for small-lot production of many kinds by facilitating creation of molding data and enabling simultaneous creation of a plurality of parts having different shapes. Aim.

【0010】[0010]

【課題を解決するための手段】液晶ディスプレイは、任
意の画像を表示できることから、従来作成が困難であっ
た可変マスクとして利用できる。この液晶マスクを用い
て、一括面露光を行い、ビーム走査の工程を含まない造
形を行うのが、本発明の液晶光造形法の主な特徴であ
る。走査により点から面を作る工程を含まないために、
造形時間の短縮と高精度化を達成することができる。ま
た、液晶は、濃淡表示によって透過光の強度を変化する
ことができるため、二次元画像に強度情報を加えた三次
元情報を持った像から、一括して立体形状を作成するこ
とができる。この点で、積層という2次元から3次元への
拡張に不可欠なプロセスを必要としない点は、従来の手
法と大きく異なる。さらに画像の取り扱いが容易である
ことから、AFM等の三次元測定データからの形状を拡大
再構成する等の新たな利用法も考えられる。
Since a liquid crystal display can display an arbitrary image, it can be used as a variable mask which has conventionally been difficult to produce. The main feature of the liquid crystal optical shaping method of the present invention is to perform collective surface exposure using this liquid crystal mask and perform shaping without a beam scanning step. Because it does not include the step of creating a surface from points by scanning,
Shortening of modeling time and high accuracy can be achieved. In addition, since the intensity of transmitted light of a liquid crystal can be changed by grayscale display, a three-dimensional shape can be created collectively from an image having three-dimensional information obtained by adding intensity information to a two-dimensional image. In this regard, the point that the process of lamination, which is indispensable for extending from 2D to 3D, is not required is significantly different from the conventional method. Further, since the handling of images is easy, a new use method such as enlarging and reconstructing a shape from three-dimensional measurement data such as AFM can be considered.

【0011】また、液晶により、回折から生じる1次回
折光等のノイズ、液晶の光吸収・光照射により熱が発生
する場合がある。本発明では、これを抑制又は防止する
ために、可視光光源と可視光感光樹脂を用いている他、
空間周波数フィルターによる1次回折光の除去等の対策
をとっている。
Further, the liquid crystal may generate heat due to noise such as first-order diffracted light resulting from diffraction, or light absorption and light irradiation of the liquid crystal. In the present invention, in order to suppress or prevent this, in addition to using a visible light source and a visible light photosensitive resin,
Measures such as removal of first-order diffracted light by a spatial frequency filter are taken.

【0012】本発明の第1の解決手段によると、造形対
象物を造形するための可視光を出力する光源と、2次元
情報及び階調情報により透過光又は反射光が制御される
液晶マスク部と、液晶マスク部に、2次元情報及び階調
情報を与え、造形対象物の3次元形状を設定する制御部
と、を備え、前記光源からの可視光が、前記制御部によ
り制御された前記液晶マスク部を透過又は反射し、造形
対象物に照射されることにより、3次元形状を形成する
ようにした光造形装置を提供する。
According to a first aspect of the present invention, there is provided a light source for outputting visible light for forming an object to be formed, and a liquid crystal mask section in which transmitted light or reflected light is controlled by two-dimensional information and gradation information. And a liquid crystal mask unit, which provides two-dimensional information and gradation information, and a control unit that sets a three-dimensional shape of the object to be formed, wherein the visible light from the light source is controlled by the control unit. Provided is an optical shaping apparatus that forms a three-dimensional shape by transmitting or reflecting a liquid crystal mask portion and irradiating a shaping target object.

【0013】本発明の第2の解決手段によると、液晶マ
スク部に、2次元情報及び階調情報を与え、造形対象物
の3次元造形形状を設定し、光源からの可視光を、所定
のビーム径で且つ一様又は略一様な強度分布をもつ光に
調整し、調整された光を、液晶マスク部に透過させて又
は液晶マスク部で反射させて、造形対象物に照射するこ
とにより、3次元形状を形成するようにした光造形方法
を提供する。
According to the second solution of the present invention, two-dimensional information and gradation information are given to the liquid crystal mask portion, a three-dimensional printing shape of the printing object is set, and visible light from the light source is transmitted to a predetermined light source. By adjusting to light having a beam diameter and uniform or substantially uniform intensity distribution, and transmitting the adjusted light to the liquid crystal mask part or reflecting it at the liquid crystal mask part, and irradiating the object to be modeled. And a stereolithography method for forming a three-dimensional shape.

【0014】[0014]

【発明の実施の形態】図1に、本発明の光造形装置の構
成図を示す。この光造形装置は、光源1、コリメータ部
2、1/4波長板3、1/2波長板4、液晶マスク部
5、レンズ6、ピンホール7、X−Zステージ8、制御
部(PC)9を備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a configuration diagram of an optical shaping apparatus according to the present invention. This stereolithography apparatus includes a light source 1, a collimator unit 2, a 板 wavelength plate 3, a 波長 wavelength plate 4, a liquid crystal mask unit 5, a lens 6, a pinhole 7, an XZ stage 8, a control unit (PC). 9 is provided.

【0015】光源1は、可視光を発生する各種レーザで
ある。この実施の形態では、例えば、大出力が得られる
こと、及び、可視光(例えば、波長488nm)を発生
させ液晶に損傷を与えないこと(紫外光では液晶に損傷
をあたえる場合がある)から、可視光源のAr+レーザ
ーを用いている。コリメータ部2は、対物レンズ21、
ピンホール22、レンズ23等が組み合わせて構成され
る。コリメータ部2は、光源1からのビーム径を広げL
CD52全体又は広範囲を照射できるようにする。ま
た、コリメータ部2は、光強度を全体にわたって均一化
する役目もはたしている。1/4波長板3は、円偏光の
光を直線偏光に変換するもので、LCD52の手前にあ
る偏光子(z)でのビームエネルギーのロスを減らす。
1/2波長板4は、直線偏光に変換した光の偏光方向を
変え、LCD52に対して最適なコントラストを得られ
る方向に変換する。
The light source 1 is various lasers that generate visible light. In this embodiment, for example, a large output is obtained, and a visible light (for example, a wavelength of 488 nm) is generated and does not damage the liquid crystal (ultraviolet light may damage the liquid crystal). An Ar + laser as a visible light source is used. The collimator unit 2 includes an objective lens 21,
It is configured by combining the pinhole 22, the lens 23 and the like. The collimator unit 2 expands the beam diameter from the light source 1 to L
The entire CD 52 or a wide area can be irradiated. Further, the collimator unit 2 also serves to make the light intensity uniform over the entirety. The 波長 wavelength plate 3 converts circularly polarized light into linearly polarized light, and reduces loss of beam energy at the polarizer (z) in front of the LCD 52.
The half-wave plate 4 changes the polarization direction of the light converted into linearly polarized light, and converts the light into a direction in which the LCD 52 can obtain an optimum contrast.

【0016】液晶マスク部5は、偏光子(z)51、液
晶パネル(LCD)52及び偏光子(z)53を備え
る。偏光子(z)51は、LCD52に入射する前の非
直線偏光成分の光をカットし画像のコントラストを向上
させる。LCD52は、例えば、TFT液晶を有し、直接
接続されたPC9から出力された画像を表示、表示画像
にしたがって一画素ごとに偏光方向を変換し、一様照明
された光に偏光の回転角として画像情報を与える。偏光
子(y)53は、この偏光子を通過することでLCD5
2に表示された画像が光の濃淡として変換される。LC
D52の画素毎の偏光の回転によってその画素に対応す
る光の強度が決定される。
The liquid crystal mask section 5 includes a polarizer (z) 51, a liquid crystal panel (LCD) 52, and a polarizer (z) 53. The polarizer (z) 51 cuts the light of the non-linearly polarized component before entering the LCD 52 to improve the contrast of the image. The LCD 52 has, for example, a TFT liquid crystal, displays an image output from the PC 9 directly connected, converts the polarization direction for each pixel according to the display image, and converts the polarization direction into uniformly illuminated light as a rotation angle of polarization. Give image information. The polarizer (y) 53 passes through the polarizer, and thereby the LCD 5
The image displayed in 2 is converted as light and shade. LC
The rotation of the polarization of each pixel in D52 determines the intensity of light corresponding to that pixel.

【0017】制御部(PC)9は、液晶マスク部5のL
CD52に、2次元情報及び階調情報を与え、造形対象
物の3次元造形形状を設定する。例えば、造形物の3次
元CADデータに基づき、2次元スライスデータを作成
し、その縦方向のデータとしてLCD52の階調データ
に変換する。LCD52を通過した光を造形対象物10
に結像させることで、実質的に複数のスライスデータを
用いた露光を、一度の面露光で造形物を作成することに
なる。
The control unit (PC) 9 controls the L of the liquid crystal mask unit 5.
The two-dimensional information and the gradation information are given to the CD 52, and the three-dimensional printing shape of the printing object is set. For example, two-dimensional slice data is created based on the three-dimensional CAD data of the modeled object, and is converted into gradation data of the LCD 52 as data in the vertical direction. The light that has passed through the LCD 52 is
By forming an image on the object, a printed object is created by substantially one-time exposure using a plurality of slice data.

【0018】レンズ6は、現在ズームレンズを用いてお
り、像の縮小および拡大倍率を変換できる。このレンズ
6によって、造形対象物10上にLCD52に表示され
た画像が結像される。なお、光の方向を調整するために
適宜ミラー61を設けることができる。空間周波数フィ
ルター7は、例えば、ピンホールを用いることができ
る。空間周波数フィルター7は、LCD52によって生
じた0次元を除く回折光をカットする。これにより、結
像位置での光の干渉による像の劣化を防ぐ。すなわち、
0次光は直進するが、それ以外の回折光はBragg条
件を満たす方向へすすむので、レンズを通過して光が集
光する位置に空間周波数フィルター7(ピンホール)を
配置し、主に0次光のみを通過させる。また、空間周波
数フィルター7によって2次回折光以降の光についても
同様に除去できる。なお、2次以降の回折光については
強度が弱くなるため、実際に影響するのは主に1次回折
光である。
The lens 6 uses a zoom lens at present, and can change the reduction and enlargement magnification of an image. The image displayed on the LCD 52 is formed on the modeling object 10 by the lens 6. Note that a mirror 61 can be appropriately provided to adjust the direction of light. As the spatial frequency filter 7, for example, a pinhole can be used. The spatial frequency filter 7 cuts off diffracted light generated by the LCD 52 except for the zero dimension. This prevents the image from deteriorating due to light interference at the imaging position. That is,
The zero-order light travels straight, but the other diffracted light proceeds in a direction that satisfies the Bragg condition. Therefore, the spatial frequency filter 7 (pinhole) is disposed at a position where the light passes through the lens and is condensed. Only the next light passes. Further, the spatial frequency filter 7 can similarly remove light after the second-order diffracted light. Since the intensity of the diffracted light of the second and subsequent orders becomes weak, the first order diffracted light actually affects mainly.

【0019】X−Zステージ8は、造形対象物10の位
置をレンズによって像が結像する面に正確に配置する。
ベースプレート81は、造形対象物10を実際に配置す
る。下方から光があたるため透明で厚さの薄いガラス、
プラスチック等の板を用いる。なお、ここでは、一例と
して、厚さ150μmのカバーガラスを使用した。造形
対象物10は、例えば、光硬化性樹脂を用いられる。こ
こでは、一例として、可視光に感度を有するように特別
に調合された光硬化性樹脂を使用し、そのピーク感度
は、488nm付近に調整されている。造形対象物10
は、これに限らず、光源1により造形しうる適宜の材料
を用いることができる。
The XZ stage 8 accurately positions the object 10 on the surface on which an image is formed by a lens.
The modeling object 10 is actually arranged on the base plate 81. Transparent and thin glass because light shines from below,
Use a plate of plastic or the like. Here, as an example, a cover glass having a thickness of 150 μm was used. The modeling object 10 is made of, for example, a photocurable resin. Here, as an example, a photocurable resin specially prepared so as to have sensitivity to visible light is used, and its peak sensitivity is adjusted to around 488 nm. Modeling object 10
The material is not limited to this, and an appropriate material that can be formed by the light source 1 can be used.

【0020】以下に、本発明の光造形装置及び方法の動
作を説明する。この例では、光源に、Ar+レーザー(λ=
488nm)を用い、コリメータ部2により、ビーム径を拡
大して入射光とする。1/4波長板3、1/2波長板4を経
て、一様な強度分布をもつ入射光は、液晶マスク部5を
透過した後、レンズ6を経て空間周波数フィルター7に
より一次回折光等のノイズを取り除かれる。レンズ6等
による縮小光学系のはたらきによりベースプレート81
上で液晶画像は、縮小(例えば、9/25)されて結像す
る。ベースプレート81には造形対象物10として可視
光硬化性樹脂が配置され、非積層で材料を硬化させる。
The operation of the stereolithography apparatus and method of the present invention will be described below. In this example, an Ar + laser (λ =
488 nm) and the collimator 2 enlarges the beam diameter to make incident light. After passing through the 1/4 wavelength plate 3 and the 1/2 wavelength plate 4, the incident light having a uniform intensity distribution passes through the liquid crystal mask section 5, passes through the lens 6, passes through the lens 6, and passes through the spatial frequency filter 7 such as first-order diffracted light. Noise is removed. The function of the reduction optical system by the lens 6 and the like allows the base plate 81
Above, the liquid crystal image is reduced (for example, 9/25) to form an image. A visible light curable resin is disposed on the base plate 81 as the object 10 to be shaped, and the material is cured without being laminated.

【0021】以下に、本発明による造形物作成の例を説
明する。LCD52としては、一例として、TFTアクテ
ィブマトリクス型画素数800x600pixel、画面サ
イズ26.40x19.98mm、ピクセルサイズ33x33μm等
を用いた。また、光源1としては、アルゴン(Ar+)
レーザ(波長488nm、直線偏光、100mW〜1.
5W)である。光強度は、300mW、露光時間は2〜
10secとした。造形対象物10の使用樹脂は、ウレ
タンアクリレート系を用いた。
Hereinafter, an example of forming a molded article according to the present invention will be described. As the LCD 52, as an example, a TFT active matrix type having a pixel number of 800 × 600 pixels, a screen size of 26.40 × 19.98 mm, a pixel size of 33 × 33 μm, or the like was used. The light source 1 is argon (Ar +).
Laser (wavelength 488 nm, linearly polarized light, 100 mW to 1.
5W). Light intensity is 300mW, exposure time is 2
10 sec. The resin used for the modeling object 10 was a urethane acrylate resin.

【0022】図2に、液晶の光透過率の説明図を示す。
これによると、強度変調には、70階調程度が利用可能
であることがわかる。また、LCD52は、100%に
近い遮光性能をもつことがわかる。測定条件としては、
LCD52に光を入射し、主に0次光の強度のみを測定
することができる。
FIG. 2 is a diagram illustrating the light transmittance of the liquid crystal.
According to this, it is understood that about 70 gradations can be used for intensity modulation. Further, it can be seen that the LCD 52 has a light shielding performance close to 100%. As measurement conditions,
Light is incident on the LCD 52, and mainly only the intensity of the zero-order light can be measured.

【0023】図3に、表示階調と光強度および硬化深さ
の関係についての説明図を示す。この図は、液晶の表示
階調(色の濃さ)と光強度および硬化深さの関係を示す
ものである。硬化深さは、Lambert-Beerの法則より照射
エネルギーの対数にほぼ比例する。したがって、図より
硬化深さは表示階調にほぼ比例することが推測される。
表示階調と硬化深さの関係の確認をかねて、基本的な形
状を幾つか試作した。ここに示す結果は、いずれも非積
層プロセスで形状を創成したものである。
FIG. 3 is an explanatory diagram showing the relationship between display gradation, light intensity, and curing depth. This figure shows the relationship between the display gradation (color density) of the liquid crystal, the light intensity and the curing depth. The curing depth is almost proportional to the logarithm of irradiation energy according to Lambert-Beer's law. Therefore, it is presumed from the figure that the curing depth is almost proportional to the display gradation.
To confirm the relationship between display gradation and curing depth, several basic shapes were prototyped. The results shown here are all created by the non-lamination process.

【0024】図4に、液晶マスクに用いた画像の図を示
す。図5に、各液晶マスクにより造形された形状の図を
示す。両方の図で寸法の縮尺が異なるのは、液晶画像が
縮小されているためである。各図において、(a)は白抜
きのアルファベット、(b)は中心に向かって同心状に階
調が等間隔で変化する正方形、(c)にはAFMによる格子縞
の3次元測定データを用いた。造形条件は、一例とし
て、入射光強度が500mW、露光時間はそれぞれ1秒、4
秒、4秒である。その結果、二次元形状の造形、三次元
形状の造形、三次元測定データからの形状復元の可能性
を確認できた。
FIG. 4 shows a diagram of an image used for the liquid crystal mask. FIG. 5 shows a diagram of a shape formed by each liquid crystal mask. The reason why the scales of the dimensions are different in both figures is that the liquid crystal image is reduced. In each figure, (a) is a white alphabet, (b) is a square whose gradation changes concentrically toward the center at equal intervals, and (c) is three-dimensional measurement data of lattice fringe by AFM. . The molding conditions are, for example, the incident light intensity is 500 mW, the exposure time is 1 second, 4
Seconds, 4 seconds. As a result, the possibility of shaping two-dimensional shapes, shaping three-dimensional shapes, and reconstructing shapes from three-dimensional measurement data was confirmed.

【0025】図6に、光リング式変位センサによる非接
触で計測した硬化形状の説明図を示す。図中(a)は、
文字形状の測定結果を示す。図中(b)は、四角錘形状
の測定結果を、斜め視点及び正面プロファイルを示す。
なお、光リング式変位センサは、例えば、高谷裕浩他:
非接触光造形3D形状計測に関する研究、精密工学会秋季
大会学術講演論文集(1996)559等参照のこと。特に、図
中(b)に示すような四角錐の硬化形状から、階調と硬
化深さの関係が図3に示した推測値とよく一致すること
が分かる。これらの結果から、硬化深さは階調にほぼ比
例して変化していることが確認できた。
FIG. 6 is an explanatory diagram of a cured shape measured in a non-contact manner by an optical ring type displacement sensor. (A) in the figure
The measurement result of the character shape is shown. (B) in the figure shows the measurement result of the quadrangular pyramid shape, showing the oblique viewpoint and the front profile.
Incidentally, the optical ring type displacement sensor is, for example, Hirohiro Takatani et al .:
Research on non-contact stereolithography 3D shape measurement, see Japanese Society of Precision Engineering Autumn Meeting, Proc. In particular, from the cured shape of the quadrangular pyramid as shown in FIG. 3B, it can be seen that the relationship between the gradation and the cured depth matches well with the estimated value shown in FIG. From these results, it was confirmed that the curing depth changed almost in proportion to the gradation.

【0026】また、図7は、液晶マスクに用いた他の画
像の図(上)とSEM観察像を示す図(下)である。図中
(a)はアルファベット、(b)はチューブについて、
それぞれ示される。なお、ここでは、露光時間は4秒で
ある。このように、3次元造形がなされていることが確
認できる。
FIG. 7 is a diagram (top) of another image used for the liquid crystal mask and a diagram (bottom) showing an SEM observation image. In the figure, (a) is an alphabet, (b) is a tube,
Shown respectively. Here, the exposure time is 4 seconds. Thus, it can be confirmed that the three-dimensional modeling is performed.

【0027】図8は、多品種同時生産についての入力画
像とSEM観察像を示す図である。露光時間4秒、歯車厚
さ1mmで、複数種歯車が造形された。なお、製作時間は
従来の1/10程度であった。
FIG. 8 is a diagram showing an input image and an SEM observation image for multi-product simultaneous production. The exposure time was 4 seconds, the gear thickness was 1 mm, and multiple kinds of gears were formed. The production time was about 1/10 of the conventional one.

【0028】以上のように、本発明によって形状の試作
を行い、硬化深さと表示階調の関係から、非積層で三次
元形状を自由に造形できることを確認した。また、三次
元測定データの復元や高精度造形が、本発明で可能であ
ることを確認した。
As described above, prototypes of shapes were manufactured according to the present invention, and it was confirmed from the relationship between the curing depth and the display gradation that a three-dimensional shape could be freely formed without lamination. In addition, it was confirmed that restoration of three-dimensional measurement data and high-precision modeling are possible with the present invention.

【0029】なお、本発明において、液晶パネルに反射
部又は反射鏡を設けることにより、光源からの入射光を
反射して、造形対象物に照射するような反射型の光造形
装置及び方法とすることができる。また、上述の実施の
形態において、使用波長、液晶マスクの大きさや画素数
等のスペック、造形対象物の材料・形状・大きさ等は、
一例を挙げたに過ぎず、適宜変更、修正することができ
る。
In the present invention, a reflection type optical shaping apparatus and method for reflecting incident light from a light source and irradiating an object to be formed by providing a reflecting portion or a reflecting mirror in a liquid crystal panel is provided. be able to. Further, in the above-described embodiment, the wavelength used, specifications such as the size of the liquid crystal mask and the number of pixels, and the material, shape, size, and the like of the modeling object are
This is merely an example, and can be changed and modified as appropriate.

【0030】[0030]

【発明の効果】本発明によると、以上のように、精密部
品やマイクロマシニング用の製品又は部品などのような
小型形状、中型形状の造形からマイクロ形状の造形まで
カバーできる光造形装置及び光造形方法を提供すること
ができる。
According to the present invention, as described above, the optical molding apparatus and the optical molding capable of covering from small-sized, medium-sized to micro-shaped molding such as precision parts and products or parts for micromachining. A method can be provided.

【0031】本発明によると、液晶表示階調による造形
深さを制御することで、露光像の強度変調を容易とする
ことができる。本発明によると、液晶マスクと可視光を
用いて、面露光による非積層での造形を、高い造形自由
度、高精度、高速で実現することができる。
According to the present invention, the intensity modulation of the exposure image can be facilitated by controlling the modeling depth based on the liquid crystal display gradation. ADVANTAGE OF THE INVENTION According to this invention, non-lamination modeling by surface exposure can be implement | achieved with high degree of freedom of modeling, high precision, and high speed using a liquid crystal mask and visible light.

【0032】本発明によると、造形データの作成を容易
とし、異なる形状の複数部品を同時に作成可能とするこ
とで、多品種少量生産に適した光造形装置及び光造形方
法を提供することができる。
According to the present invention, it is possible to provide an optical molding apparatus and an optical molding method suitable for small-lot production of many kinds by facilitating creation of molding data and enabling simultaneous creation of a plurality of parts having different shapes. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光造形装置の構成図。FIG. 1 is a configuration diagram of an optical shaping apparatus according to the present invention.

【図2】液晶の光透過率の説明図。FIG. 2 is an explanatory diagram of a light transmittance of a liquid crystal.

【図3】表示階調と光強度および硬化深さの関係につい
ての説明図。
FIG. 3 is an explanatory diagram showing the relationship between display gradation, light intensity, and curing depth.

【図4】液晶マスクに用いた画像の図。FIG. 4 is a diagram of an image used for a liquid crystal mask.

【図5】各液晶マスクにより造形された形状の図。FIG. 5 is a diagram of a shape formed by each liquid crystal mask.

【図6】光リング式変位センサによる非接触で計測した
硬化形状の説明図。
FIG. 6 is an explanatory diagram of a cured shape measured without contact by an optical ring displacement sensor.

【図7】液晶マスクに用いた他の画像の図上とSEM観察
像を示す図。
FIG. 7 is a diagram showing another image used for the liquid crystal mask and an SEM observation image.

【図8】多品種同時生産についての入力画像とSEM観察
像を示す図。
FIG. 8 is a diagram showing an input image and an SEM observation image for multi-product simultaneous production.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメータ部 3 1/4波長板 4 1/2波長板 5 液晶マスク部 6 レンズ 7 ピンホール 8 X−Zステージ 9 制御部(PC) 10 造形対象物 DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator part 3 1/4 wavelength plate 4 1/2 wavelength plate 5 Liquid crystal mask part 6 Lens 7 Pinhole 8 X-Z stage 9 Control part (PC) 10 Modeling object

【手続補正書】[Procedure amendment]

【提出日】平成12年8月1日(2000.8.1)[Submission Date] August 1, 2000 (2008.1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Correction target item name] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は、光造形装置及び光
造形方法に係り、特に、可視光光源及び液晶パネルを用
いて、造形対象物(例えば、樹脂)の3次元形状を非積
層・一体で光造形する光造形装置及び光造形方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical shaping apparatus and an optical shaping method, and more particularly, to a method of non-stacking and integrating a three-dimensional shape of an object (for example, resin) using a visible light source and a liquid crystal panel. The present invention relates to a stereolithography apparatus and a stereolithography method for stereolithography with the use of a stereolithography.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H088 EA39 HA15 HA18 HA21 HA24 HA29 2H097 AA16 BB01 CA07 EA01 FA02 LA15 4F213 AA36 AA42E AA43E AH12 AP06 AR07 WA25 WA40 WB01 WL14 WL35 WL44 WL64 WL79 WL83 WL93 WL95 WW34  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H088 EA39 HA15 HA18 HA21 HA24 HA29 2H097 AA16 BB01 CA07 EA01 FA02 LA15 4F213 AA36 AA42E AA43E AH12 AP06 AR07 WA25 WA40 WB01 WL14 WL35 WL44 WL64 WL79 WL83 WL93 WL95 WW34

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】造形対象物を造形するための可視光を出力
する光源と、 2次元情報及び階調情報により透過光又は反射光が制御
される液晶マスク部と、 液晶マスク部に、2次元情報及び階調情報を与え、造形
対象物の3次元形状を設定する制御部と、を備え、 前記光源からの可視光が、前記制御部により制御された
前記液晶マスク部を透過又は反射し、造形対象物に照射
されることにより、3次元形状を形成するようにした光
造形装置。
1. A light source for outputting visible light for forming an object to be formed, a liquid crystal mask portion in which transmitted light or reflected light is controlled by two-dimensional information and gradation information, and a two-dimensional liquid crystal mask portion. A control unit that gives information and gradation information, and sets a three-dimensional shape of the object to be formed, wherein visible light from the light source is transmitted or reflected by the liquid crystal mask unit controlled by the control unit, An optical shaping device configured to form a three-dimensional shape by irradiating a shaping target.
【請求項2】前記光源からの光のビーム径を広げるコリ
メータと、 円偏光の光を直線偏光に変換する1/4波長板と、 直線偏光に変換した光の偏光方向を変える1/2波長板
とをさらに備え、前記液晶マスク部に入射される光を調
整するようにした請求項1に記載の光造形装置。
2. A collimator for expanding a beam diameter of light from the light source, a quarter-wave plate for converting circularly-polarized light to linearly-polarized light, and a half-wavelength for changing the polarization direction of the light converted to linearly-polarized light. The stereolithography apparatus according to claim 1, further comprising a plate, and adjusting light incident on the liquid crystal mask unit.
【請求項3】前記液晶マスク部を透過又は反射した光に
ついて、0次光以外の回折光をカットする空間周波数フ
ィルターをさらに備えた請求項1又は2に記載の光造形
装置。
3. The optical shaping apparatus according to claim 1, further comprising a spatial frequency filter that cuts off diffracted light other than zero-order light with respect to light transmitted or reflected by the liquid crystal mask portion.
【請求項4】造形対象物は、光硬化性樹脂を用ることを
特徴とする請求項1乃至3のいずれかに記載の光造形装
置。
4. The optical molding apparatus according to claim 1, wherein the object to be molded is a photocurable resin.
【請求項5】前記液晶マスク部は、 前記制御部からの情報信号が入力される液晶パネルと、 前記液晶パネルに入射する光の非直線偏光成分をカット
する第1の偏光子と、 前記液晶パネルからの光の強度を調整する第2の偏光子
を備えた請求項1乃至4のいずれかに記載の光造形装
置。
5. The liquid crystal mask section, comprising: a liquid crystal panel to which an information signal from the control section is input; a first polarizer for cutting a non-linearly polarized component of light incident on the liquid crystal panel; The stereolithography apparatus according to claim 1, further comprising a second polarizer that adjusts the intensity of light from the panel.
【請求項6】液晶マスク部に、2次元情報及び階調情報
を与え、造形対象物の3次元造形形状を設定し、 光源からの可視光を、所定のビーム径で且つ一様又は略
一様な強度分布をもつ光に調整し、 調整された光を、液晶マスク部に透過させて又は液晶マ
スク部で反射させて、造形対象物に照射することによ
り、3次元形状を形成するようにした光造形方法。
6. A two-dimensional information and a gradation information are given to a liquid crystal mask part, a three-dimensional printing shape of a printing object is set, and a visible light from a light source is irradiated with a predetermined beam diameter and a uniform or substantially one beam. By adjusting the light to have a similar intensity distribution, and passing the adjusted light through or reflected by the liquid crystal mask, and irradiating the object to be formed, a three-dimensional shape is formed. Stereolithography method.
【請求項7】液晶マスク部を透過又は反射した光を、さ
らに空間周波数フィルターを通過させて、造形対象物に
照射するようにした請求項6に記載の光造形方法。
7. The optical shaping method according to claim 6, wherein the light transmitted or reflected by the liquid crystal mask portion is further passed through a spatial frequency filter to irradiate an object to be formed.
JP2000065006A 2000-03-09 2000-03-09 Stereolithography apparatus and stereolithography method Expired - Fee Related JP3784232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065006A JP3784232B2 (en) 2000-03-09 2000-03-09 Stereolithography apparatus and stereolithography method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065006A JP3784232B2 (en) 2000-03-09 2000-03-09 Stereolithography apparatus and stereolithography method

Publications (2)

Publication Number Publication Date
JP2001252986A true JP2001252986A (en) 2001-09-18
JP3784232B2 JP3784232B2 (en) 2006-06-07

Family

ID=18584605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065006A Expired - Fee Related JP3784232B2 (en) 2000-03-09 2000-03-09 Stereolithography apparatus and stereolithography method

Country Status (1)

Country Link
JP (1) JP3784232B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036284A1 (en) * 2002-09-30 2004-04-29 Japan Science And Technology Agency Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope
WO2006035739A1 (en) * 2004-09-29 2006-04-06 Nabtesco Corporation Optical molding device and optical molding method
US7083405B2 (en) 2003-02-19 2006-08-01 Dainippon Screen Mfg. Co., Ltd. Photo-fabrication apparatus
JP2007298990A (en) * 2006-04-28 2007-11-15 Envisiontec Gmbh Device and method for producing three-dimensional object by means of mask exposure
JP2008064903A (en) * 2006-09-06 2008-03-21 National Institute Of Advanced Industrial & Technology Device for producing three-dimensional structure, device for producing sensor, and method for producing three-dimensional structure
KR100921939B1 (en) * 2007-11-01 2009-10-15 한국산업기술대학교산학협력단 Stereolithography Device Using Laser Pick-UP Unit and Method for Forming Structure Using the Device
WO2011066989A1 (en) * 2009-12-04 2011-06-09 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
US8119449B2 (en) 2006-03-14 2012-02-21 Panasonic Corporation Method of manufacturing an electronic part mounting structure
US8134081B2 (en) 2006-01-13 2012-03-13 Panasonic Corporation Three-dimensional circuit board and its manufacturing method
WO2015081756A1 (en) * 2013-12-03 2015-06-11 上海普利生机电科技有限公司 Photo-curing 3d printing device and imaging system thereof
JP2016173558A (en) * 2015-01-12 2016-09-29 國立台湾科技大学 Method of stereolithography fabrication and method for photo-curing photosensitive resin
CN106363908A (en) * 2016-09-05 2017-02-01 深圳市鹏安视科技有限公司 Optical imaging system of photocuring 3D printer
WO2017130290A1 (en) * 2016-01-26 2017-08-03 株式会社オルタステクノロジー Head-up display apparatus
CN111070687A (en) * 2019-12-31 2020-04-28 上海天马微电子有限公司 3D printing device
CN117331285A (en) * 2023-09-28 2024-01-02 暨南大学 Method for producing patterns with any line width and any space by discrete digital mask photoetching

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036284A1 (en) * 2002-09-30 2004-04-29 Japan Science And Technology Agency Cofocal microscope, fluorescence measuring method and polarized light measuring metod using cofocal microscope
US7083405B2 (en) 2003-02-19 2006-08-01 Dainippon Screen Mfg. Co., Ltd. Photo-fabrication apparatus
WO2006035739A1 (en) * 2004-09-29 2006-04-06 Nabtesco Corporation Optical molding device and optical molding method
JPWO2006035739A1 (en) * 2004-09-29 2008-05-15 ナブテスコ株式会社 Stereolithography apparatus and stereolithography method
JP4669843B2 (en) * 2004-09-29 2011-04-13 ナブテスコ株式会社 Stereolithography apparatus and stereolithography method
US8134081B2 (en) 2006-01-13 2012-03-13 Panasonic Corporation Three-dimensional circuit board and its manufacturing method
US8809693B2 (en) 2006-01-13 2014-08-19 Panasonic Corporation Three-dimensional circuit board
US8119449B2 (en) 2006-03-14 2012-02-21 Panasonic Corporation Method of manufacturing an electronic part mounting structure
JP2007298990A (en) * 2006-04-28 2007-11-15 Envisiontec Gmbh Device and method for producing three-dimensional object by means of mask exposure
US8815143B2 (en) 2006-04-28 2014-08-26 Envisiontec Gmbh Method for producing a three-dimensional object by means of mask exposure
JP2008064903A (en) * 2006-09-06 2008-03-21 National Institute Of Advanced Industrial & Technology Device for producing three-dimensional structure, device for producing sensor, and method for producing three-dimensional structure
KR100921939B1 (en) * 2007-11-01 2009-10-15 한국산업기술대학교산학협력단 Stereolithography Device Using Laser Pick-UP Unit and Method for Forming Structure Using the Device
EP2335848A1 (en) * 2009-12-04 2011-06-22 SLM Solutions GmbH Optical irradiation unit for an assembly for producing workpieces by means of irradiating powder layers with laser radiation
WO2011066989A1 (en) * 2009-12-04 2011-06-09 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
US9221100B2 (en) 2009-12-04 2015-12-29 Slm Solutions Gmbh Optical irradiation unit for a plant for producing workpieces by irradiation of powder layers with laser radiation
WO2015081756A1 (en) * 2013-12-03 2015-06-11 上海普利生机电科技有限公司 Photo-curing 3d printing device and imaging system thereof
US10416541B2 (en) * 2013-12-03 2019-09-17 Prismlab China Ltd. Photo-curing 3D printing device and imaging system thereof
JP2016173558A (en) * 2015-01-12 2016-09-29 國立台湾科技大学 Method of stereolithography fabrication and method for photo-curing photosensitive resin
WO2017130290A1 (en) * 2016-01-26 2017-08-03 株式会社オルタステクノロジー Head-up display apparatus
CN106363908A (en) * 2016-09-05 2017-02-01 深圳市鹏安视科技有限公司 Optical imaging system of photocuring 3D printer
CN106363908B (en) * 2016-09-05 2019-05-03 深圳市鹏安视科技有限公司 A kind of optical imaging system of photocuring 3D printer
CN111070687A (en) * 2019-12-31 2020-04-28 上海天马微电子有限公司 3D printing device
CN117331285A (en) * 2023-09-28 2024-01-02 暨南大学 Method for producing patterns with any line width and any space by discrete digital mask photoetching
CN117331285B (en) * 2023-09-28 2024-05-14 暨南大学 Method for producing patterns with any line width and any space by discrete digital mask photoetching

Also Published As

Publication number Publication date
JP3784232B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
JP2001252986A (en) Apparatus and method for optical shaping
TW214584B (en)
Bertsch et al. Rapid prototyping of small size objects
US7088432B2 (en) Dynamic mask projection stereo micro lithography
JP5293993B2 (en) Stereolithography apparatus and stereolithography method
US20220168960A1 (en) Method of 3d printing shapes defined by surface equations
CN101563212A (en) Polymer object optical fabrication process
JP2009132126A (en) Optical shaping apparatus and optical shaping method
JP2022529293A (en) Stereolithography 3D printing assembly and stereolithography 3D printing method
JP4669843B2 (en) Stereolithography apparatus and stereolithography method
JP2676838B2 (en) 3D image formation method
CN113165225B (en) Method of forming waveguide portion having predetermined shape
Boniface et al. Volumetric helical additive manufacturing
Suryatal et al. Fabrication of medium scale 3D components using a stereolithography system for rapid prototyping
IT202000003653A1 (en) Predictive method and relative apparatus for isotropic stereolithographic 3D printing with hybrid light source at variable speed and power
EP4123347A1 (en) Method for replicating large-area holographic optical element, and large-area holographic optical element replicated thereby
Oda et al. Microfabrication of overhanging shape using LCD microstereolithography
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
JPH06198747A (en) Three-dimensional body forming device due to optical shaping technique
EP0775570A2 (en) Intensity homogenized surface exposure type photo-solidification modeling apparatus
Suryatal et al. A Stereolithography System for 3D Low Cost Components.
Guzmán-González et al. Multifunctional cube-like system for biomedical applications featuring 3D printing by dual deposition, scanner, and UV engraving
JPH0499618A (en) Formation of object having three-dimensional configuration
JPH08238678A (en) Optically molding machine
Voisiat et al. DLIP holographic structuring: from basic concept to advanced monitoring methods and industrial scale production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3784232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees