JP2001252588A - Powder classifying method - Google Patents

Powder classifying method

Info

Publication number
JP2001252588A
JP2001252588A JP2000069537A JP2000069537A JP2001252588A JP 2001252588 A JP2001252588 A JP 2001252588A JP 2000069537 A JP2000069537 A JP 2000069537A JP 2000069537 A JP2000069537 A JP 2000069537A JP 2001252588 A JP2001252588 A JP 2001252588A
Authority
JP
Japan
Prior art keywords
particles
sieve
classification
ultrasonic
ultrasonic irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000069537A
Other languages
Japanese (ja)
Other versions
JP4012357B2 (en
Inventor
Shigefumi Kuramoto
成史 倉本
Hironobu Toribuchi
浩伸 鳥淵
Shinji Wakatsuki
伸治 若槻
Norikuni Sasaki
令晋 佐々木
Masaru Awashima
優 粟嶋
Hiroyuki Kitagakido
寛之 北垣戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000069537A priority Critical patent/JP4012357B2/en
Publication of JP2001252588A publication Critical patent/JP2001252588A/en
Application granted granted Critical
Publication of JP4012357B2 publication Critical patent/JP4012357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a powder classifying method for accurate classifying by using an electroformed screen while ultrasonic waves are applied without the clogging of the screen and the agglomeration of particles and without damaging the electroformed screen and also provide particles classified by the method and provide its use. SOLUTION: A dispersed body formed of a raw material powder dispersed in a liquid medium is passed through the classifying device with the electroformed screen and an ultrasonic irradiating chip while ultrasonic waves are applied by an ultrasonic irradiating chip to classify the raw material powder into the particles of desired particle size range, and (1) the ultrasonic waves of the frequency set at 10 k-100 kHz and the amplitude set at 1-50 m are applied, (2) the interval between the end of the ultrasonic irradiating chip and the electroformed screen is set at 0.05-10 mm, (3) an area of the ultrasonic irradiating chip is 0.25-100 times the sectional area of the ultrasonic irradiating chip and (4) at least the end of the ultrasonic irradiating chip is formed of a ceramic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体の分級方法、
分級された粒子、およびその用途に関する。さらに詳し
くは、種々の粒子径を有する粉体を精密に所望の粒度範
囲の粒子に分級する分級方法、それにより分級された粒
子、およびその用途に関する。
TECHNICAL FIELD The present invention relates to a method for classifying powder,
Classified particles and their use. More specifically, the present invention relates to a classification method for precisely classifying powders having various particle diameters into particles having a desired particle size range, particles classified thereby, and uses thereof.

【0002】[0002]

【従来の技術】各種分野で取り扱われる粉体はその種
類、目的、用途によって、必要とされる平均粒子径及び
粒子径の分布が異なる。特に、液晶表示素子用スペーサ
ー、異方導電フィルム用導電性粒子、液体クロマトグラ
フィー用充填剤、フィルム用滑剤あるいは静電荷像現像
用トナーといった用途に用いられる粉体の場合、粒子径
の分布を狭くする必要がある。中でも、液晶表示素子用
スペーサーとして用いられる粉体は、粒子径分布を特に
狭くする必要があり、種々の方法により作製した原料粉
体から目的とする粒子径および粒子径分布となるように
精密に分別して使用する必要がある。
2. Description of the Related Art Powders handled in various fields have different required average particle diameters and distributions of particle diameters depending on the kind, purpose and application. In particular, in the case of powders used for spacers for liquid crystal display elements, conductive particles for anisotropic conductive films, fillers for liquid chromatography, lubricants for films or toners for developing electrostatic images, the particle size distribution is narrowed. There is a need to. Above all, the powder used as the spacer for the liquid crystal display element needs to have a particularly narrow particle size distribution, and the raw material powders produced by various methods are precisely adjusted to have the desired particle size and particle size distribution. It needs to be used separately.

【0003】一般に、粉体の粒子径分布を狭くするため
には、いわゆる分級装置が用いられる。分級装置として
は、サイクロン、沈降塔、あるいはふるい等が乾式また
は湿式で用いられる。しかしながら、旋回流中の遠心力
と重力とのバランスを利用して分級を行うサイクロンで
は、その構造上、分級ゾーンをショートパスする粒子が
存在するため、粒子径分布を狭くすることに限界があ
り、また少量ではあるものの粒子径分布から大きく外れ
た粒子が残存するといった問題を有している。また、媒
体中での沈降速度の差を利用して分級する沈降塔におい
ては、温度、振動などの要因によって沈降速度が変化す
るため、分級精度を上げることが困難であり、また粒子
径の小さいものについては、沈降速度が極めて小さいた
め分級に多大な時間が必要である。沈降塔を改良し、下
方より媒体を供給し上方よりオーバーフローさせる装置
も提案されているが、上記した沈降塔と同様の問題を有
している。
Generally, a so-called classifier is used to narrow the particle size distribution of the powder. As a classifier, a cyclone, a sedimentation tower, a sieve, or the like is used in a dry type or a wet type. However, in cyclones that perform classification using the balance between centrifugal force and gravity in swirling flow, there are particles that short-pass the classification zone due to their structure, so there is a limit to narrowing the particle size distribution. In addition, there is a problem that, although in a small amount, particles that largely deviate from the particle size distribution remain. Further, in a sedimentation tower that classifies using a difference in sedimentation velocity in a medium, the sedimentation velocity changes due to factors such as temperature and vibration, so it is difficult to increase the classification accuracy, and the particle diameter is small. For those, the sedimentation speed is extremely low, so that a large amount of time is required for classification. An apparatus in which a settling tower is improved to supply a medium from below and overflow from above has also been proposed, but has the same problem as the above-mentioned settling tower.

【0004】一方、ふるいは一定の目開きを通過するか
否かで分級を行うものである。目開き10μm以上のも
のについては細線を編んだふるいが用いられ、それ以下
のものについては金属箔などをエッチングにより微細な
孔をあけたものや、電成ふるいと呼ばれる、メッキによ
って矩形の孔を有するスクリーンを作製したものが用い
られ、これらは細線を編んだものと比較して目開きが非
常によくそろっており分級の精度を向上させることがで
きるものである。特に電成ふるいはエッチングにより孔
をあけたものと比較して、厚みより小さな孔加工が可能
であり、サイドエッジがなく断面形状がきれいであり、
優れたふるいである。
[0004] On the other hand, a sieve performs classification based on whether or not it passes through a certain opening. For those with an opening of 10 μm or more, a fine wire knitting sieve is used. For those with a mesh size of 10 μm or less, a fine hole made by etching a metal foil or the like, or a rectangular hole by plating, called an electric sieve, is used. The screens are used, and the screens are very well aligned as compared with those obtained by knitting fine wires, and can improve the classification accuracy. In particular, compared to the electric sieve with holes drilled by etching, holes smaller than the thickness can be processed, the cross-sectional shape is beautiful without side edges,
It is an excellent sieve.

【0005】しかしながら、ふるいを分級装置として使
用した場合、操作中にふるいが目詰まりを起こしたり、
粒子が凝集することによってふるいわけの速度が著しく
低下する現象がしばしば観察される。この現象はふるい
の目開きが小さくなるほど顕著にかつ短時間で発生し、
その都度ふるいの洗浄や粒子の再分散といった操作が必
要である。また、電成ふるいを用いた分級において、超
音波を印加することでさらに分級効率を向上させること
ができるが、その反面電成ふるいは損傷し易くなり、分
級された粒子へ金属系不純物の混入のおそれがある。特
に分級された粒子を液晶表示素子用スペーサー等の電子
材料の用途に用いる場合、金属系不純物の混入は信頼性
低下の原因となるため重大な問題である。
However, when the sieve is used as a classifier, the sieve may be clogged during operation,
A phenomenon is often observed in which the agglomeration of the particles significantly reduces the sieving speed. This phenomenon occurs more remarkably and in a shorter time as the sieve opening becomes smaller,
Each time, operations such as washing of a sieve and redispersion of particles are required. In addition, in the classification using an electric sieve, the classification efficiency can be further improved by applying ultrasonic waves.However, the electric sieve is easily damaged, and metal impurities are mixed into the classified particles. There is a possibility of. In particular, when the classified particles are used for an electronic material such as a spacer for a liquid crystal display element, the incorporation of metallic impurities is a serious problem because it causes a decrease in reliability.

【0006】[0006]

【発明が解決しようとする課題】したがって、本発明の
課題は、超音波を印加しながら電成ふるいを用いて精密
に分級を行う方法において、ふるいの目詰まりや粒子の
凝集を起こさずに、しかも電成ふるいを損傷させること
なく、粉体の分級を行う方法を提供することにある。ま
た、それにより分級された粒子、およびその用途を提供
することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for precisely classifying using an electric sieve while applying ultrasonic waves, without causing clogging of the sieve or aggregation of particles. Another object of the present invention is to provide a method for classifying powder without damaging an electric sieve. Another object of the present invention is to provide particles classified thereby and uses thereof.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、以下の構成を採用する。すなわち、本発
明の第1から第4の発明の分級方法は、電成ふるいと超
音波照射チップとを備えた分級装置に、原料粉体を液状
媒体に分散させた分散体を、前記超音波照射チップより
超音波を印加しながら通すことによって、前記原料粉体
を所望の粒度範囲の粒子に分級する方法であり、本発明
の第1発明の分級方法は、周波数が10k〜100kH
zであり、振幅が1〜50μmの超音波を印加すること
を特徴とし、本発明の第2発明の分級方法は、前記超音
波照射チップの先端と前記電成ふるいとの間隔が0.0
5〜10mmであることを特徴とし、本発明の第3発明
の分級方法は、前記電成ふるいの面積が、前記超音波照
射チップの断面積の0.25〜100倍であることを特
徴とし、本発明の第4発明の分級方法は、前記超音波照
射チップの少なくとも先端部分がセラミックからなるこ
とを特徴とする。
In order to solve the above-mentioned problems, the present invention employs the following constitution. That is, the classifying method according to the first to fourth aspects of the present invention provides a classifier equipped with an electric sieve and an ultrasonic irradiation tip, wherein the dispersion obtained by dispersing the raw material powder in a liquid medium is subjected to the ultrasonic waves. This is a method of classifying the raw material powder into particles having a desired particle size range by passing ultrasonic waves from an irradiation tip while applying ultrasonic waves. The classification method according to the first invention of the present invention has a frequency of 10 to 100 kHz.
z, and an ultrasonic wave having an amplitude of 1 to 50 μm is applied. According to the classification method of the second invention of the present invention, the distance between the tip of the ultrasonic irradiation tip and the electric sieve is 0.0
5 to 10 mm, the classification method of the third invention of the present invention is characterized in that the area of the electric sieve is 0.25 to 100 times the cross-sectional area of the ultrasonic irradiation tip. The classification method according to a fourth aspect of the present invention is characterized in that at least a tip portion of the ultrasonic irradiation tip is made of ceramic.

【0008】本発明の分級された粒子は、上記の本発明
の第1から第4の発明のいずれかの粉体の分級方法によ
り分級された粒子である。本発明の液晶表示素子用スペ
ーサーは、上記の本発明の第1から第4の発明のいずれ
かの粉体の分級方法により分級された粒子を本体とす
る。
[0008] The classified particles of the present invention are particles classified by the powder classification method according to any one of the first to fourth inventions of the present invention. The spacer for a liquid crystal display element of the present invention has, as a main body, particles classified by the method for classifying a powder according to any one of the first to fourth aspects of the present invention.

【0009】[0009]

【発明の実施の形態】本発明では、電成ふるいと超音波
照射チップを備えた分級装置を用いて粒子の分級を行
う。電成ふるいとは、メッキによって矩形の孔を有する
スクリーンを作製したものである。電成ふるいの製造方
法としては、高精度にクロスライン状に腐食させたガラ
ス原板上に、真空蒸着、スパッタリング等の物理メッ
キ、あるいは電解メッキ、無電解メッキ等の化学メッキ
により導電性被膜を形成した後、腐食部分の溝以外のメ
ッキ層を除去し、これに電解メッキ等の方法でメッシュ
を形成し、ガラス原板から剥離する方法が挙げられる。
このようにして作製されたメッシュはガラス原板から剥
離後、必要に応じてさらに電解メッキを施してもかまわ
ない。また、他の製造方法として、ガラス平板上に真空
蒸着、スパッタリング等の物理メッキ、あるいは電解メ
ッキ、無電解メッキ等の化学メッキにより導電性被膜を
形成し、その被膜上にレジストを塗布した後、所定の形
状のパターンを形成し、その後エッチングによりパター
ン以外の部分を除去し、ガラス原板から剥離後、電解メ
ッキを施す方法も挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, particles are classified using a classifier provided with an electric sieve and an ultrasonic irradiation tip. The electric sieve is obtained by producing a screen having a rectangular hole by plating. As a method of manufacturing an electric sieve, a conductive film is formed on a glass plate corroded in a cross line shape with high precision by physical plating such as vacuum evaporation, sputtering, or chemical plating such as electrolytic plating or electroless plating. After that, there is a method of removing the plating layer other than the groove in the corroded portion, forming a mesh on the plating layer by a method such as electrolytic plating, and peeling the mesh from the glass plate.
The mesh produced in this manner may be further subjected to electrolytic plating, if necessary, after peeling from the glass base plate. Also, as another manufacturing method, a vacuum plating, physical plating such as sputtering, or electrolytic plating, chemical plating such as electroless plating on a glass flat plate, a conductive film is formed, and after applying a resist on the film, There is also a method of forming a pattern having a predetermined shape, removing portions other than the pattern by etching, exfoliating the glass substrate, and then performing electrolytic plating.

【0010】電成ふるいの材質としては、金、白金、
銀、銅、鉄、アルミニウム、ニッケル及びこれらをベー
スとする種々の合金が用いられるが、ふるいの耐久性、
耐蝕性やメッキ作業の容易さからニッケルを主成分とす
るものが特に好適に用いられる。電成ふるいは、開孔
径、単位あたりの開孔数の調整が容易であるばかりでな
く、開孔径分布が非常に良好であるため、ふるいとして
用いた場合、非常に精度良く分級することが可能とな
る。電成ふるいは非常に薄いため、しかも本発明では超
音波を印加しながら分級を行うため、簡単に傷ついた
り、破れたりし、分級された粒子へ金属系不純物の混入
のおそれがある。特に分級された粒子を液晶表示素子用
スペーサー等の電子材料の用途に用いる場合、金属系不
純物の混入は信頼性低下の原因となるため重大な問題で
ある。そのため、電成ふるいの片面あるいは両面に格子
状あるいはリング状等のサポートを設けて強度を上げる
ことが好ましい。
The materials of the electric sieve include gold, platinum,
Silver, copper, iron, aluminum, nickel and various alloys based on these are used.
A material containing nickel as a main component is particularly preferably used because of its corrosion resistance and ease of plating. The electric sieve is not only easy to adjust the hole diameter and the number of holes per unit, but also has a very good hole diameter distribution, so it can be classified very accurately when used as a sieve. Becomes Since the electric sieve is very thin, and furthermore, in the present invention, the classification is performed while applying ultrasonic waves, there is a risk that the classified sieve is easily damaged or broken, and metal-based impurities are mixed into the classified particles. In particular, when the classified particles are used for an electronic material such as a spacer for a liquid crystal display element, the incorporation of metallic impurities is a serious problem because it causes a decrease in reliability. Therefore, it is preferable to increase the strength by providing a grid-like or ring-like support on one or both sides of the electric sieve.

【0011】電成ふるいの分級装置への取り付けに関し
ては、超音波の振動などによって、電成ふるいと分級装
置とが擦れて電成ふるいが損傷し分級された粒子へ金属
系不純物が混入するおそれがあるため、エラストマーか
らなる部材を介して取り付けることが好ましい。超音波
照射チップは、分級装置内に挿入されて、媒体に超音波
照射を行うものである。超音波を印加しながら分級を行
うことで、分級の効率を向上させることができる。本発
明の第1発明では、周波数が10k〜100kHzであ
り、振幅が1〜50μmの超音波を印加することを特徴
とする。周波数は15k〜50kHzであることが好ま
しく、振幅は5〜30μmであることが好ましい。周波
数が10kHzより小さい場合、可聴領域に入るため防
音対策等の設備が必要となる。一方、周波数が100k
Hzを超える場合、媒体中での超音波振動の減衰が大き
くなるため、粒子を分散させるのに必要なエネルギーが
大きくなり、分級効率が低下するため好ましくない。ま
た、振幅が1μmより小さい場合、粒子を単粒子として
分散させることが困難になるばかりでなく、単粒子に分
散したものも再凝集する恐れがあり、電成ふるい上に粒
子が堆積しやすくなるために分級効率が低下する。一
方、振幅が50μmを超える場合、粒子の分散性は向上
するものの、電成ふるい自体に大きなシェアがかかるた
め、電成ふるいを損傷しやすい。特に電成ふるいは箔状
であるため、短時間の運転で破損してしまい、分級の精
度を低下させたり、電成ふるいの交換等に手間がかかる
だけでなく、分級された粉体中への金属系不純物の混入
を引き起こす。
Regarding the attachment of the electric sieve to the classifier, the electric sieve and the classifier may be rubbed by ultrasonic vibration or the like, damaging the electric sieve and mixing metallic impurities into the classified particles. For this reason, it is preferable to attach the sheet via a member made of an elastomer. The ultrasonic irradiation tip is inserted into a classification device and performs ultrasonic irradiation on a medium. By performing classification while applying ultrasonic waves, the efficiency of classification can be improved. The first invention of the present invention is characterized in that ultrasonic waves having a frequency of 10 kHz to 100 kHz and an amplitude of 1 to 50 μm are applied. The frequency is preferably 15 kHz to 50 kHz, and the amplitude is preferably 5 to 30 μm. If the frequency is lower than 10 kHz, equipment for soundproofing or the like is required to enter the audible range. On the other hand, if the frequency is 100k
When the frequency exceeds Hz, the attenuation of the ultrasonic vibration in the medium increases, so that the energy required for dispersing the particles increases, and the classification efficiency decreases, which is not preferable. If the amplitude is smaller than 1 μm, not only is it difficult to disperse the particles as single particles, but also the particles dispersed in single particles may re-agglomerate, and the particles are easily deposited on the electric sieve. Therefore, the classification efficiency decreases. On the other hand, when the amplitude exceeds 50 μm, although the dispersibility of the particles is improved, the electric sieve itself has a large share, and thus the electric sieve is easily damaged. In particular, since the electric sieve is in the form of foil, it will be damaged in a short operation, lowering the accuracy of classification, not only replacing the electric sieve with a lot of effort, but also putting it into the classified powder. Metal impurities.

【0012】本発明の第2発明では、超音波照射チップ
の先端と電成ふるいとの間隔が0.05〜10mmであ
ることを特徴とする。好ましくは0.1〜5mmであ
る。前記間隔が0.05mmよりも狭いと、電成ふるい
に大きな力がかかったり、外的要因で分級装置が振動し
た場合に電成ふるいと超音波照射チップが衝突すること
により、電成ふるいが損傷し、分級した粒子へ金属系不
純物の混入の問題がある。また、前記間隔が10mmよ
りも広いと、電成ふるい上に粒子が堆積しやすくなるた
め分級効率が低下する。その結果として分級の時間が長
くなったり、あるいは短時間で行うためには強い超音波
を印加する必要が生じるため、電成ふるいが損傷しやす
くなる。
In a second aspect of the present invention, the distance between the tip of the ultrasonic irradiation tip and the electric sieve is 0.05 to 10 mm. Preferably it is 0.1-5 mm. When the distance is smaller than 0.05 mm, a large force is applied to the electric sieve, or when the classifying device vibrates due to an external factor, the electric sieve collides with the ultrasonic irradiation tip, so that the electric sieve is There is a problem that metal-based impurities are mixed into the damaged and classified particles. On the other hand, if the distance is larger than 10 mm, the particles are likely to be deposited on the electric sieve, so that the classification efficiency is reduced. As a result, it is necessary to apply a strong ultrasonic wave in order to lengthen the classification time or to perform the classification in a short time, so that the electric sieve is easily damaged.

【0013】本発明の第3発明では、電成ふるいの面積
が、超音波照射チップの断面積の0.25〜100倍で
あることを特徴とする。好ましくは1〜25倍である。
0.25倍よりも小さい場合には、電成ふるいに対する
分散体の相対量が少ないために分級効率が悪くなる。一
方、100倍よりも大きい場合には、電成ふるい上に粒
子が堆積しやすくなるため分級効率が低下する結果、電
成ふるいが損傷しやすくなる。本発明の第4発明では、
超音波照射チップの少なくとも先端部分がセラミックか
らなることを特徴とする。超音波照射チップが金属から
なると磨耗し易く、あるいは磨耗を防ぐために鋼などの
硬い金属を用いると腐食が起こり易く、いずれの場合に
も粉体中への金属系不純物の混入のおそれがある。セラ
ミックを用いれば、磨耗や腐食が起こりにくく、しかも
仮にセラミックが粉体中へ混入してしまったとしても、
信頼性低下の原因とはなりにくい。また、セラミック以
外の非金属の材料では、超音波の印加効率が低く実用的
ではない。超音波照射チップの先端部分が最も超音波振
動が激しいため、本発明では超音波照射チップの少なく
とも先端部分がセラミックからなるものであればよい
が、より効果的に金属系不純物の混入を防ぐためには、
接液部全体がセラミックからなることが好ましく、さら
にはチップ全体がセラミックからなることが好ましい。
A third aspect of the present invention is characterized in that the area of the electric sieve is 0.25 to 100 times the sectional area of the ultrasonic irradiation tip. Preferably it is 1 to 25 times.
If it is smaller than 0.25 times, the classification efficiency is deteriorated because the relative amount of the dispersion to the electric sieve is small. On the other hand, when the ratio is larger than 100 times, particles are likely to be deposited on the electric sieve, so that the classification efficiency is lowered. As a result, the electric sieve is easily damaged. In the fourth invention of the present invention,
At least the tip portion of the ultrasonic irradiation tip is made of ceramic. When the ultrasonic irradiation tip is made of a metal, it is easily worn, or when a hard metal such as steel is used to prevent the wear, corrosion tends to occur, and in any case, there is a possibility that metal-based impurities may be mixed into the powder. If ceramics are used, wear and corrosion hardly occur, and even if the ceramics are mixed into the powder,
It is unlikely to cause a decrease in reliability. In addition, non-metallic materials other than ceramics have low ultrasonic wave application efficiency and are not practical. Since the ultrasonic vibration is most intense at the tip portion of the ultrasonic irradiation tip, in the present invention, at least the tip portion of the ultrasonic irradiation tip may be made of ceramic, but in order to more effectively prevent mixing of metal impurities. Is
It is preferable that the whole liquid contact part is made of ceramic, and it is more preferable that the whole chip is made of ceramic.

【0014】上記セラミックとしては、従来公知のもの
から粉体および媒体の性質に合わせて適宜選択すること
ができ、例えば、アルミナ、マグネシア、ジルコニア、
安定化ジルコニア、部分安定化ジルコニア、ベリリア、
トリア、スピネルおよびムライト等の酸化物系セラミッ
クス;炭化珪素、炭化タングステンおよび炭化チタン等
の炭化物系セラミックス;窒化珪素、窒化アルミニウ
ム、窒化チタンおよびサイアロン等の窒化物系セラミッ
クス等が挙げられる。これらのセラミックスのうち、耐
蝕性および強度の点からジルコニア、安定化ジルコニ
ア、部分安定化ジルコニアを用いることが好ましい。
The above-mentioned ceramic can be appropriately selected from conventionally known ceramics according to the properties of the powder and the medium. Examples thereof include alumina, magnesia, zirconia, and the like.
Stabilized zirconia, partially stabilized zirconia, beryllia,
Oxide ceramics such as thoria, spinel and mullite; carbide ceramics such as silicon carbide, tungsten carbide and titanium carbide; and nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride and sialon. Among these ceramics, it is preferable to use zirconia, stabilized zirconia, and partially stabilized zirconia from the viewpoint of corrosion resistance and strength.

【0015】超音波振動の発振方式は従来公知の方式で
よいが、中でも、負荷変動に対して振動速度を一定に保
つための回路構成を持った、定速度型周波数追尾型の発
振方式をとることで、分散が安定し、かつ電成ふるいに
過度のシェアがかからないため好ましい。本発明では、
上記分級装置に、原料粉体を液状媒体に分散させた分散
体を通すことによって湿式法により分級を行う。媒体と
して不活性ガスや空気などを用いる乾式法と比較して、
湿式法によった場合の方が超音波の照射効率、分散の安
定性が高く、また電成ふるいへの付着が少ない。
The oscillation system of the ultrasonic vibration may be a conventionally known system, and among them, a constant speed type frequency tracking type oscillation system having a circuit configuration for keeping the vibration speed constant against a load change is adopted. This is preferable because dispersion is stable and an excessive share is not applied to the electric sieve. In the present invention,
Classification is performed by a wet method by passing a raw material powder dispersed in a liquid medium through the classifier. Compared to the dry method using inert gas or air as the medium,
In the case of the wet method, the ultrasonic irradiation efficiency and the dispersion stability are higher, and the adhesion to the electric sieve is smaller.

【0016】原料粉体を分散させる液状媒体としては、
用いる電成ふるいの材質、開孔径、線数、および粉体の
性状あるいは粒子径分布などによって適切に選択するこ
とができる。図1に、電成ふるいと超音波照射チップと
を備えた分級装置の一例を示すが、本発明はこれによっ
て何ら限定されるものではない。図1において、電成ふ
るい1は、ハウジング上部4およびハウジング下部4′
によって挟み込まれる形で固定される。電成ふるい1の
強度を上げるためのサポート2が設けられ、エラストマ
ーからなるパッキン3を介してハウジング4、4′に接
続されている。ハウジング上部4内には超音波照射チッ
プ5が挿入され、これによりハウジング内の媒体に超音
波振動が照射される。ハウジング上部4内には媒体の循
環ライン6、6′及び媒体の供給ライン7が設けられて
いる。原料粉体を液状媒体に分散させた分散体はハウジ
ング上部4内に仕込まれ、媒体とともに電成ふるいの開
孔径よりも小さい粒子がハウジング下部4′へと移動す
る。操作の経過に伴い、ハウジング上部4内に存在する
電成ふるいの開孔径よりも小さい粒子が減少していき、
最終的には電成ふるいの開孔径を境にして、粒子径の大
きいもの(ハウジング上部4内に残留した粒子)と粒子
径の小さいもの(ハウジング下部4′に移動した粒子)
とに分級することができる。
As the liquid medium in which the raw material powder is dispersed,
It can be appropriately selected depending on the material of the electric sieve to be used, the opening diameter, the number of lines, the properties of the powder, the particle size distribution, and the like. FIG. 1 shows an example of a classifier provided with an electric sieve and an ultrasonic irradiation chip, but the present invention is not limited to this. In FIG. 1, an electric sieve 1 comprises a housing upper part 4 and a housing lower part 4 '.
It is fixed by being sandwiched by. A support 2 for increasing the strength of the electric sieve 1 is provided, and is connected to the housings 4 and 4 'via a packing 3 made of an elastomer. An ultrasonic irradiation chip 5 is inserted into the housing upper part 4, whereby the medium in the housing is irradiated with ultrasonic vibration. Inside the housing upper part 4 are provided medium circulation lines 6, 6 'and a medium supply line 7. The dispersion obtained by dispersing the raw material powder in the liquid medium is charged in the housing upper part 4, and particles smaller than the opening diameter of the electric sieve move to the housing lower part 4 'together with the medium. As the operation progresses, particles smaller than the opening diameter of the electric sieve existing in the housing upper part 4 decrease,
Eventually, particles having a large particle diameter (particles remaining in the upper housing part 4) and small particle diameters (particles moved to the lower housing part 4 ') are separated from the opening diameter of the electric sieve.
And can be classified.

【0017】上記した本発明の第1から第4の発明の分
級方法により、各種粉体は容易にかつ低コストで精密
に、しかもふるいの目詰まりや粒子の凝集を起こさず
に、また電成ふるいを損傷させずに分級を行うことがで
きる。したがって、得られる粒子の粒子径は極めてそろ
っている。用いる粉体の平均粒子径、粒子径分布および
電成ふるいの開孔径によって、分級により得られる粒子
の平均粒子径および粒子径分布は異なるが、粒子径の標
準偏差と平均粒子径の比Cvを2〜10%とすることが
できる。また、金属系不純物の混入を抑制することがで
きるため、原料粉体および媒体の性状、分級条件により
変化するが、金属系不純物の濃度を、原料粉体と比較し
て10ppm以下程度の増加にとどめることが可能とな
る。したがって、液晶表示素子用スペーサー等の電子材
料の用途に用いる場合にも信頼性が低下しない。
According to the above-described classification methods of the first to fourth aspects of the present invention, various powders can be formed easily and accurately at a low cost without causing clogging of sieves or aggregation of particles. Classification can be performed without damaging the sieve. Therefore, the particle diameters of the obtained particles are extremely uniform. The average particle diameter and particle diameter distribution of the powder used and the average particle diameter and particle diameter distribution of the particles obtained by classification differ depending on the pore size of the electric sieve. It can be 2 to 10%. In addition, since the mixing of metal-based impurities can be suppressed, the concentration of the metal-based impurities is increased by about 10 ppm or less as compared with the raw material powder, although it varies depending on the properties of the raw material powder and the medium and the classification conditions. It is possible to stop. Therefore, the reliability does not decrease even when used for electronic materials such as spacers for liquid crystal display elements.

【0018】本発明の第1から第4の分級方法により得
られる粒子の平均粒子径は特に限定されず、平均粒子径
が0.5μm程度の小さなものから、平均粒子径が10
0μm程度の大きなものまで可能である。中でも、平均
粒子径が10μm以下の小さな粒子を得る場合にも、低
コストで精密に、しかもふるいの目詰まりや粒子の凝集
を起こさずに分級を行うことができるのが本発明の大き
な効果である。上記において、本発明の第1から第4の
分級方法についてそれぞれ説明したが、本発明の第1か
ら第4の分級方法を複数組み合わせて実施することで、
さらなる効果が得られることはもちろんのことである。
The average particle diameter of the particles obtained by the first to fourth classification methods of the present invention is not particularly limited, and the average particle diameter can be as small as about 0.5 μm to about 10 μm.
It can be as large as about 0 μm. Among them, even when obtaining small particles having an average particle diameter of 10 μm or less, classification can be performed accurately at low cost and without causing clogging of the sieve and aggregation of the particles. is there. In the above, the first to fourth classification methods of the present invention have been described, respectively. By implementing a plurality of the first to fourth classification methods of the present invention in combination,
Needless to say, further effects can be obtained.

【0019】本発明の第1から第4の分級方法により分
級することのできる粉体としては、特に限定されない
が、後述する液晶表示素子用スペーサーの他、無電解め
っき粉体およびその基材粉体、クロマトグラフィー用充
填剤、各種標準粒子、免疫学的診断試薬用担体、ブロッ
キング防止剤、滑剤等の各種粉体を挙げることができ
る。また、その材質も特に限定されず、有機架橋重合体
粒子、無機系粒子、有機質無機質複合体粒子等が挙げら
れる。本発明の液晶表示素子用スペーサーは、上記した
本発明の第1から第4の発明の分級方法により分級され
た粒子を本体とする。そのため、粒子径が極めてそろっ
ており、正確な間隔で配置されるべき一対の電極基板間
の隙間距離を精度良く一定に保持することが可能であ
る。また、粒子中への金属系不純物の混入を抑制するこ
とができるので、金属系不純物による液晶は以降の乱れ
あるいは電気特性への影響を防止することができ、従来
公知の方法によって製造されたスペーサーを用いる場合
と比較して、液晶表示素子の画質が格段に向上する。
The powder that can be classified by the first to fourth classification methods of the present invention is not particularly limited, but in addition to a spacer for a liquid crystal display element described later, an electroless plating powder and a base powder thereof. Examples include various powders such as a carrier, a filler for chromatography, various standard particles, a carrier for an immunological diagnostic reagent, an antiblocking agent, and a lubricant. Further, the material is not particularly limited, and examples thereof include organic crosslinked polymer particles, inorganic particles, and organic / inorganic composite particles. The spacer for a liquid crystal display element of the present invention has, as its main body, particles classified by the above-described classification method of the first to fourth inventions of the present invention. Therefore, the particle diameters are extremely uniform, and the gap distance between a pair of electrode substrates to be arranged at an accurate interval can be accurately and constantly maintained. In addition, since it is possible to suppress the incorporation of metal-based impurities into the particles, the liquid crystal due to the metal-based impurities can be prevented from subsequently disturbing or affecting the electrical characteristics, and a spacer manufactured by a conventionally known method can be used. The image quality of the liquid crystal display element is remarkably improved as compared with the case of using.

【0020】本発明の液晶表示素子用スペーサーは、上
記した本発明の第1から第4の発明の分級方法により分
級された粒子を本体とするものであり、該粒子のみから
なるものであってもよいし、本体である粒子の表面に接
着剤層を有する接着性スペーサーであってもよい。ま
た、本体である粒子が染料および/または顔料を含むこ
とにより着色した着色粒子からなる着色スペーサーであ
ってもよい。液晶表示素子において、従来のスペーサー
の代わりに本発明の液晶表示素子用スペーサーを電極基
板間に介在させることで、同スペーサーとほぼ同じ隙間
距離を有する液晶表示素子を作製することができる。使
用されるスペーサーの量は、そのスペーサーの材質や基
板の大きさ等によって左右されるが、通常30〜300
個/mm2であり、従来用いられているスペーサーと同
様の条件をとることができる。
The spacer for a liquid crystal display element of the present invention has, as its main body, particles classified by the classification method of the first to fourth inventions of the present invention, and is composed of only the particles. Alternatively, it may be an adhesive spacer having an adhesive layer on the surface of the particle as the main body. Further, a colored spacer composed of colored particles in which the main particles are colored by containing a dye and / or a pigment may be used. In a liquid crystal display element, by interposing the spacer for a liquid crystal display element of the present invention between electrode substrates instead of the conventional spacer, a liquid crystal display element having substantially the same gap distance as the spacer can be manufactured. The amount of the spacer to be used depends on the material of the spacer, the size of the substrate, and the like.
Pcs / mm 2 , and the same conditions as those of a conventionally used spacer can be taken.

【0021】液晶表示素子は、たとえば、図2にみるよ
うに、第1電極基板と、第2電極基板と、液晶表示素子
用スペーサーと、シール材と液晶とを備えている。第1
電極基板は、第1基板と、第1基板の表面に形成された
第1電極とを有する。第2電極基板は、第2基板と、第
2基板の表面に形成された第2電極とを有し、第1電極
基板と対向している。液晶表示素子用スペーサとしては
上述の本発明のものが使用され、第1電極基板と第2電
極基板との間に介在し、その電極基板間の間隔を保持す
る。シール材は、第1電極基板と第2電極基板とを周辺
部で接着する。液晶は、第1電極基板と第2電極基板と
の間に封入されており、第1電極基板と第2電極基板と
シール材とで囲まれた空間に充填されている。
As shown in FIG. 2, for example, the liquid crystal display element includes a first electrode substrate, a second electrode substrate, a spacer for a liquid crystal display element, a sealing material, and liquid crystal. First
The electrode substrate has a first substrate and a first electrode formed on a surface of the first substrate. The second electrode substrate has a second substrate and a second electrode formed on the surface of the second substrate, and faces the first electrode substrate. The above-described spacer of the present invention is used as a spacer for a liquid crystal display element, and is interposed between the first electrode substrate and the second electrode substrate to maintain a space between the electrode substrates. The sealant adheres the first electrode substrate and the second electrode substrate at a peripheral portion. The liquid crystal is sealed between the first electrode substrate and the second electrode substrate, and is filled in a space surrounded by the first electrode substrate, the second electrode substrate, and a sealing material.

【0022】本発明の液晶表示板において、スペーサー
以外の、電極基板、シール材、液晶などについては従来
と同様のものを同様に使用することができる。電極基板
は、ガラス基板、フィルム基板などの基板と、基板の表
面に形成された電極とを有しており、必要に応じて、電
極基板の表面に電極を覆うように形成された配向膜をさ
らに有する。シール材としては、エポキシ樹脂接着シー
ル材などが使用される。液晶としては、従来より用いら
れているものでよく、たとえば、ビフェニル系、フェニ
ルシクロヘキサン系、シッフ塩基系、アゾ系、アゾキシ
系、安息香酸エステル系、ターフェニル系、シクロヘキ
シルカルボン酸エステル系、ビフェニルシクロヘキサン
系、ピリミジン系、ジオキサン系、シクロヘキシルシク
ロヘキサンエステル系、シクロヘキシルエタン系、シク
ロヘキセン系、フッ素系などの液晶が使用できる。
In the liquid crystal display panel of the present invention, as for the electrode substrate, the sealing material, the liquid crystal, etc., other than the spacers, the same ones as those in the related art can be used. The electrode substrate has a substrate such as a glass substrate and a film substrate, and an electrode formed on the surface of the substrate.If necessary, an alignment film formed on the surface of the electrode substrate so as to cover the electrode is formed. Have more. As the sealing material, an epoxy resin adhesive sealing material or the like is used. As the liquid crystal, those conventionally used may be used, for example, biphenyl, phenylcyclohexane, Schiff base, azo, azoxy, benzoate, terphenyl, cyclohexylcarboxylate, biphenylcyclohexane , Pyrimidine, dioxane, cyclohexylcyclohexane ester, cyclohexylethane, cyclohexene, and fluorine liquid crystals can be used.

【0023】液晶表示素子を作製する方法としては、た
とえば、本発明のスペーサーを面内スペーサーとして2
枚の電極基板のうちの一方の電極基板に湿式法または乾
式法により均一に散布したものに、本発明のスペーサー
をシール部スペーサーとしてエポキシ樹脂等の接着シー
ル材に分散させた後、もう一方の電極基板の接着シール
部分にスクリーン印刷などの手段により塗布したものを
載せ、適度の圧力を加え、100〜180℃の温度で1
〜60分間の加熱、または、照射量40〜300mJ/
cm2の紫外線照射により、接着シール材を硬化させた
後、液晶を注入し、注入部を封止して、液晶表示素子を
得る方法を挙げることができるが、液晶表示板の作製方
法によって本発明が限定されるものではない。例えば、
面内スペーサーは、上記方法以外に、面内スペーサーを
分散含有するポリマー溶液を用いて配向膜を形成して、
配向膜の形成と同時に面内スペーサーをも形成する方法
によって形成してもよい。
As a method of manufacturing a liquid crystal display element, for example, the spacer of the present invention is used as an in-plane spacer.
After the spacer of the present invention is dispersed in an adhesive sealing material such as an epoxy resin as a sealing portion spacer on one of the two electrode substrates uniformly dispersed by a wet method or a dry method on one of the electrode substrates, The adhesive applied to the electrode substrate is placed on the adhesive seal by means of screen printing or the like, and an appropriate pressure is applied.
Heating for up to 60 minutes, or irradiation dose of 40 to 300 mJ /
After the adhesive sealing material is cured by irradiating ultraviolet rays of 2 cm 2, a method of injecting liquid crystal and sealing the injected portion to obtain a liquid crystal display element can be mentioned. The invention is not limited. For example,
In-plane spacer, in addition to the above method, forming an alignment film using a polymer solution containing dispersed in-plane spacer,
It may be formed by a method of forming an in-plane spacer at the same time as forming the alignment film.

【0024】本発明の液晶表示素子は、従来の液晶表示
素子と同じ用途、たとえば、テレビ、モニター、パーソ
ナルコンピューター、ワードプロセッサー、カーナビゲ
ーションシステム、DVD、デジタルビデオカメラ、P
HS(携帯情報端末)などの画像表示素子として使用さ
れる。
The liquid crystal display device of the present invention has the same applications as conventional liquid crystal display devices, for example, televisions, monitors, personal computers, word processors, car navigation systems, DVDs, digital video cameras,
It is used as an image display element of an HS (portable information terminal) or the like.

【0025】[0025]

【実施例】以下に本発明を実施例によりさらに詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨の範囲で設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。実施
例中で「部」、「%」とは特にことわりがない限り、そ
れぞれ「重量部」、「重量%」を表すものとする。 (実施例1)懸濁重合により製造した平均粒子径4.7
μm、粒子径の標準偏差0.52μmのジビニルベンゼ
ン系球状粒子からなる粉体を図1に示した装置を用いて
分級を行った。分級に際して用いた超音波照射チップは
ジルコニア製であり、周波数20kHz、振幅10μm
の振動を印可して分級操作を行った。超音波照射チップ
と電成ふるいの間隔は3mm、電成ふるいの有効面積と
チップの断面積の比は47.9であった。
The present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the scope of the present invention. It is within the technical scope of the invention. In the examples, “parts” and “%” represent “parts by weight” and “% by weight”, respectively, unless otherwise specified. (Example 1) Average particle size of 4.7 produced by suspension polymerization
The powder comprising divinylbenzene-based spherical particles having a particle diameter of 0.5 μm and a standard deviation of the particle diameter of 0.52 μm was classified using the apparatus shown in FIG. The ultrasonic irradiation tip used for classification is made of zirconia, and has a frequency of 20 kHz and an amplitude of 10 μm.
The classification operation was performed by applying the vibration of. The distance between the ultrasonic irradiation tip and the electric sieve was 3 mm, and the ratio of the effective area of the electric sieve to the cross-sectional area of the chip was 47.9.

【0026】電成ふるいとしてニッケル系で開孔径3.
9μm、線数1500本/インチのもの(ふるいA)を
用い、上記条件で1時間分級を行った後、ハウジング上
部に残存した液を回収し(下分級)、これをニッケル系
で開孔径4.7μm、線数1500本/インチの電成ふ
るい(ふるいB)を用いて再び10分間分級し、ハウジ
ング下部に流出した分散体を回収した(上分級)。回収
した分散体のろ過、乾燥を行い、分級粒子1を得た。分
級粒子1の平均粒子径は4.28μmで、粒子径の標準
偏差は0.18μmであった。また、分級前後における
分級粒子1中の鉄原子の差を蛍光X線により分析したと
ころ4ppm以下であった。
As an electric sieve, a nickel-based sieve having an opening diameter of 3.
After classifying for 1 hour under the above conditions using a 9 μm, 1500 lines / inch (Sieve A), the liquid remaining at the top of the housing was collected (lower classification), and this was nickel-based and the pore size was 4 mm. Classification was again performed for 10 minutes using an electric sieve (sieve B) having a line size of 1.7 μm and a number of lines of 1500 / inch, and the dispersion flowing out to the lower portion of the housing was collected (upper classification). The collected dispersion was filtered and dried to obtain classified particles 1. The average particle diameter of the classified particles 1 was 4.28 μm, and the standard deviation of the particle diameter was 0.18 μm. Further, when the difference between the iron atoms in the classified particles 1 before and after the classification was analyzed by X-ray fluorescence, it was 4 ppm or less.

【0027】(実施例2)実施例1と同様の装置を用い
て、平均粒子径6.5μm、粒子径の標準偏差0.73
μmの球状シリカ粒子を、ニッケル系で開孔径6.0μ
m、線数1000本/インチのふるい(ふるいC)およ
びニッケル系で開孔径7.0μm、線数1000本/イ
ンチのふるい(ふるいD)を用いて、分級を行った。超
音波照射チップと電成ふるいの間隔は5mm、電成ふる
いの有効面積とチップの断面積の比は1.7であった。
この分級の結果、平均粒子径6.52μm、粒子径の標
準偏差0.21μmの分級粒子2が得られた。また、分
級前後における分級粒子2中の鉄原子の差を蛍光X線に
より分析したところ4ppm以下であった。
Example 2 Using the same apparatus as in Example 1, the average particle diameter was 6.5 μm, and the standard deviation of the particle diameter was 0.73.
μm spherical silica particles, nickel-based
Classification was performed using a sieve having a diameter of 1,000 m / inch (sieve C) and a sieve having a pore size of 7.0 μm and a number of lines of 1000 / inch (sieve D) of nickel. The distance between the ultrasonic irradiation tip and the electric sieve was 5 mm, and the ratio of the effective area of the electric sieve to the cross-sectional area of the chip was 1.7.
As a result of this classification, classified particles 2 having an average particle diameter of 6.52 μm and a standard deviation of the particle diameter of 0.21 μm were obtained. Further, the difference between the iron atoms in the classified particles 2 before and after the classification was analyzed by fluorescent X-ray and found to be 4 ppm or less.

【0028】(実施例3)実施例1と同様の装置を用い
て、平均粒子径5.3μm、粒子径の標準偏差0.34
μmのアクリル−シロキサン複合球状粒子を、実施例1
で使用したふるいAおよび実施例2で使用したふるいC
を用いて、照射する超音波の振幅15μmで分級を行っ
た。超音波照射チップと電成ふるいの間隔は1mm、電
成ふるいの有効面積とチップの断面積の比は6.25で
あった。この分級の結果、平均粒子径5.34μm、粒
子径の標準偏差0.18μmの分級粒子3が得られた。
また、分級前後における分級粒子3中の鉄原子の差を蛍
光X線により分析したところ4ppm以下であった。
Example 3 Using the same apparatus as in Example 1, the average particle diameter was 5.3 μm and the standard deviation of the particle diameter was 0.34.
Example 1 Acrylic-siloxane composite spherical particles having a particle diameter of
Sieve A used in Example 2 and sieve C used in Example 2
Was used to classify the applied ultrasonic waves at an amplitude of 15 μm. The distance between the ultrasonic irradiation tip and the electric sieve was 1 mm, and the ratio of the effective area of the electric sieve to the cross-sectional area of the chip was 6.25. As a result of this classification, classified particles 3 having an average particle diameter of 5.34 μm and a standard deviation of the particle diameter of 0.18 μm were obtained.
Further, the difference between the iron atoms in the classified particles 3 before and after the classification was analyzed by fluorescent X-ray and found to be 4 ppm or less.

【0029】(実施例4)コア粒子として実施例3で得
られた分級粒子3の表面をスチレン−アクリル樹脂(平
均粒子径0.4μm、Tg68℃)で乾式コーティング
を行い、熱可塑性樹脂コーティング粒子とした。この粒
子の平均粒子径は6.2μm、粒子径の標準偏差0.7
8μmであった。このコーティング粒子を、実施例1と
同様の装置を用いて、実施例1で使用したふるいAおよ
び実施例2で使用したふるいCを用いて、分級を行っ
た。超音波照射チップと電成ふるいの間隔は1mm、電
成ふるいの有効面積とチップの断面積の比は6.25で
あった。
Example 4 The surface of the classified particles 3 obtained in Example 3 as core particles was dry-coated with a styrene-acrylic resin (average particle diameter 0.4 μm, Tg 68 ° C.) to form thermoplastic resin-coated particles. And The average particle diameter of the particles is 6.2 μm, and the standard deviation of the particle diameter is 0.7.
It was 8 μm. The coated particles were classified using the same apparatus as in Example 1, using sieve A used in Example 1 and sieve C used in Example 2. The distance between the ultrasonic irradiation tip and the electric sieve was 1 mm, and the ratio of the effective area of the electric sieve to the cross-sectional area of the chip was 6.25.

【0030】この分級の結果、平均粒子径5.54μ
m、粒子径の標準偏差0.27μmの分級粒子4が得ら
れた。また、分級前後における分級粒子3中の鉄原子の
差を蛍光X線により分析したところ4ppm以下であっ
た。 (比較例1)実施例1において照射する超音波の周波数
を120kHzに変更した以外は同様の操作を行ったと
ころ、ふるいB上に多量の粒子が沈降しわずかしか分級
粒子(比較分級粒子1)が得られなかった。なお、比較
分級粒子1の平均粒子径は4.22μm、粒子径の標準
偏差0.27μmであった。
As a result of this classification, the average particle size was 5.54 μm.
m, classified particles 4 having a standard deviation of particle diameter of 0.27 μm were obtained. Further, the difference between the iron atoms in the classified particles 3 before and after the classification was analyzed by fluorescent X-ray and found to be 4 ppm or less. (Comparative Example 1) When the same operation was performed as in Example 1 except that the frequency of the ultrasonic wave to be irradiated was changed to 120 kHz, a large amount of particles settled on the sieve B, and the particles were slightly classified (Comparative classified particles 1). Was not obtained. The average particle diameter of the comparative classified particles 1 was 4.22 μm, and the standard deviation of the particle diameter was 0.27 μm.

【0031】(比較例2)実施例1において照射する超
音波の振幅を60μmに変更した以外は同様の操作を行
ったところ、分級中30分経過したところでハウジング
下部への液の流出量が増加した。この時点で分級を中断
し電成ふるいを観察したところ、ふるいが破れており分
級を継続することができなかった。 (比較例3)実施例2において超音波照射チップと電成
ふるいの間隔を13mmに変更した以外は同様の操作を
行ったところ、ふるいC上に多量の粒子が沈降しハウジ
ング下部への分級液の流出が著しく低下したため下分級
を終了した。その後ふるいDを用いて上分級を行った
後、ろ過、乾燥を行い、比較分級粒子3を得た。
(Comparative Example 2) The same operation as in Example 1 was carried out except that the amplitude of the ultrasonic wave to be irradiated was changed to 60 µm, and the amount of liquid flowing out to the lower portion of the housing increased after 30 minutes during the classification. did. At this time, the classification was interrupted and the electric sieve was observed. As a result, the sieve was broken and the classification could not be continued. (Comparative Example 3) The same operation was performed as in Example 2 except that the distance between the ultrasonic irradiation tip and the electric sieve was changed to 13 mm. A large amount of particles settled on the sieve C, and the classification liquid was moved to the lower part of the housing. The lower classification was terminated because the outflow of methane decreased significantly. Then, after performing upper classification using a sieve D, filtration and drying were performed to obtain comparative classified particles 3.

【0032】比較分級粒子3の平均粒子径は6.50μ
m、粒子径の標準偏差は0.25μmであった。 (比較例4)実施例2において電成ふるいの有効面積と
チップの断面積の比を225に変更した以外は同様の操
作を行ったところ、ハウジング下部に液が流出せず、分
級することができなかった。 (比較例5)実施例2において照射する超音波の周波数
を8kHzに変更した以外は同様の操作を行ったとこ
ろ、多大な騒音が発生し分級を継続することができなか
った。
The average particle diameter of the comparative classified particles 3 is 6.50 μm.
m, the standard deviation of the particle diameter was 0.25 μm. (Comparative Example 4) The same operation as in Example 2 was performed except that the ratio of the effective area of the electric sieve to the cross-sectional area of the chip was changed to 225. could not. (Comparative Example 5) A similar operation was performed except that the frequency of the ultrasonic wave to be applied was changed to 8 kHz in Example 2, and a large amount of noise was generated, and the classification could not be continued.

【0033】(比較例6)実施例2において照射する超
音波の振幅を0.8μmに変更した以外は同様の操作を
行ったところ、ふるいCおよびD上に多量の粒子が沈降
しわずかしか分級粒子(比較分級粒子6)が得られなか
った。なお比較分級粒子6の平均粒子径は6.51μ
m、粒子径の標準偏差は0.26μmであった。 (比較例7)実施例3において超音波照射チップのみを
ステンレス製のものに交換した以外は同様の操作を行い
比較分級粒子7を得た。比較分級粒子7の平均粒子径は
5.33mm、粒子径の標準偏差は0.18μmであ
り、分級前後における比較分級粒子7中の鉄原子の差を
蛍光X線により分析したところ7ppmであった。
(Comparative Example 6) A similar operation was performed as in Example 2 except that the amplitude of the ultrasonic wave to be irradiated was changed to 0.8 µm. A large amount of particles settled on the sieves C and D, and the particles were classified only slightly. No particles (comparatively classified particles 6) were obtained. The average particle diameter of the comparative classified particles 6 was 6.51 μm.
m, the standard deviation of the particle diameter was 0.26 μm. Comparative Example 7 Comparative classified particles 7 were obtained in the same manner as in Example 3, except that only the ultrasonic irradiation tip was replaced with a stainless steel tip. The average particle diameter of the comparative classified particles 7 was 5.33 mm, the standard deviation of the particle diameter was 0.18 μm, and the difference between the iron atoms in the comparative classified particles 7 before and after classification was analyzed by fluorescent X-ray, and was 7 ppm. .

【0034】(比較例8)実施例3において超音波照射
チップと電成ふるいの間隔を0.04mmに変更した以
外は同様の操作を行ったところ、分級中3分経過したと
ころでハウジング下部への液の流出量が著しく増加し
た。この時点で分級を中断し電成ふるいを観察したとこ
ろ、ふるいが破れており分級を継続することができなか
った。 (比較例9)実施例4において電成ふるいの有効面積と
チップの断面積の比が0.20であるニッケル系で開孔
径4.0μm、線数1000本/インチのもの(ふるい
E)、および、ニッケル系で開孔径6.2μm、線数1
000本/インチのもの(ふるいF)をそれぞれふるい
A、ふるいBに代えて同様の操作を行ったところ、上分
級・下分級ともにハウジング下部への液の流出が少な
く、わずかしか分級粒子(比較分級粒子9)の平均粒子
径は5.61μm、粒子径の標準偏差は0.27μmで
あった。
Comparative Example 8 The same operation as in Example 3 was performed except that the distance between the ultrasonic irradiation tip and the electric sieve was changed to 0.04 mm. The outflow of liquid increased significantly. At this time, the classification was interrupted and the electric sieve was observed. As a result, the sieve was broken and the classification could not be continued. (Comparative Example 9) A nickel-based sieve having an opening area of 4.0 μm and a number of lines of 1000 lines / inch (sieve E) in Example 4, in which the ratio of the effective area of the electric sieve to the cross-sectional area of the chip is 0.20, And a nickel-based pore size of 6.2 μm and a line number of 1
When the same operation was performed with the sieve A and sieve B, respectively, for 2,000 lines / inch (sieve F), the outflow of liquid to the lower part of the housing was small in both the upper and lower classifications, and the classified particles were only slightly The average particle diameter of the classified particles 9) was 5.61 μm, and the standard deviation of the particle diameter was 0.27 μm.

【0035】(実施例5)図2に示すような液晶表示素
子を以下の方法により作製した。まず、300mm×3
45mm×1.1mmの下側ガラス基板21上に、透明
電極15およびポリイミド配向膜14を形成した後、ラ
ビングを行って、下側電極基板210を得た。その下側
電極基板210に、メタノール30重量部、イソプロパ
ノール20重量部、水50重量部の混合溶媒中に実施例
1で得られた分級粒子1を液晶表示素子用スペーサー1
8として1重量%となるように均一に分散させたものを
5秒間散布した。
Example 5 A liquid crystal display device as shown in FIG. 2 was manufactured by the following method. First, 300mm × 3
After forming the transparent electrode 15 and the polyimide alignment film 14 on the lower glass substrate 21 of 45 mm × 1.1 mm, rubbing was performed to obtain the lower electrode substrate 210. On the lower electrode substrate 210, the classified particles 1 obtained in Example 1 were mixed in a mixed solvent of 30 parts by weight of methanol, 20 parts by weight of isopropanol, and 50 parts by weight of water.
A dispersion uniformly dispersed so as to be 1% by weight as 8 was sprayed for 5 seconds.

【0036】一方、300mm×345mm×1.1m
mの上側ガラス基板22上に、透明電極15およびポリ
イミド配向膜14を形成した後、ラビングを行って、上
側電極基板220を得た。そして、エポキシ樹脂接着シ
ール剤中に実施例1で得られた分級粒子1をシール部ス
ペーサー13として30重量%となるように分散させた
ものを上側電極基板220の接着シール部分にスクリー
ン印刷した。最後に、上側電極基板220、下側電極基
板210を電極15および配向膜14がそれぞれ対向す
るように、液晶表示素子用スペーサー18を介して貼り
合わせ、4kg/cm2の圧力を加え、150℃の温度
で30分間加熱し、接着シール剤12を硬化させた。そ
の後、2枚の電極基板210、220の隙間を真空と
し、さらに大気圧に戻すことによりビフェニル系および
フェニルシクロヘキサン系の液晶物質を混合した液晶1
7を注入し、注入部を封止した。そして、上下ガラス基
板22、21の外側にポリビニルアルコール系偏光膜1
6を貼り付けて液晶表示素子1とした。
On the other hand, 300 mm × 345 mm × 1.1 m
After forming the transparent electrode 15 and the polyimide alignment film 14 on the m upper glass substrate 22, rubbing was performed to obtain the upper electrode substrate 220. Then, the classified particles 1 obtained in Example 1 dispersed in an epoxy resin adhesive sealant so as to be 30% by weight as a seal spacer 13 were screen-printed on the adhesive seal portion of the upper electrode substrate 220. Finally, the upper electrode substrate 220 and the lower electrode substrate 210 are bonded via the liquid crystal display element spacer 18 so that the electrode 15 and the alignment film 14 face each other, and a pressure of 4 kg / cm 2 is applied, and The adhesive sealant 12 was cured by heating at a temperature of 30 minutes. Thereafter, the gap between the two electrode substrates 210 and 220 is evacuated, and the pressure is returned to the atmospheric pressure.
7, and the injection portion was sealed. Then, the polyvinyl alcohol-based polarizing film 1 is provided outside the upper and lower glass substrates 22 and 21.
6 was attached to the liquid crystal display element 1.

【0037】液晶表示素子1について画像むらおよび静
止画像を48時間連続表示した後の残像の有無を目視に
より評価した。結果を表1に示す。 (実施例6〜8、比較例6〜10)実施例2〜4、比較
例1、3、6、7および9で得られた分級粒子を用い
て、実施例5と同様にして液晶表示素子2〜4、比較液
晶表示素子1〜5をそれぞれ作製し、実施例5と同じ方
法で評価を行った。結果を表1に示す。
The liquid crystal display element 1 was visually evaluated for image unevenness and the presence or absence of an afterimage after continuously displaying a still image for 48 hours. Table 1 shows the results. (Examples 6 to 8, Comparative Examples 6 to 10) Using the classified particles obtained in Examples 2 to 4 and Comparative Examples 1, 3, 6, 7 and 9, in the same manner as in Example 5, a liquid crystal display element 2 to 4 and comparative liquid crystal display elements 1 to 5 were produced, respectively, and evaluated in the same manner as in Example 5. Table 1 shows the results.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明の第1発明の分級方法では、周波
数が10k〜100kHzであり、振幅が1〜50μm
の超音波を印加するため、分級効率が高く、電成ふるい
の損傷も少ない。本発明の第2発明の分級方法では、超
音波照射チップの先端と電成ふるいとの間隔が0.05
〜10mmとであるため、分級効率が高く、電成ふるい
の損傷も少ない。本発明の第3発明の分級方法では、電
成ふるいの面積が、超音波照射チップの断面積の0.2
5〜100倍であるため、分級効率が高く、電成ふるい
の損傷も少ない。
According to the classification method of the first invention of the present invention, the frequency is 10 kHz to 100 kHz and the amplitude is 1 μm to 50 μm.
, The classification efficiency is high and the electric sieve is less damaged. In the classification method according to the second invention of the present invention, the distance between the tip of the ultrasonic irradiation tip and the electric sieve is 0.05.
Since it is 10 to 10 mm, the classification efficiency is high and the electric sieve is hardly damaged. In the classification method according to the third aspect of the present invention, the area of the electric sieve is 0.2% of the sectional area of the ultrasonic irradiation tip.
Since the ratio is 5 to 100 times, the classification efficiency is high and the electric sieve is hardly damaged.

【0040】本発明の第4発明の分級方法では、超音波
照射チップの少なくとも先端部分がセラミックからなる
ため、磨耗や腐食が起こりにくく、しかも仮にセラミッ
クが粉体中へ混入してしまったとしても、信頼性低下の
原因とはなりにくい。本発明の分級された粒子は、上記
の本発明の第1から第4の発明のいずれかの粉体の分級
方法により分級された粒子であるため、粒子径が極めて
そろったものである。また、金属系不純物の混入を抑制
することができるため、液晶表示素子用スペーサー等の
電子材料の用途に用いる場合にも信頼性が低下しない。
本発明の液晶表示素子用スペーサーは、上記の本発明の
第1から第4の発明のいずれかの粉体の分級方法により
分級された粒子を本体とするため、粒子径が極めてそろ
っており、正確な間隔で配置されるべき一対の電極基板
間の隙間距離を精度良く一定に保持することが可能であ
る。また、粒子中への金属系不純物の混入を抑制するこ
とができるので、金属系不純物による液晶は以降の乱れ
あるいは電気特性への影響を防止することができ、従来
公知の方法によって製造されたスペーサーを用いる場合
と比較して、液晶表示素子の画質が格段に向上する。
In the classification method according to the fourth invention of the present invention, at least the tip of the ultrasonic irradiation tip is made of ceramic, so that it is difficult for abrasion and corrosion to occur, and even if ceramic is mixed into the powder. , And is unlikely to cause a reduction in reliability. Since the classified particles of the present invention are particles classified by the powder classification method of any one of the first to fourth inventions of the present invention, the particle diameters are extremely uniform. In addition, since metal impurities can be prevented from being mixed, the reliability does not decrease even when used for electronic materials such as a spacer for a liquid crystal display element.
Since the spacer for a liquid crystal display element of the present invention has, as a main body, particles classified by the method for classifying a powder according to any one of the first to fourth inventions of the present invention, the particle diameter is extremely uniform, The gap distance between the pair of electrode substrates to be arranged at accurate intervals can be accurately and constantly maintained. In addition, since it is possible to suppress the incorporation of metal-based impurities into the particles, the liquid crystal due to the metal-based impurities can be prevented from subsequently disturbing or affecting the electrical characteristics, and a spacer manufactured by a conventionally known method can be used. The image quality of the liquid crystal display element is remarkably improved as compared with the case of using.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の分級方法に用いられる分級装置の一
例を表す概略断面図である。
FIG. 1 is a schematic sectional view illustrating an example of a classification device used in a classification method of the present invention.

【図2】 本発明の液晶表示素子用スペーサーが用いら
れる液晶表示素子の一例を表す概略断面図である。
FIG. 2 is a schematic cross-sectional view illustrating an example of a liquid crystal display device using the spacer for a liquid crystal display device of the present invention.

【符号の説明】[Explanation of symbols]

1 電成ふるい 2 サポート 3 パッキン 4 ハウジング上部 4′ ハウジング下部 5 超音波照射チップ 6、6′ 媒体循環ライン 7 媒体供給ライン 12 接着シール材 13 シール部スペーサー 14 配向膜 15 電極 16 偏光膜 17 液晶 18 面内スペーサー 21 下側ガラス基板 22 上側ガラス基板 210 下側電極基板 220 上側電極基板 DESCRIPTION OF SYMBOLS 1 Electric sieve 2 Support 3 Packing 4 Housing upper part 4 'Housing lower part 5 Ultrasonic irradiation chip 6, 6' Medium circulation line 7 Medium supply line 12 Adhesive sealing material 13 Seal part spacer 14 Alignment film 15 Electrode 16 Polarization film 17 Liquid crystal 18 In-plane spacer 21 Lower glass substrate 22 Upper glass substrate 210 Lower electrode substrate 220 Upper electrode substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若槻 伸治 大阪府吹田市西御旅町5番8号 株式会社 日本触媒内 (72)発明者 佐々木 令晋 大阪府吹田市西御旅町5番8号 株式会社 日本触媒内 (72)発明者 粟嶋 優 大阪府吹田市西御旅町5番8号 株式会社 日本触媒内 (72)発明者 北垣戸 寛之 大阪府吹田市西御旅町5番8号 株式会社 日本触媒内 Fターム(参考) 2H089 LA07 LA15 LA19 MA01X MA04Y MA07Y NA10 NA24 NA41 NA60 QA12 QA14 TA04 4D071 AA02 AB45 AB62 BB06 DA20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Wakatsuki 5-8 Nishiburi-cho, Suita-shi, Osaka Nippon Shokubai Co., Ltd. (72) Inventor Reisin Sasaki 5-8 Nishi-Maburi-cho, Suita-shi, Osaka Company Nippon Shokubai Co., Ltd. (72) Inventor Yu Awashima 5-8, Nishiobari-cho, Suita-shi, Osaka Nippon Shokubai Co., Ltd. (72) Inventor Hiroyuki Kitagaki 5-8 Nishiobari-cho, Suita-shi, Osaka Japan F term in catalyst (reference) 2H089 LA07 LA15 LA19 MA01X MA04Y MA07Y NA10 NA24 NA41 NA60 QA12 QA14 TA04 4D071 AA02 AB45 AB62 BB06 DA20

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電成ふるいと超音波照射チップとを備え
た分級装置に、原料粉体を液状媒体に分散させた分散体
を、前記超音波照射チップより超音波を印加しながら通
すことによって、前記原料粉体を所望の粒度範囲の粒子
に分級する方法であって、周波数が10k〜100kH
zであり、振幅が1〜50μmの超音波を印加すること
を特徴とする粉体の分級方法。
1. A dispersant obtained by dispersing a raw material powder in a liquid medium is passed through a classifier provided with an electric sieve and an ultrasonic irradiation chip while applying ultrasonic waves from the ultrasonic irradiation chip. A method for classifying the raw material powder into particles having a desired particle size range, wherein the frequency is 10 kH to 100 kH.
A method for classifying powder, wherein z is applied and ultrasonic waves having an amplitude of 1 to 50 μm are applied.
【請求項2】 電成ふるいと超音波照射チップとを備え
た分級装置に、原料粉体を液状媒体に分散させた分散体
を、前記超音波照射チップより超音波を印加しながら通
すことによって、前記原料粉体を所望の粒度範囲の粒子
に分級する方法であって、前記超音波照射チップの先端
と前記電成ふるいとの間隔が0.05〜10mmである
ことを特徴とする粉体の分級方法。
2. A classifier having an electric sieve and an ultrasonic irradiation chip, and passing a dispersion obtained by dispersing the raw material powder in a liquid medium while applying ultrasonic waves from the ultrasonic irradiation chip. A method for classifying the raw material powder into particles having a desired particle size range, wherein a distance between a tip of the ultrasonic irradiation tip and the electric sieve is 0.05 to 10 mm. Classification method.
【請求項3】 電成ふるいと超音波照射チップとを備え
た分級装置に、原料粉体を液状媒体に分散させた分散体
を、前記超音波照射チップより超音波を印加しながら通
すことによって、前記原料粉体を所望の粒度範囲の粒子
に分級する方法であって、前記電成ふるいの面積が、前
記超音波照射チップの断面積の0.25〜100倍であ
ることを特徴とする粉体の分級方法。
3. A classifier provided with an electric sieve and an ultrasonic irradiation tip, by passing a dispersion obtained by dispersing the raw material powder in a liquid medium while applying ultrasonic waves from the ultrasonic irradiation tip. A method of classifying the raw material powder into particles having a desired particle size range, wherein an area of the electric sieve is 0.25 to 100 times a cross-sectional area of the ultrasonic irradiation tip. Classification method of powder.
【請求項4】 電成ふるいと超音波照射チップとを備え
た分級装置に、原料粉体を液状媒体に分散させた分散体
を、前記超音波照射チップより超音波を印加しながら通
すことによって、前記原料粉体を所望の粒度範囲の粒子
に分級する方法であって、前記超音波照射チップの少な
くとも先端部分がセラミックからなることを特徴とする
粉体の分級方法。
4. A classifier provided with an electric sieve and an ultrasonic irradiation chip, and a dispersion obtained by dispersing the raw material powder in a liquid medium is passed while applying ultrasonic waves from the ultrasonic irradiation chip. A method of classifying the raw material powder into particles having a desired particle size range, wherein at least a tip portion of the ultrasonic irradiation tip is made of ceramic.
【請求項5】 請求項1から4のいずれかに記載の粉体
の分級方法により分級された粒子。
5. Particles classified by the method for classifying powder according to any one of claims 1 to 4.
【請求項6】 請求項1から4のいずれかに記載の粉体
の分級方法により分級された粒子を本体とする、液晶表
示素子用スペーサー。
6. A spacer for a liquid crystal display element, comprising as a main body particles classified by the powder classification method according to claim 1. Description:
JP2000069537A 2000-03-13 2000-03-13 Powder classification method Expired - Fee Related JP4012357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069537A JP4012357B2 (en) 2000-03-13 2000-03-13 Powder classification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069537A JP4012357B2 (en) 2000-03-13 2000-03-13 Powder classification method

Publications (2)

Publication Number Publication Date
JP2001252588A true JP2001252588A (en) 2001-09-18
JP4012357B2 JP4012357B2 (en) 2007-11-21

Family

ID=18588394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069537A Expired - Fee Related JP4012357B2 (en) 2000-03-13 2000-03-13 Powder classification method

Country Status (1)

Country Link
JP (1) JP4012357B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572315B2 (en) * 2003-08-28 2009-08-11 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151023A (en) * 1976-06-11 1977-12-15 Tohoku Metal Ind Ltd Ultrasonic wave oscillator constant velocity controller
JPS567669A (en) * 1979-06-29 1981-01-26 Tohoku Metal Ind Ltd Ultrasonic oscillating circuit
JPH09108853A (en) * 1995-10-12 1997-04-28 Internatl Business Mach Corp <Ibm> Bonding tool for ultrasonic bonding, manufacture of bonding structure, and bonding structure
JPH09235527A (en) * 1995-12-26 1997-09-09 Matsushita Electric Ind Co Ltd Adhesive particle composition, adhesive spacer for liquid crystal display plate and liquid crystal display plate
JPH09318951A (en) * 1996-05-31 1997-12-12 Kao Corp Production of spacer for liquid crystal display
JPH11169791A (en) * 1997-12-08 1999-06-29 Ngk Spark Plug Co Ltd Ultrasonic horn
JPH11292922A (en) * 1998-04-10 1999-10-26 Sumika Abs Latex Kk Filtration of latex and its use
JPH11319626A (en) * 1998-05-20 1999-11-24 Sekisui Chem Co Ltd Wet type fine sphere classifying method, conductive particulate, anisotropic conductive adhesive and conductive connecting structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52151023A (en) * 1976-06-11 1977-12-15 Tohoku Metal Ind Ltd Ultrasonic wave oscillator constant velocity controller
JPS567669A (en) * 1979-06-29 1981-01-26 Tohoku Metal Ind Ltd Ultrasonic oscillating circuit
JPH09108853A (en) * 1995-10-12 1997-04-28 Internatl Business Mach Corp <Ibm> Bonding tool for ultrasonic bonding, manufacture of bonding structure, and bonding structure
JPH09235527A (en) * 1995-12-26 1997-09-09 Matsushita Electric Ind Co Ltd Adhesive particle composition, adhesive spacer for liquid crystal display plate and liquid crystal display plate
JPH09318951A (en) * 1996-05-31 1997-12-12 Kao Corp Production of spacer for liquid crystal display
JPH11169791A (en) * 1997-12-08 1999-06-29 Ngk Spark Plug Co Ltd Ultrasonic horn
JPH11292922A (en) * 1998-04-10 1999-10-26 Sumika Abs Latex Kk Filtration of latex and its use
JPH11319626A (en) * 1998-05-20 1999-11-24 Sekisui Chem Co Ltd Wet type fine sphere classifying method, conductive particulate, anisotropic conductive adhesive and conductive connecting structure

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572315B2 (en) * 2003-08-28 2009-08-11 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
US8034286B2 (en) 2006-09-08 2011-10-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system for separating compounds from aqueous effluent
US7703698B2 (en) 2006-09-08 2010-04-27 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment chamber and continuous flow mixing system
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9239036B2 (en) 2006-09-08 2016-01-19 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment and delivery system and process
US8616759B2 (en) 2006-09-08 2013-12-31 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment system
US7673516B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7712353B2 (en) 2006-12-28 2010-05-11 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid treatment system
US7740666B2 (en) 2006-12-28 2010-06-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7674300B2 (en) 2006-12-28 2010-03-09 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US8182552B2 (en) 2006-12-28 2012-05-22 Kimberly-Clark Worldwide, Inc. Process for dyeing a textile web
US7785674B2 (en) 2007-07-12 2010-08-31 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US7947184B2 (en) 2007-07-12 2011-05-24 Kimberly-Clark Worldwide, Inc. Treatment chamber for separating compounds from aqueous effluent
US7998322B2 (en) 2007-07-12 2011-08-16 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber having electrode properties
US8454889B2 (en) 2007-12-21 2013-06-04 Kimberly-Clark Worldwide, Inc. Gas treatment system
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US8632613B2 (en) 2007-12-27 2014-01-21 Kimberly-Clark Worldwide, Inc. Process for applying one or more treatment agents to a textile web
US8215822B2 (en) 2007-12-28 2012-07-10 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing antimicrobial formulations
US8143318B2 (en) 2007-12-28 2012-03-27 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8057573B2 (en) 2007-12-28 2011-11-15 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for increasing the shelf life of formulations
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
US8163388B2 (en) 2008-12-15 2012-04-24 Kimberly-Clark Worldwide, Inc. Compositions comprising metal-modified silica nanoparticles
US8685178B2 (en) 2008-12-15 2014-04-01 Kimberly-Clark Worldwide, Inc. Methods of preparing metal-modified silica nanoparticles

Also Published As

Publication number Publication date
JP4012357B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP2001252588A (en) Powder classifying method
Lapointe et al. Shape-controlled colloidal interactions in nematic liquid crystals
TW536713B (en) Conductive metal particles, conductive composite metal particles and applied products using the same
US7770738B2 (en) Classifying device and method of classification
JPWO2003075087A1 (en) Image display apparatus and method
US20090130339A1 (en) Method for Preparing Electroconductive Particles with Improved Dispersion and Adherence
Bun-Athuek et al. Study on effect of the surface variation of colloidal silica abrasive during chemical mechanical polishing of sapphire
KR20060027210A (en) Adhesive radiation sheet having high thermal conduction property
JP2001252590A (en) Powder classifying method and classified particle
US20090236269A1 (en) Classification method and classification apparatus
JP2001252589A (en) Powder classifying method
JP3971547B2 (en) Powder classification method
JP3034474B2 (en) Adhesive particle composition, adhesive spacer for liquid crystal display panel, and liquid crystal display panel
JPH0881561A (en) Organic/inorganic composite particle, its production and its use
JP6019745B2 (en) Light control film with conductive material, and method for producing light control film with conductive material
US10458893B2 (en) Miniaturized particulate matter detector and manufacturing method of a filter
JP3920542B2 (en) Powder classification method
JP2000034306A (en) Production of fine particle, fine particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive fine particle and conductive connection structure
JP6962307B2 (en) Conductive particles for anisotropic conductive adhesives
TW583439B (en) Liquid crystal display device
JP3598050B2 (en) How to measure sieve opening diameter
JP3987321B2 (en) Method for producing amino resin particles
JP2005314706A (en) Organic inorganic composite particle, its production method and its use
JP2004179137A (en) Conductive particulate, conductive particulate manufacturing method, and conductive connecting structure
Naruhashi et al. Mechanical stability and insulation reliability of polymeric layers constructed by thermal fusion of polymer shell particles heterocoagulated on conductive nickel‐plated core particles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4012357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees