JP2001248539A - Displacement type solar low temperature difference engine system - Google Patents

Displacement type solar low temperature difference engine system

Info

Publication number
JP2001248539A
JP2001248539A JP2000062043A JP2000062043A JP2001248539A JP 2001248539 A JP2001248539 A JP 2001248539A JP 2000062043 A JP2000062043 A JP 2000062043A JP 2000062043 A JP2000062043 A JP 2000062043A JP 2001248539 A JP2001248539 A JP 2001248539A
Authority
JP
Japan
Prior art keywords
low temperature
solar
temperature difference
heat
engine system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000062043A
Other languages
Japanese (ja)
Inventor
Takeo Saito
武雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000062043A priority Critical patent/JP2001248539A/en
Publication of JP2001248539A publication Critical patent/JP2001248539A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar energy utilizing dispersion type energy system (including a system of supplying heat and electricity together) for a small area and for family for preventing such problems that there is a necessity for a very wide field and a device using an advanced technique, and wide diffusion is stunted in cost and the safety, since energy density is increased by collecting solar energy from a wide field, and an efficiency is improved by obtaining a high temperature, in most solar heat power generators in prior arts. SOLUTION: A compound parabolic concentrator type solar collector is employed in a heating part of a basic Rankine cycle, a scroll type expander is employed in an expansion part, a latent heat storage tank is disposed as a heat accumulator, and thereby, an output is taken out from a low temperature heat source.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、比較的低温度の
熱源からも出力の取り出しが可能な熱機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat engine capable of extracting output from a relatively low-temperature heat source.

【0002】[0002]

【従来の技術】従来の太陽熱発電装置は図7に示すよう
に広大な土地から太陽エネルギーを集めることでエネル
ギー密度を上げ、500〜1000℃といった高温を得
ることで効率を上げるものがほとんどである。
2. Description of the Related Art As shown in FIG. 7, most conventional solar power generators increase the energy density by collecting solar energy from a vast land and increase the efficiency by obtaining a high temperature of 500 to 1000 ° C. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、以上の
従来技術によれば、非常に広大な敷地と高度な技術を用
いた装置が必要となり、コストや安全性の面から結局の
ところ幅広い普及が阻害されてしまう。
However, according to the prior art described above, a very large site and a device using advanced technology are required, which ultimately hinders widespread use in terms of cost and safety. Will be done.

【0004】そこで、この発明は、小地域向け・一般家
庭用の太陽エネルギー利用分散型エネルギーシステム
(熱電併給を含む)を提供することを課題とする。集熱
面積が限られるため、得られるエネルギー量も少なく、
低温度熱源からも出力の取り出しが可能なこの発明の低
温度差エンジンシステムが必要となる。
[0004] Therefore, an object of the present invention is to provide a distributed energy system using solar energy (including cogeneration) for small areas and ordinary households. Because the heat collection area is limited, the amount of energy obtained is small,
There is a need for a low temperature difference engine system of the present invention that is capable of extracting power from a low temperature heat source.

【0005】[0005]

【課題を解決するための手段】以上の課題を解決するた
めに、請求項1の発明は、基本的熱機関の構成5要素の
うち加熱部分に定置型(非追尾式CPC型)ソーラーコレ
クタを採用したことを特徴とする容積型ソーラー低温度
差エンジンシステムである。
Means for Solving the Problems To solve the above problems, the invention of claim 1 is to provide a stationary (non-tracking type CPC type) solar collector in a heating part among the five components of a basic heat engine. This is a positive displacement solar low temperature difference engine system characterized by adoption.

【0006】また、請求項2の発明は、基本的熱機関の
構成5要素のうち膨張部分にスクロール型エキスパンダ
を採用したことを特徴とする容積型ソーラー低温度差エ
ンジンシステムである。
A second aspect of the present invention is a positive displacement solar low temperature difference engine system characterized in that a scroll type expander is employed in an expanded portion of the five constituent elements of the basic heat engine.

【0007】請求項3の発明は、基本的熱機関の構成5
要素に新たに潜熱蓄熱タンクを設けたことを特徴とする
容積型ソーラー低温度差エンジンシステムである。
A third aspect of the present invention provides a basic structure of a heat engine.
This is a positive displacement solar low temperature difference engine system characterized by newly providing a latent heat storage tank in an element.

【0008】[0008]

【発明の実施の形態】この発明の一実施形態を、図1に
示す。
FIG. 1 shows an embodiment of the present invention.

【0009】この発明の容積型ソーラー低温度差エンジ
ンシステムは図2に示す従来のランキンサイクルの加熱
部分8にCPC型ソーラーコレクタ1、膨張部分9にスク
ロール型エキスパンダ2を採用し、加えて太陽エネルギ
ーのもつ欠点である間欠性を解決するために蓄熱システ
ムとして潜熱蓄熱タンク3を組み込んだものである。
A positive displacement solar low temperature difference engine system according to the present invention employs a CPC solar collector 1 for a heating portion 8 and a scroll expander 2 for an expansion portion 9 of the conventional Rankine cycle shown in FIG. The latent heat storage tank 3 is incorporated as a heat storage system in order to solve the intermittent problem of energy.

【0010】CPC型ソーラーコレクタ1は、図3のよう
な内部構造を持つ。許容偏角内で入射した太陽光は反射
板15によりすべて銅管19に到達する。反射板15の
表面は高い反射率を実現する増反射コーティングがなさ
れており、銅管19の表面には黒色クロム(選択吸収
膜)が塗布されている。反射板の汚れ防止と断熱性能に
大きな影響を与える透過体はクリプトン封入複層ガラス
13とアクリルベースのフィルム14によるトリプルグ
レージングがなされている。裏面はスタイロフォーム1
6とグラスウール17により断熱されている。
The CPC solar collector 1 has an internal structure as shown in FIG. All the sunlight incident within the allowable deviation angle reaches the copper tube 19 by the reflection plate 15. The surface of the reflection plate 15 is provided with a reflection-enhancing coating for realizing high reflectance, and the surface of the copper tube 19 is coated with black chromium (selective absorption film). The transmissive material which greatly affects the prevention of contamination of the reflector and the heat insulating performance is triple glazed by the krypton-encapsulated double-glazed glass 13 and the acrylic-based film 14. Styrofoam 1 on the back
6 and glass wool 17 are insulated.

【0011】スクロール型エキスパンダ2はエアコン用
のスクロールコンプレッサーを逆回ししたもので、図3
のような作動原理を持つ。単体での試験で高い機関効率
を持つことがわかっている。
The scroll type expander 2 is obtained by reversing a scroll compressor for an air conditioner.
It has the following operating principle. It has been found that a single unit test has high engine efficiency.

【0012】潜熱蓄熱タンク3は、内部に潜熱蓄熱カプ
セル7を持ち、蓄熱量の増大や一定条件の蒸気をアキュ
ムレータとしての自己蒸発作用により得ることができ
る。これにより夜間などの日射の無いときにでも運転が
可能となる。
The latent heat storage tank 3 has a latent heat storage capsule 7 inside, and can increase the amount of stored heat and obtain steam under a certain condition by a self-evaporating action as an accumulator. This enables driving even when there is no solar radiation such as at night.

【0013】実施形態の効果を述べれば、この実施形態
によって、高い集熱効率を有するCPC型ソーラーコレク
タ1によって得られた高圧熱水をアキュムレータに貯蔵
し、フラッシュ蒸発を利用して蒸気を造り、スクロール
型エキスパンダ2を駆動させ、コンデンサ6によって冷
却・凝縮した水をまたコレクタ1へ戻すという基本ラン
キンサイクルにおいて、図5に示すように日射に対する
軸出力の効率(自立運転効率)は冬期においても6%を
達成した。また、冷却水が受けた熱量も加えた総合効率
では34%となった。また、使用頻度の少ないコレクタ
を利用してより高温の得られる夏季においては10.5
%の効率が得られ、さらに、カスケード利用(多段化)
・スクロールのラップ形状(渦巻形状)や可変圧力比化
などの最適設計図6を加えれば15%の効率も可能と試
算される。
According to the effect of the embodiment, according to this embodiment, high-pressure hot water obtained by the CPC solar collector 1 having high heat collection efficiency is stored in an accumulator, steam is produced by using flash evaporation, and scrolling is performed. In the basic Rankine cycle in which the mold expander 2 is driven and the water cooled and condensed by the condenser 6 is returned to the collector 1, as shown in FIG. % Achieved. The total efficiency including the heat received by the cooling water was 34%. Further, in summer when a higher temperature can be obtained by using a collector which is not frequently used, 10.5 is used.
% Efficiency, and cascade use (multi-stage)
・ It is estimated that an efficiency of 15% can be achieved by adding an optimum design drawing 6 such as a scroll wrap shape (spiral shape) and variable pressure ratio.

【0014】これは現在一部普及している太陽光発電装
置の効率6〜10%を凌ぐものです。
This exceeds the efficiency of the currently widely used photovoltaic power generator of 6 to 10%.

【0015】この発明のシステムが持つ多目的性(暖房
・給湯に利用可能、多種熱源利用可能、日射の無いとき
にも発電可能、エネルギー貯蔵が電力貯蔵より安価な
ど)もふくめて考えると、太陽エネルギー利用システム
として幅広く普及することが十分期待できる。
Considering the versatility of the system of the present invention (use for heating and hot water supply, use of various heat sources, power generation even without solar radiation, energy storage is cheaper than power storage, etc.), It can be expected that the system will be widely used.

【0016】[0016]

【実施例】図1の実施形態では膨張部分にスクロール型
エキスパンダ2を1段で用いているが、これを2段や3
段にしたカスケード利用も本実施形態では可能である。
また、図1の実施形態では容積型エキスパンダとしてス
クロール型を用いているが、代わりにレシプロ型やロー
タリー型・スクリュー型など他の形式の容積型エキスパ
ンダも含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment shown in FIG. 1, a scroll type expander 2 is used in one stage for an inflated portion.
In this embodiment, cascaded use in stages is also possible.
Although the scroll type is used as the volume expander in the embodiment of FIG. 1, other types of volume expanders such as a reciprocating type, a rotary type and a screw type are also included.

【0017】また、図3の実施形態では真空に引いてい
ない箱内に2次元CPC型反射板15を配置しているが、
箱内を真空にすることにより集熱効率を向上させること
や、3次元CPC型反射板を用いて高効率化を図ることも
この実施形態に含む。図1の実施形態では、コージェネ
レーション(熱電併給)システムとしての利用も含んで
いる。さらに、図1の実施形態では熱源として太陽熱を
利用しているが、代わりに工場排熱などの利用も可能と
なる。
In the embodiment shown in FIG. 3, the two-dimensional CPC reflector 15 is arranged in a box that is not evacuated.
This embodiment also includes improving the heat collection efficiency by evacuating the inside of the box and increasing the efficiency by using a three-dimensional CPC-type reflector. The embodiment of FIG. 1 includes use as a cogeneration (cogeneration) system. Further, in the embodiment of FIG. 1, solar heat is used as a heat source, but it is also possible to use, for example, factory exhaust heat.

【0018】[0018]

【発明の効果】以上説明したように、この発明によれ
ば、比較的小規模の熱需要地に分散型エネルギーシステ
ムとして容積型ソーラー低温度差エンジンシステムを幅
広く普及できる。これにより太陽エネルギーなどの再生
可能エネルギー利用率が向上し、化石燃料消費量の削減
につながることが期待できる。
As described above, according to the present invention, a positive displacement solar low temperature difference engine system can be widely used as a distributed energy system in a relatively small heat demand area. This is expected to increase the utilization rate of renewable energy such as solar energy, leading to a reduction in fossil fuel consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態を示した容積型ソーラー
低温度差エンジンシステムの概要図である。
FIG. 1 is a schematic diagram of a positive displacement solar low temperature difference engine system showing an embodiment of the present invention.

【図2】基本的なランキンサイクルの模式図である。FIG. 2 is a schematic diagram of a basic Rankine cycle.

【図3】この発明の一実施形態を示したCPC型ソーラ
ーコレクタの概要図である。
FIG. 3 is a schematic view of a CPC solar collector showing one embodiment of the present invention.

【図4】この発明の一実施形態を示したスクロール型エ
キスパンダの作動原理図である。
FIG. 4 is an operation principle diagram of a scroll type expander showing an embodiment of the present invention.

【図5】この発明の容積型ソーラー低温度差エンジンシ
ステムの性能図である。
FIG. 5 is a performance diagram of the positive displacement solar low temperature difference engine system of the present invention.

【図6】この発明のさらなる最適設計の一案として、ス
クロールラップ形状の一例図である。
FIG. 6 is a diagram showing an example of a scroll wrap shape as a further optimal design plan of the present invention.

【図7】従来技術を示す太陽熱発電装置の概要図であ
る。
FIG. 7 is a schematic diagram of a solar thermal power generation device showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 CPC型ソーラーコレクタ 2 スクロールエキスパンダ 3 潜熱蓄熱タンク 4 ポンプ 5 高揚程ポンプ 6 コンデンサ 7 潜熱蓄熱カプセル 8 加熱部分 9 膨張部分 10 冷却部分 11 圧縮部分 12 作動流体 13 クリプトン封入複層ガラス 14 フィルム 15 反射板 16 断熱材(グラスウール) 17 断熱材(スタイロフォーム) 18 ケーシング 19 銅管 DESCRIPTION OF SYMBOLS 1 CPC type solar collector 2 Scroll expander 3 Latent heat storage tank 4 Pump 5 High head pump 6 Capacitor 7 Latent heat storage capsule 8 Heating part 9 Expansion part 10 Cooling part 11 Compressed part 12 Working fluid 13 Krypton-filled double glazing 14 Film 15 Reflection Plate 16 Insulation material (glass wool) 17 Insulation material (Styrofoam) 18 Casing 19 Copper tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基本的熱機関の構成5要素のうち加熱部
分に定置型(非追尾式CPC型)ソーラーコレクタを採用
したことを特徴とする容積型ソーラー低温度差エンジン
システム。
1. A positive displacement solar low temperature difference engine system characterized in that a stationary (non-tracking type CPC type) solar collector is adopted in a heating portion among five components of a basic heat engine.
【請求項2】 基本的熱機関の構成5要素のうち膨張部
分にスクロール型エキスパンダを採用したことを特徴と
する請求項1記載の容積型ソーラー低温度差エンジンシ
ステム。
2. A positive displacement solar low temperature difference engine system according to claim 1, wherein a scroll type expander is employed in an expansion portion of the five constituent elements of the basic heat engine.
【請求項3】 基本的熱機関の構成5要素に新たに潜熱
蓄熱タンクを設けたことを特徴とする請求項1記載の容
積型ソーラー低温度差エンジンシステム。
3. The positive displacement solar low temperature difference engine system according to claim 1, wherein a latent heat storage tank is newly provided for five constituent elements of the basic heat engine.
JP2000062043A 2000-03-07 2000-03-07 Displacement type solar low temperature difference engine system Pending JP2001248539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062043A JP2001248539A (en) 2000-03-07 2000-03-07 Displacement type solar low temperature difference engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062043A JP2001248539A (en) 2000-03-07 2000-03-07 Displacement type solar low temperature difference engine system

Publications (1)

Publication Number Publication Date
JP2001248539A true JP2001248539A (en) 2001-09-14

Family

ID=18582104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062043A Pending JP2001248539A (en) 2000-03-07 2000-03-07 Displacement type solar low temperature difference engine system

Country Status (1)

Country Link
JP (1) JP2001248539A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134130A1 (en) * 2009-05-21 2010-11-25 Nishii Yasuo Thermal engine utilizing solar light collection using lens, and power generating device
WO2011031894A3 (en) * 2009-09-10 2011-07-14 Hunt Arlon J Liquid metal thermal storage system
JP2012127574A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Solar heat utilization system and its control method
KR101335555B1 (en) * 2011-12-23 2013-12-02 주식회사 네오너지 Scroll expander generating system using heat source of solarthermal
KR101579004B1 (en) 2014-07-23 2015-12-18 주식회사 우신산업 The power generation system using solar energy
WO2019085712A1 (en) * 2017-10-30 2019-05-09 北京兆阳光热技术有限公司 Solar thermal power generation system and heat transfer and obtaining method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134130A1 (en) * 2009-05-21 2010-11-25 Nishii Yasuo Thermal engine utilizing solar light collection using lens, and power generating device
WO2011031894A3 (en) * 2009-09-10 2011-07-14 Hunt Arlon J Liquid metal thermal storage system
CN102597513A (en) * 2009-09-10 2012-07-18 阿隆·J·洪特 Liquid metal thermal storage system
JP2012127574A (en) * 2010-12-15 2012-07-05 Hitachi Plant Technologies Ltd Solar heat utilization system and its control method
KR101335555B1 (en) * 2011-12-23 2013-12-02 주식회사 네오너지 Scroll expander generating system using heat source of solarthermal
KR101579004B1 (en) 2014-07-23 2015-12-18 주식회사 우신산업 The power generation system using solar energy
WO2019085712A1 (en) * 2017-10-30 2019-05-09 北京兆阳光热技术有限公司 Solar thermal power generation system and heat transfer and obtaining method

Similar Documents

Publication Publication Date Title
Saitoh et al. Solar Rankine cycle system using scroll expander
Marefati et al. Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process
US6668555B1 (en) Solar receiver-based power generation system
US5899071A (en) Adaptive thermal controller for heat engines
Sen et al. Thermodynamic modeling and analysis of a solar and geothermal assisted multi-generation energy system
CN101813038B (en) Mirror focusing automatic co-rotational type solar thermal machine power generating system
CN105464914A (en) Direct-expansion solar thermal power generation system based on cascade Rankine cycle
CA2736418A1 (en) A low temperature solar power system
CN107061201A (en) A kind of photovoltaic and photothermal coupling co-generation unit and method
JP2003227315A (en) Solar organic rankine cycle (orc) system
JP2001248539A (en) Displacement type solar low temperature difference engine system
CN102254979B (en) Electricity-water cogeneration system of solar energy
CN204003103U (en) A kind of distributed energy supply equipment that adopts rock gas and solar association circulation
CN201858044U (en) Reflected sunlight focusing synchronous tracking type external-combustion engine generating system
WO2015077235A1 (en) Concentrated solar power systems and methods utilizing cold thermal energy storage
CN201943904U (en) Thermal power generating system using solar-energy return-heating, reheating and inter-cooling gas turbine circulation
Saitoh et al. Proposed solar Rankine cycle system with phase change steam accumulator and CPC solar collector
CN101162014A (en) Composite solar energy heat generating system
CN110701670A (en) Wind-driven heat pump compressor heating device
CN210087561U (en) Solar energy-based micro combined cooling, heating and power system
KR101564813B1 (en) The power generation system using solar energy
CN208431116U (en) A kind of photo-thermal steam circulating device
Desai et al. Concentrated solar energy driven multi-generation systems based on the organic Rankine cycle technology
CN215808401U (en) Solar energy and natural gas complementary thermophotovoltaic steam generation system
CN115523113B (en) Solar power generation and energy storage system