JP2001248409A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system

Info

Publication number
JP2001248409A
JP2001248409A JP2000060784A JP2000060784A JP2001248409A JP 2001248409 A JP2001248409 A JP 2001248409A JP 2000060784 A JP2000060784 A JP 2000060784A JP 2000060784 A JP2000060784 A JP 2000060784A JP 2001248409 A JP2001248409 A JP 2001248409A
Authority
JP
Japan
Prior art keywords
exhaust heat
liquid
heat source
absorber
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000060784A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimoto
洋 藤本
Yasuki Aida
泰規 合田
Shojiro Matsumura
章二朗 松村
Keiichi Tanaka
啓一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000060784A priority Critical patent/JP2001248409A/en
Publication of JP2001248409A publication Critical patent/JP2001248409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve energy using efficiency by using exhaust heat energy from a liquid exhaust heat source for driving a steam turbine by a reasonable structure. SOLUTION: Jacket cooling water after cooling an engine is supplied to a regenerator 13, to heat ammonia-water mixture fluid to generate ammonia vapor. The ammonia vapor is supplied to a condenser 15 to be condensed and liquefied. Engine combustion exhaust gas is supplied to a exhaust gas boiler 7, and a solution with high concentration of ammonia, low-boiling point component, is supplied from the condenser 15 to the exhaust gas boiler 7 while mixing with a solution from an absorber 8 to generate vapor. The vapor is supplied to the steam turbine 7, and the steam turbine 7 drives a generator 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コジェネレーショ
ンシステムなどに用いるために、ディーゼルエンジン、
スターリングエンジン、ミラーサイクルガスエンジンな
どのエンジンや燃料電池などから発生する排熱を回収し
て動力を取り出すように構成した排熱回収システムに関
する。
The present invention relates to a diesel engine for use in a cogeneration system or the like.
The present invention relates to an exhaust heat recovery system configured to recover exhaust heat generated from an engine such as a Stirling engine or a Miller cycle gas engine, a fuel cell, and the like to extract power.

【0002】[0002]

【従来の技術】この種のものとして、従来では、図2に
示すようなカリーナ発電システムが知られている。すな
わち、水−アンモニア混合媒体を循環流動する循環配管
01に、排熱源からの排熱との熱交換により蒸気を発生
させるボイラ02、発生蒸気によって駆動する発電用の
蒸気タービン03、低圧凝縮器04、第1のポンプ0
5、高圧凝縮器06、第2のポンプ07がその順に設け
られている。
2. Description of the Related Art A carina power generation system as shown in FIG. 2 is conventionally known as this type. That is, a boiler 02 that generates steam by heat exchange with waste heat from a waste heat source, a steam turbine 03 for power generation driven by generated steam, and a low-pressure condenser 04 are provided to a circulation pipe 01 that circulates and flows a water-ammonia mixed medium. , The first pump 0
5, a high-pressure condenser 06 and a second pump 07 are provided in that order.

【0003】水とアンモニアに分離するセパレータ08
が設けられ、分離された水を低圧凝縮器04に供給し、
分離されたアンモニアを高圧凝縮器06に供給するよう
に構成されている。
[0003] Separator 08 for separating water and ammonia
Is provided, and the separated water is supplied to the low-pressure condenser 04,
It is configured to supply the separated ammonia to the high-pressure condenser 06.

【0004】セパレータ08からの水を供給する箇所と
蒸気タービン03との間において、循環配管01に熱交
換器09が設けられ、この熱交換器09に、低圧凝縮器
04からの水−アンモニア混合媒体の一部を取り出して
セパレータ08に供給する配管010が設けられてい
る。
[0004] A heat exchanger 09 is provided in the circulation pipe 01 between the point where water from the separator 08 is supplied and the steam turbine 03, and the heat exchanger 09 is provided with a water-ammonia mixture from the low-pressure condenser 04. A pipe 010 for removing a part of the medium and supplying the medium to the separator 08 is provided.

【0005】このような構成により、低濃度の水−アン
モニア混合媒体を低圧凝縮器04で凝縮しながら、ボイ
ラ02には高濃度の水−アンモニア混合媒体を供給して
蒸気タービン03を駆動し、発電するようになってい
る。
With such a configuration, a high-concentration water-ammonia mixed medium is supplied to the boiler 02 while the low-density water-ammonia mixed medium is condensed by the low-pressure condenser 04, and the steam turbine 03 is driven. It is designed to generate electricity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述従
来例の場合、蒸気タービン03を経て温度が低くなった
水−アンモニア混合媒体の熱を、セパレータ08でアン
モニアを蒸発させる熱源としているため、アンモニアを
十分に蒸発させづらく、蒸気タービン03の出力が低い
欠点があった。
However, in the case of the conventional example described above, since the heat of the water-ammonia mixed medium whose temperature has been lowered through the steam turbine 03 is used as a heat source for evaporating the ammonia in the separator 08, the ammonia is not used. There is a disadvantage that it is difficult to sufficiently evaporate and the output of the steam turbine 03 is low.

【0007】本発明は、このような事情に鑑みてなされ
たものであって、請求項1に係る発明の排熱回収システ
ムは、合理的な構成により、液体排熱源からの排熱エネ
ルギーを蒸気タービンの駆動に利用してエネルギーの利
用効率を向上することを目的とし、また、請求項2に係
る発明の排熱回収システムは、蒸気タービンから吸収器
に戻される作動流体のエネルギーの利用効率を向上する
ことを目的とする。
The present invention has been made in view of such circumstances, and the exhaust heat recovery system according to the first aspect of the present invention uses a rational configuration to transfer the exhaust heat energy from the liquid exhaust heat source to steam. It is an object of the present invention to improve the utilization efficiency of energy by utilizing it for driving a turbine, and the exhaust heat recovery system according to the second aspect of the present invention reduces the utilization efficiency of the working fluid returned from a steam turbine to an absorber. The purpose is to improve.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明の排
熱回収システムは、上述のような目的を達成するため
に、70℃よりも高温の液体の排熱を発生する液体排熱源
と、前記液体排熱源よりも高い温度の気体排熱を発生す
る気体排熱源と、前記気体排熱源からの排熱を熱源とす
る高温蒸気発生装置と、前記高温蒸気発生装置に接続さ
れた循環配管と、前記循環配管内を流動する、水の沸点
よりも低く前記液体排熱源からの排熱によって蒸発可能
な2成分系混合流体である作動流体が前記高温蒸気発生
装置で加熱されて発生する蒸気によって駆動する蒸気タ
ービンと、前記蒸気タービンの下流側に設けられて作動
流体を液化する吸収器と、前記吸収器に連通して、前記
吸収器の液を取り入れて蒸気成分と液成分とに蒸発分離
して液成分を前記吸収器に戻す再生器と、前記再生器に
連通して、前記再生器で蒸発された蒸気成分を取り入れ
て凝縮させる凝縮器と、前記液体排熱源からの排熱を熱
源とするように前記液体排熱源と前記再生器とを接続す
る主配管と、前記循環配管の前記吸収器と前記高温蒸気
発生装置との間の箇所と前記凝縮器とを接続して、前記
凝縮器内の凝縮液を前記吸収器から前記高温蒸気発生装
置に供給する作動流体に合流させる配管とを備えて構成
する。
According to a first aspect of the present invention, there is provided an exhaust heat recovery system, comprising: a liquid exhaust heat source for generating an exhaust heat of a liquid having a temperature higher than 70 ° C .; A gas exhaust heat source that generates gas exhaust heat at a higher temperature than the liquid exhaust heat source, a high-temperature steam generator that uses the exhaust heat from the gas exhaust heat source as a heat source, and a circulation pipe connected to the high-temperature steam generator And a steam generated by heating the working fluid, which is a two-component mixed fluid that is lower than the boiling point of water and that can be evaporated by exhaust heat from the liquid exhaust heat source, flowing in the circulation pipe, is heated by the high-temperature steam generator. A steam turbine driven by the steam turbine, an absorber provided on the downstream side of the steam turbine for liquefying a working fluid, and communicating with the absorber to take in the liquid from the absorber and evaporate it into a vapor component and a liquid component Separate and absorb liquid components as described above. A condenser connected to the regenerator for taking in and condensing the vapor component evaporated by the regenerator; and a liquid drainage device so as to use heat exhausted from the liquid waste heat source as a heat source. A main pipe connecting a heat source and the regenerator, and a portion of the circulation pipe between the absorber and the high-temperature steam generator and the condenser are connected to each other to condense the liquid in the condenser. And a pipe for joining the working fluid supplied from the absorber to the high-temperature steam generator.

【0009】2成分系混合流体としては、アンモニア−
水系の混合流体、メタノール−水系の混合流体等が使用
できる。この2成分系混合流体は低温排熱時の排熱を熱
源とする低温蒸気発生装置で混合流体から低沸点成分が
分離されればよく、主成分以外に若干の第三成分を含ん
でいてもよい。
As the two-component mixed fluid, ammonia-
A water-based mixed fluid, a methanol-water-based mixed fluid, or the like can be used. This two-component mixed fluid may be low-boiling components separated from the mixed fluid by a low-temperature steam generator using exhaust heat generated at low-temperature exhaust heat as a heat source, and may contain some third components other than the main component. Good.

【0010】また、請求項2に係る発明の排熱回収シス
テムは、上述のような目的を達成するために、請求項1
に係る発明の排熱回収システムにおける蒸気タービンと
吸収器との間における循環配管と温水取り出し配管との
間に熱交換器を介装する。
Further, the exhaust heat recovery system according to the second aspect of the present invention has the first aspect in order to achieve the above object.
In the exhaust heat recovery system according to the invention, a heat exchanger is interposed between the circulation pipe and the hot water extraction pipe between the steam turbine and the absorber.

【0011】[0011]

【作用】請求項1に係る発明の排熱回収システムの構成
によれば、例えば、ガスエンジンでは、90℃程度の冷却
ジャケット水を発生する液体排熱源と、高温の燃焼排ガ
スを発生する気体排熱源とがあるといったように、一般
的に、70℃よりも高温の液体の排熱を発生する液体排熱
源と、その液体排熱源よりも高い温度の気体の排熱を発
生する気体排熱源とがあることに着目し、液体排熱源か
らの排熱により2成分系混合流体を加熱して再生器で蒸
気を発生させ、その低沸点成分の濃度が高い2成分系混
合流体を凝縮器に供給して凝縮液化して低沸点成分の濃
度が高い溶液を作り、吸収器から高温蒸気発生装置に供
給する作動流体に合流させ、低沸点成分の濃度が高い作
動流体を高温蒸気発生装置に供給し、低温域から有効に
蒸気を発生させ、その蒸気を蒸気タービンに供給し、蒸
気タービンを駆動して動力を回収することができる。一
方、再生器で分離された低沸点成分の濃度が低い2成分
系混合流体を吸収器に戻して吸収器での凝縮圧力を下
げ、液体排熱源からの排熱エネルギーを蒸気タービンの
駆動に利用することができる。
According to the configuration of the exhaust heat recovery system according to the first aspect of the present invention, for example, in a gas engine, a liquid exhaust heat source that generates cooling jacket water at about 90 ° C. and a gas exhaust heat source that generates high-temperature combustion exhaust gas are used. Generally, there is a liquid exhaust heat source that generates exhaust heat of a liquid having a temperature higher than 70 ° C., such as a heat source, and a gas exhaust heat source that generates exhaust heat of a gas having a higher temperature than the liquid exhaust heat source. The two-component mixed fluid is heated by the waste heat from the liquid waste heat source, steam is generated by the regenerator, and the two-component mixed fluid having a high concentration of the low boiling point component is supplied to the condenser. Condensed and liquefied to form a solution with a high concentration of low boiling components, merged with the working fluid supplied to the high temperature steam generator from the absorber, and supplied a working fluid with a high concentration of low boiling components to the high temperature steam generator. Effectively generates steam from the low temperature range, Is supplied to the steam turbine, and the steam turbine is driven to recover power. On the other hand, the two-component mixed fluid with a low concentration of low boiling components separated by the regenerator is returned to the absorber to reduce the condensation pressure in the absorber, and the waste heat energy from the liquid waste heat source is used to drive the steam turbine can do.

【0012】また、請求項2に係る発明の排熱回収シス
テムの構成によれば、蒸気タービンを通した後の蒸気の
熱をも熱交換器によって回収するとともに、吸収器に供
給される作動流体の温度を低下することができる。
Further, according to the configuration of the exhaust heat recovery system according to the second aspect of the present invention, the heat of the steam after passing through the steam turbine is recovered by the heat exchanger and the working fluid supplied to the absorber. Temperature can be lowered.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施例を図面に基
づいて詳細に説明する。図1は、本発明に係る排熱回収
システムの実施例を示す全体概略構成図であり、ガスエ
ンジン1の気体排熱源としての排気管からの燃焼排ガス
を供給する排ガス供給管2が、高温蒸気発生装置として
の排ガスボイラ3に接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an overall schematic configuration diagram showing an embodiment of an exhaust heat recovery system according to the present invention, wherein an exhaust gas supply pipe 2 for supplying combustion exhaust gas from an exhaust pipe as a gas exhaust heat source of a gas engine 1 includes a high-temperature steam. It is connected to an exhaust gas boiler 3 as a generator.

【0014】排ガス供給管2に過給機4が設けられると
ともに、過給機4とガスエンジン1との間においてクー
ラー5が設けられ、ガスエンジン1に低温の圧縮空気を
供給するように構成されている。
A supercharger 4 is provided in the exhaust gas supply pipe 2, and a cooler 5 is provided between the supercharger 4 and the gas engine 1 so as to supply low-temperature compressed air to the gas engine 1. ing.

【0015】排ガスボイラ3に循環配管6が接続され、
この循環配管6内に、作動流体としてのアンモニア−水
系の2成分系混合流体が流されている。
A circulation pipe 6 is connected to the exhaust gas boiler 3,
An ammonia-water binary fluid mixture as a working fluid flows through the circulation pipe 6.

【0016】循環配管6に、蒸気タービン7と吸収器8
と第1のポンプ9と混合器10と第2のポンプ11とが
介装されるとともに、蒸気タービン7に発電機12が連
動連結され、ガスエンジン1からの燃焼排ガス(例え
ば、温度 400〜 750℃)を排ガスボイラ3に供給し、そ
の排熱により、アンモニア−水系の2成分系混合流体中
の液分を蒸発させ、その蒸気を蒸気タービン7に供給し
て駆動し、発電電力が得られるように構成されている。
In the circulation pipe 6, a steam turbine 7 and an absorber 8
, A first pump 9, a mixer 10, and a second pump 11 are interposed, and a generator 12 is connected to the steam turbine 7 in an interlocked manner, and the combustion exhaust gas from the gas engine 1 (for example, at a temperature of 400 to 750) ° C) to the exhaust gas boiler 3, the exhaust heat evaporates the liquid component in the ammonia-water binary fluid mixture, and supplies and drives the steam to the steam turbine 7 to obtain power generation. It is configured as follows.

【0017】循環配管6の、第1のポンプ9と混合器1
0との間の箇所と再生器13とが分岐配管14を介して
連通接続され、その再生器13と吸収器8とが連通接続
されている。
The first pump 9 and the mixer 1 in the circulation pipe 6
0 and the regenerator 13 are connected to each other via a branch pipe 14, and the regenerator 13 and the absorber 8 are connected to each other.

【0018】再生器13に凝縮器15が連通接続され、
その凝縮器15と混合器10とが配管16を介して連通
接続されている。分岐配管14の分岐点と混合器10と
の間にはオリフィス17が挿入され、アンモニア濃度の
低い溶液を吸収器8から再生器13に供給しやすいよう
に構成されるとともに、凝縮器15から混合器12へア
ンモニア濃度の高い溶液が流れ込みやすいように構成さ
れている。
A condenser 15 is communicatively connected to the regenerator 13,
The condenser 15 and the mixer 10 are connected to each other through a pipe 16. An orifice 17 is inserted between the branch point of the branch pipe 14 and the mixer 10 so that a solution having a low ammonia concentration can be easily supplied from the absorber 8 to the regenerator 13 and mixed with the solution from the condenser 15. It is configured such that a solution having a high ammonia concentration easily flows into the vessel 12.

【0019】ガスエンジン1の液体排熱源としてのエン
ジン冷却部の出口と入口とにわたって、第3のポンプ1
8を介装した主配管19が接続されている。主配管19
が、再生器13に、そこを流れるエンジン冷却後のジャ
ケット冷却水(温水)からアンモニア−水系の2成分系
混合流体に伝熱可能に設けられている。
A third pump 1 extends between an outlet and an inlet of an engine cooling unit as a liquid exhaust heat source of the gas engine 1.
8 is connected to the main pipe 19. Main piping 19
Is provided in the regenerator 13 so as to be able to transfer heat from the jacket cooling water (warm water) after cooling the engine flowing therethrough to the ammonia-water-based two-component mixed fluid.

【0020】上記構成により、エンジン冷却によって発
生する温水(例えば、温度80〜 100℃)を再生器13に
供給し、その排熱により2成分系混合流体中のアンモニ
アを高温で蒸発させる。蒸発によって得られるアンモニ
ア濃度の高い蒸気(アンモニア濃度99.8%) を凝縮器1
5に供給して液化した後、配管16および混合器10を
通じて、吸収器8から排ガスボイラ3に供給するアンモ
ニア−水系の2成分系混合流体に合流させ、排ガスボイ
ラ3に低沸点成分であるアンモニアの濃度の高い溶液を
供給できるようになっている。
With the above configuration, hot water (for example, a temperature of 80 to 100 ° C.) generated by cooling the engine is supplied to the regenerator 13, and the exhaust heat thereof evaporates the ammonia in the binary fluid mixture at a high temperature. The high ammonia concentration vapor (99.8% ammonia concentration) obtained by evaporation is transferred to the condenser 1
After being supplied to the exhaust gas boiler 5 and liquefied, it is combined with the ammonia-water binary mixed fluid supplied from the absorber 8 to the exhaust gas boiler 3 through the pipe 16 and the mixer 10, and the ammonia having a low boiling point component Can be supplied.

【0021】蒸気タービン7と吸収器8との間における
循環配管6と給湯用の温水取り出し配管20との間に熱
交換器21が介装され、蒸気タービン7を通した後の蒸
気の熱をも熱交換器21によって回収するとともに、吸
収器8に供給する2成分系混合流体の温度を低下できる
ように構成されている。
A heat exchanger 21 is interposed between the circulation pipe 6 between the steam turbine 7 and the absorber 8 and the hot water supply pipe 20 for supplying hot water, and the heat of the steam after passing through the steam turbine 7 is transferred. Is recovered by the heat exchanger 21 and the temperature of the binary fluid mixture supplied to the absorber 8 can be reduced.

【0022】図示しないが、ガスエンジン1には、発電
機や各種の機械装置が連動連結されている。また、本発
明としては、蒸気タービン7によって発電機12を駆動
するように構成しているが、各種の機械装置を駆動する
ための動力を取り出す場合にも適用できる。
Although not shown, a generator and various mechanical devices are interlocked to the gas engine 1. Although the present invention is configured to drive the generator 12 by the steam turbine 7, the present invention can also be applied to a case where power for driving various mechanical devices is taken out.

【0023】本発明としては、上記実施例における排ガ
スボイラ3に代えて熱交換器を用いることにより蒸気を
発生させるようにしても良く、各種の高温蒸気発生装置
が使用できる。
In the present invention, steam may be generated by using a heat exchanger instead of the exhaust gas boiler 3 in the above embodiment, and various high-temperature steam generators can be used.

【0024】上述実施例のガスエンジン1としては、ミ
ラーサイクルガスエンジンやディーゼルエンジンやスタ
ーリングエンジンなど各種のエンジンを用いることがで
き、また、本発明としては、燃料電池を用いたり併用し
たりしてその高温排熱や低温排熱をも回収するように構
成した排熱回収システムにも好適に適用できる。
As the gas engine 1 of the above-described embodiment, various engines such as a Miller cycle gas engine, a diesel engine, and a Stirling engine can be used. In the present invention, a fuel cell is used or used in combination. The present invention can be suitably applied to an exhaust heat recovery system configured to also recover the high-temperature exhaust heat and the low-temperature exhaust heat.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、請求項
1に係る発明の排熱回収システムによれば、高温排熱源
とは別である液体排熱源からの排熱により2成分系混合
流体を加熱して再生器で蒸気を発生させるから、2成分
系混合流体を良好に蒸発分離して低沸点成分の濃度が高
い2成分系混合流体を得ることができる。この低沸点成
分の濃度が高い2成分系混合流体の凝縮液を、吸収器か
ら高温蒸気発生装置に供給する作動流体に合流させて、
低沸点成分の濃度が高い溶液を高温蒸気発生装置に供給
するから、高温蒸気発生装置において低温域から有効に
蒸気を発生し、その蒸気発生効率を高くして蒸気タービ
ンからの動力回収効率を向上でき、エネルギーの利用効
率を向上できるようになった。更に、再生器で分離され
た低沸点成分の濃度が低い2成分系混合流体を吸収器に
戻して吸収器での凝縮圧力を下げ、液体排熱源からの排
熱エネルギーを蒸気タービンの駆動に利用するから、エ
ネルギーの利用効率を一層向上できるようになった。
As is apparent from the above description, according to the exhaust heat recovery system of the first aspect of the present invention, the two-component mixed fluid is generated by the exhaust heat from the liquid exhaust heat source separate from the high-temperature exhaust heat source. Is heated to generate steam in the regenerator, the two-component mixed fluid can be satisfactorily evaporated and separated to obtain a two-component mixed fluid having a high concentration of low boiling components. The condensate of the binary mixed fluid having a high concentration of the low-boiling component is combined with the working fluid supplied from the absorber to the high-temperature steam generator,
Since a solution with a high concentration of low-boiling components is supplied to the high-temperature steam generator, the high-temperature steam generator effectively generates steam from the low-temperature range, and increases the steam generation efficiency to improve the power recovery efficiency from the steam turbine. Energy efficiency can be improved. Furthermore, the two-component mixed fluid having a low concentration of low boiling components separated by the regenerator is returned to the absorber to reduce the condensation pressure in the absorber, and the waste heat energy from the liquid waste heat source is used to drive the steam turbine. Therefore, energy use efficiency can be further improved.

【0026】また、請求項2に係る発明の排熱回収シス
テムによれば、蒸気タービンを通した後の蒸気の熱をも
熱交換器によって回収するから排熱回収効率を向上で
き、かつ、吸収器に供給される作動流体の温度を低下す
るから、吸収器での2成分系混合流体の凝縮圧力を下
げ、液体排熱源からの排熱エネルギーを蒸気タービンの
駆動に利用でき、エネルギーの利用効率をより一層向上
できるようになった。
According to the exhaust heat recovery system of the second aspect of the present invention, the heat of the steam after passing through the steam turbine is also recovered by the heat exchanger, so that the efficiency of the exhaust heat recovery can be improved, and the absorption of the heat can be improved. Since the temperature of the working fluid supplied to the vessel is reduced, the condensation pressure of the two-component mixed fluid in the absorber is reduced, and the waste heat energy from the liquid waste heat source can be used for driving the steam turbine, and the energy utilization efficiency Can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排熱回収システムの実施例を示す
全体概略構成図である。
FIG. 1 is an overall schematic configuration diagram showing an embodiment of an exhaust heat recovery system according to the present invention.

【図2】従来例を示す全体概略構成図である。FIG. 2 is an overall schematic configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1…ガスエンジン 3…高温蒸気発生装置としての排ガスボイラ 6…循環配管 7…蒸気タービン 8…吸収器 13…再生器 14…分岐配管 15…凝縮器 16…配管 19…主配管 DESCRIPTION OF SYMBOLS 1 ... Gas engine 3 ... Exhaust gas boiler as a high-temperature steam generator 6 ... Circulation piping 7 ... Steam turbine 8 ... Absorber 13 ... Regenerator 14 ... Branch piping 15 ... Condenser 16 ... Piping 19 ... Main piping

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 章二朗 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 田中 啓一 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 3G081 BA02 BA18 BA20 BB03 BB07 BC06 BC07 BD10  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shojiro Matsumura 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi Inside Osaka Gas Co., Ltd. (72) Keiichi Tanaka 4-1-1, Hirano-cho, Chuo-ku, Osaka-shi No.2 Osaka Gas Co., Ltd. F-term (reference) 3G081 BA02 BA18 BA20 BB03 BB07 BC06 BC07 BD10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 70℃よりも高温の液体の排熱を発生する
液体排熱源と、 前記液体排熱源よりも高い温度の気体排熱を発生する気
体排熱源と、 前記気体排熱源からの排熱を熱源とする高温蒸気発生装
置と、 前記高温蒸気発生装置に接続された循環配管と、 前記循環配管内を流動する、水の沸点よりも低く前記液
体排熱源からの排熱によって蒸発可能な2成分系混合流
体である作動流体が前記高温蒸気発生装置で加熱されて
発生する蒸気によって駆動する蒸気タービンと、 前記蒸気タービンの下流側に設けられて作動流体を液化
する吸収器と、 前記吸収器に連通して、前記吸収器の液を取り入れて蒸
気成分と液成分とに蒸発分離して液成分を前記吸収器に
戻す再生器と、 前記再生器に連通して、前記再生器で蒸発された蒸気成
分を取り入れて凝縮させる凝縮器と、 前記液体排熱源からの排熱を熱源とするように前記液体
排熱源と前記再生器とを接続する主配管と、 前記循環配管の前記吸収器と前記高温蒸気発生装置との
間の箇所と前記凝縮器とを接続して、前記凝縮器内の凝
縮液を前記吸収器から前記高温蒸気発生装置に供給する
作動流体に合流させる配管と、 を備えてあることを特徴とする排熱回収システム。
1. A liquid exhaust heat source that generates exhaust heat of a liquid having a temperature higher than 70 ° C., a gas exhaust heat source that generates a gas exhaust heat having a temperature higher than the liquid exhaust heat source, and an exhaust gas from the gas exhaust heat source. A high-temperature steam generator using heat as a heat source; a circulating pipe connected to the high-temperature steam generating apparatus; and a liquid flowing in the circulating pipe, which is lower than a boiling point of water and can be evaporated by exhaust heat from the liquid exhaust heat source. A steam turbine driven by steam generated by heating a working fluid, which is a two-component mixed fluid, by the high-temperature steam generator; an absorber provided downstream of the steam turbine to liquefy the working fluid; A regenerator that takes in the liquid of the absorber, evaporates and separates into a vapor component and a liquid component and returns the liquid component to the absorber, and a regenerator that communicates with the regenerator and evaporates in the regenerator. The steam component A condenser for contracting; a main pipe connecting the liquid waste heat source and the regenerator so that waste heat from the liquid waste heat source is used as a heat source; an absorber of the circulation pipe and the high-temperature steam generator; And a pipe for connecting a condensate in the condenser to the working fluid supplied from the absorber to the high-temperature steam generator by connecting a point between the condenser and the condenser. Waste heat recovery system.
【請求項2】 請求項1に記載の蒸気タービンと吸収器
との間における循環配管と温水取り出し配管との間に熱
交換器を介装してある排熱回収システム。
2. An exhaust heat recovery system comprising a heat exchanger interposed between a circulation pipe and a hot water extraction pipe between the steam turbine and the absorber according to claim 1.
JP2000060784A 2000-03-06 2000-03-06 Exhaust heat recovery system Pending JP2001248409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060784A JP2001248409A (en) 2000-03-06 2000-03-06 Exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060784A JP2001248409A (en) 2000-03-06 2000-03-06 Exhaust heat recovery system

Publications (1)

Publication Number Publication Date
JP2001248409A true JP2001248409A (en) 2001-09-14

Family

ID=18581036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060784A Pending JP2001248409A (en) 2000-03-06 2000-03-06 Exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JP2001248409A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088080A1 (en) * 2004-03-12 2005-09-22 Marnoch Ian A Thermal conversion device and process
JP2011074897A (en) * 2009-10-02 2011-04-14 Miura Co Ltd Fluid machine driving system
CN103109046A (en) * 2010-07-14 2013-05-15 马克卡车公司 Waste heat recovery system with partial recuperation
CN103758659A (en) * 2014-01-08 2014-04-30 南京航空航天大学 Efficient compact internal combustion engine and organic Rankin cycle combined system and operating method thereof
CN104165102A (en) * 2014-04-22 2014-11-26 浙江银轮机械股份有限公司 Engine waste heat recovery system based on organic Rankine cycle
WO2016002425A1 (en) * 2014-06-30 2016-01-07 いすゞ自動車株式会社 Waste heat regeneration system
CN105478064A (en) * 2015-12-29 2016-04-13 北京华福工程有限公司 Low-pressure steam condensation water energy saving system and method for alkane dehydrogenation device
CN111852598A (en) * 2019-04-30 2020-10-30 中国船舶重工集团公司第七一一研究所 Ship waste heat recovery power generation system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088080A1 (en) * 2004-03-12 2005-09-22 Marnoch Ian A Thermal conversion device and process
JP2011074897A (en) * 2009-10-02 2011-04-14 Miura Co Ltd Fluid machine driving system
CN103109046A (en) * 2010-07-14 2013-05-15 马克卡车公司 Waste heat recovery system with partial recuperation
US8919123B2 (en) 2010-07-14 2014-12-30 Mack Trucks, Inc. Waste heat recovery system with partial recuperation
CN103109046B (en) * 2010-07-14 2015-08-19 马克卡车公司 There is the Waste Heat Recovery System (WHRS) that local is reclaimed
CN103758659A (en) * 2014-01-08 2014-04-30 南京航空航天大学 Efficient compact internal combustion engine and organic Rankin cycle combined system and operating method thereof
CN103758659B (en) * 2014-01-08 2015-11-18 南京航空航天大学 High-efficiency compact internal-combustion engine-organic Rankine bottoming cycle combined system and method for work thereof
CN104165102A (en) * 2014-04-22 2014-11-26 浙江银轮机械股份有限公司 Engine waste heat recovery system based on organic Rankine cycle
WO2016002425A1 (en) * 2014-06-30 2016-01-07 いすゞ自動車株式会社 Waste heat regeneration system
CN105478064A (en) * 2015-12-29 2016-04-13 北京华福工程有限公司 Low-pressure steam condensation water energy saving system and method for alkane dehydrogenation device
CN111852598A (en) * 2019-04-30 2020-10-30 中国船舶重工集团公司第七一一研究所 Ship waste heat recovery power generation system

Similar Documents

Publication Publication Date Title
US7458217B2 (en) System and method for utilization of waste heat from internal combustion engines
JP2700538B2 (en) A refrigeration cycle apparatus that drives a refrigeration cycle for cooling outside air used in a gas turbine by using exhaust heat from a steam turbine, and a combined cycle power plant using such a refrigeration cycle apparatus
RU2551458C2 (en) Combined heat system with closed loop for recuperation of waste heat and its operating method
JP5567961B2 (en) Double reheat Rankine cycle system and method
CN103161607A (en) Combined power generating system based on waste-heat utilization of combustion motor
JP4388067B2 (en) Method and apparatus for performing a thermodynamic cycle
JPS59211703A (en) Low-temperature engine device
JP5062380B2 (en) Waste heat recovery system and energy supply system
CN111852600A (en) Cascade type diesel engine waste heat recovery cogeneration system
CN109519243B (en) Supercritical CO2 and ammonia water combined cycle system and power generation system
JP2005098240A (en) Power generation system
KR20140085001A (en) Energy saving system for using waste heat of ship
JP2000145408A (en) Binary waste power generation method and its system
JP2001248409A (en) Exhaust heat recovery system
JP4375908B2 (en) Waste heat recovery system
JP3905967B2 (en) Power generation / hot water system
JP2018021485A (en) Multistage rankine cycle system, internal combustion engine and operation method of multistage rankine cycle system
JP2000161018A (en) Method and device of exhaust heat recovery power generation by water-ammonia mixed fluid
JPH1122418A (en) Steam plant
JP4509453B2 (en) Integrated gasification combined cycle power plant with carina bottoming cycle
JP2010096414A (en) Ammonia absorption refrigeration type power generating device
WO1991007573A2 (en) Heat conversion into mechanical work through absorption-desorption
JP4462759B2 (en) Waste heat recovery system
JP3973412B2 (en) Waste heat recovery system by gas turbine
JP2752334B2 (en) Exhaust heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104