JP2001241343A - Control device and control method for internal combustion engine - Google Patents

Control device and control method for internal combustion engine

Info

Publication number
JP2001241343A
JP2001241343A JP2000055919A JP2000055919A JP2001241343A JP 2001241343 A JP2001241343 A JP 2001241343A JP 2000055919 A JP2000055919 A JP 2000055919A JP 2000055919 A JP2000055919 A JP 2000055919A JP 2001241343 A JP2001241343 A JP 2001241343A
Authority
JP
Japan
Prior art keywords
fuel
amount
cylinder
target
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000055919A
Other languages
Japanese (ja)
Other versions
JP4378665B2 (en
Inventor
Hiraki Matsumoto
平樹 松本
Mamoru Mabuchi
衛 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000055919A priority Critical patent/JP4378665B2/en
Priority to DE2001109395 priority patent/DE10109395B4/en
Publication of JP2001241343A publication Critical patent/JP2001241343A/en
Application granted granted Critical
Publication of JP4378665B2 publication Critical patent/JP4378665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct accurate air-fuel ratio control even in transition, in a torque demand control system. SOLUTION: A standard model of a target cylinder filling air amount is calculated on the basis of demanded torque, and a target cylinder inflowing fuel amount is calculated on the basis of the standard model and a target air- fuel ratio. A fuel injection amount is controlled to make an actual cylinder inflow fuel amount coincide with the target cylinder inflow fuel amount in consideration of fuel transport delay due to adhering of fuel on air system wall surface and the like. A phase of a throttle opening command value is shifted only by a mount of time lag (Z-(L-m)) between delay time (Z-L) since fuel injection amount deciding timing till intake valve closing timing and delay time in response (Z-m) of a throttle valve so as to drive the throttle valve, thereby controlling throttle opening so as to make an actual cylinder filling air amount coincide with the target cylinder air amount obtained by shifting the phase of the standard model only by the delay time (Z-L) till the intake valve closing timing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、運転者の要求する
要求トルクを判断して内燃機関の運転を制御する内燃機
関の制御装置及び制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device and a control method for an internal combustion engine for controlling the operation of the internal combustion engine by judging a required torque required by a driver.

【0002】[0002]

【従来の技術】近年の電子制御化された自動車のエンジ
ン制御においては、運転者のアクセル操作に即応した応
答性の良いドライバビリティを実現するために、運転者
が操作したアクセル開度、エンジン回転速度等から運転
者の要求する加速力(トルク)を判断して、スロットル
開度、燃料噴射量、点火時期等を運転者の要求するトル
クに応じて制御する、いわゆるトルクディマンド制御を
行うようにしたものがある。従来のトルクディマンド制
御は、エンジンへの要求トルクと目標空燃比を同時に満
たすために、要求トルクから決まる目標空燃比に基づい
てスロットル開度を制御し、一方、吸入空気量と目標空
燃比から決まる目標燃料量に基づいて燃料噴射量を制御
するようにしていた(特開平9−287513号公報参
照)。
2. Description of the Related Art In recent years, in engine control of an electronically controlled automobile, in order to realize drivability with good responsiveness in response to a driver's accelerator operation, an accelerator opening and an engine rotation operated by the driver are required. A so-called torque demand control is performed in which the acceleration force (torque) required by the driver is determined from the speed and the like, and the throttle opening, the fuel injection amount, the ignition timing, and the like are controlled according to the torque required by the driver. There is something. In the conventional torque demand control, the throttle opening is controlled based on a target air-fuel ratio determined from the required torque in order to simultaneously satisfy a required torque for an engine and a target air-fuel ratio, while being determined from an intake air amount and a target air-fuel ratio. The fuel injection amount is controlled based on the target fuel amount (see JP-A-9-287513).

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のトルク
ディマンド制御では、負荷が急変するような過渡状態に
おいて、筒内充填空気量が確定するタイミングと、目標
空燃比と吸入空気量に基づいて燃料噴射量を決定するタ
イミングとの時間ずれに伴なう誤差が生じて、実際の筒
内充填空気量と筒内流入燃料量との比(空燃比)が目標
空燃比からずれてしまい、過渡時の空燃比の制御精度が
悪くなるという欠点があった。
However, in the conventional torque demand control, in a transient state in which the load suddenly changes, the fuel is determined based on the timing at which the in-cylinder charged air amount is determined and the target air-fuel ratio and the intake air amount. An error occurs due to a time lag from the timing of determining the injection amount, and the ratio (air-fuel ratio) between the actual in-cylinder charged air amount and the in-cylinder inflow fuel amount deviates from the target air-fuel ratio. However, there is a disadvantage that the control accuracy of the air-fuel ratio is deteriorated.

【0004】つまり、筒内充填空気量は吸気弁閉タイミ
ングまで確定しないため、筒内充填空気量確定タイミン
グは、燃料噴射量決定タイミング(吸気弁開タイミング
の直前)よりもかなり遅れる。しかも、スロットル開度
の指令値を電子スロットルに出力してから実際にスロッ
トル開度が変化して筒内充填空気量が変化するまでに
は、スロットルバルブの応答遅れと吸入空気の流動遅れ
がある。一方、筒内流入燃料量は、空気系壁面付着燃料
(ウエット)等による燃料輸送遅れの影響を受ける。こ
の燃料輸送遅れやスロットルバルブの応答遅れの影響
は、過渡時に大きくなるため、過渡時に筒内充填空気量
と筒内流入燃料量との比(空燃比)が目標空燃比からず
れてしまう。
That is, since the in-cylinder charged air amount is not determined until the intake valve closing timing, the in-cylinder charged air amount determining timing is considerably delayed from the fuel injection amount determining timing (immediately before the intake valve opening timing). Moreover, there is a delay in the response of the throttle valve and a delay in the flow of the intake air after the command value of the throttle opening is output to the electronic throttle and before the throttle opening changes and the amount of air charged in the cylinder changes. . On the other hand, the amount of fuel flowing into the cylinder is affected by fuel transportation delay due to fuel (wet) attached to the air system wall. Since the influence of the fuel transport delay and the throttle valve response delay becomes large during the transition, the ratio (air-fuel ratio) between the in-cylinder charged air amount and the in-cylinder inflow fuel amount deviates from the target air-fuel ratio during the transition.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、トルクディマンド制
御システムにおいて、過渡時でも精度の良い空燃比制御
を行うことができる内燃機関の制御装置及び制御方法を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and accordingly, it is an object of the present invention to provide a control apparatus for an internal combustion engine capable of performing accurate air-fuel ratio control even in a transient state in a torque demand control system. And a control method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1,3は、規範モデル演算手段によ
って、要求トルクに基づいて目標筒内充填空気量の規範
モデルを演算し、目標筒内流入燃料量演算手段によって
該規範モデルと目標空燃比に基づいて目標筒内流入燃料
量を演算すると共に、燃料噴射制御手段によって空気系
壁面付着燃料等による燃料輸送遅れを考慮して実際の筒
内流入燃料量が目標筒内流入燃料量と一致するように燃
料噴射量を制御する。更に、スロットル制御手段は、図
4(a)に示すように燃料噴射量決定タイミングから吸
気弁閉タイミングまでの遅れ時間(Z-L)とスロットル
バルブの応答遅れ時間(Z-m)との時間ずれ分(Z
-(L-m))だけスロットル開度の指令値の位相をずらして
スロットルバルブを駆動することで、実際の筒内充填空
気量が規範モデルを吸気弁閉タイミングまでの遅れ時間
分(Z-L)だけ位相をずらして得られる目標筒内充填空
気量に一致するようにスロットル開度を制御する。この
ようにすれば、トルクディマンド制御システムにおい
て、空気系の動特性、燃料輸送系の動特性及び燃料噴射
量決定から筒内充填空気量確定(吸気弁閉タイミング)
までの時間遅れを考慮して、筒内充填空気量と筒内流入
燃料量の制御を同期させることができ、常に実際の筒内
充填空気量と筒内流入燃料量との比(空燃比)を目標空
燃比に一致させることができる。これにより、過渡時で
も精度の良い空燃比制御を行うことができて、加速応答
性を向上できると共に、排気エミッションを低減でき
る。
In order to achieve the above object, according to the present invention, a reference model calculating means calculates a reference model of a target cylinder charging air amount based on a required torque. The target in-cylinder fuel amount calculation means calculates the target in-cylinder fuel amount based on the reference model and the target air-fuel ratio, and the fuel injection control means takes into account the fuel transport delay due to fuel adhered to the air system wall. The fuel injection amount is controlled so that the actual in-cylinder fuel flow amount matches the target in-cylinder fuel flow amount. Further, as shown in FIG. 4 (a), the throttle control means determines the time between the delay time (Z- L ) from the fuel injection amount determination timing to the intake valve closing timing and the response delay time (Z- m ) of the throttle valve. Deviation (Z
-(Lm) ) By shifting the phase of the throttle opening command value by the amount of driving the throttle valve, the actual in-cylinder charged air amount can be reduced by the delay time (Z -L ) from the reference model to the intake valve closing timing. The throttle opening is controlled so as to coincide with the target in-cylinder charged air amount obtained by shifting the phase only by a predetermined amount. In this way, in the torque demand control system, the in-cylinder charged air amount is determined from the dynamic characteristics of the air system, the dynamic characteristics of the fuel transport system, and the fuel injection amount (intake valve closing timing).
In consideration of the time delay until the control, the control of the cylinder filling air amount and the cylinder inflow fuel amount can be synchronized, and the ratio of the actual cylinder filling air amount and the cylinder inflow fuel amount (air-fuel ratio) is always obtained. Can be made to coincide with the target air-fuel ratio. As a result, air-fuel ratio control with high accuracy can be performed even during a transient period, so that acceleration responsiveness can be improved and exhaust emissions can be reduced.

【0007】この場合、請求項2のように、要求トルク
をなまし処理(一次遅れ処理)した値に基づいて目標筒
内充填空気量の規範モデルを設定するようにすると良
い。このようにすれば、簡単な演算処理により、目標筒
内充填空気量の規範モデルを設定することができる。
In this case, it is preferable to set a reference model of the target in-cylinder charged air amount based on the value obtained by smoothing the required torque (first-order lag processing). In this way, the reference model of the target in-cylinder charged air amount can be set by a simple calculation process.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施形態を図面
に基づいて説明する。まず、図1に基づいてエンジン制
御システム全体の概略構成を説明する。内燃機関である
エンジン11の吸気管12の最上流部には、エアクリー
ナ13が設けられ、このエアクリーナ13の下流側に
は、吸入空気量を検出するエアフローメータ14が設け
られている。このエアフローメータ14の下流側には、
モータ(図示せず)等によって駆動されるスロットルバ
ルブ15と、スロットル開度を検出するスロットル開度
センサ16とが設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of an intake pipe 12 of an engine 11 which is an internal combustion engine, and an air flow meter 14 for detecting an intake air amount is provided downstream of the air cleaner 13. On the downstream side of the air flow meter 14,
A throttle valve 15 driven by a motor (not shown) and the like, and a throttle opening sensor 16 for detecting a throttle opening are provided.

【0009】更に、スロットルバルブ15の下流側に
は、サージタンク17が設けられ、このサージタンク1
7に、吸気管圧力を検出する吸気管圧力センサ18が設
けられている。また、サージタンク17には、エンジン
11の各気筒に吸入空気を導入する吸気マニホールド1
9が設けられ、各気筒の吸気マニホールド19の吸気ポ
ート近傍に、それぞれ燃料を噴射する燃料噴射弁20が
取り付けられている。
Further, a surge tank 17 is provided downstream of the throttle valve 15.
7, an intake pipe pressure sensor 18 for detecting an intake pipe pressure is provided. The surge tank 17 has an intake manifold 1 for introducing intake air into each cylinder of the engine 11.
9 are provided, and fuel injection valves 20 for injecting fuel are respectively mounted near intake ports of an intake manifold 19 of each cylinder.

【0010】一方、エンジン11の排気管21の途中に
は、排ガス中のCO,HC,NOx等を浄化する三元触
媒等の触媒22が設置されている。この触媒22の上流
側には、排ガスの空燃比を検出する空燃比センサ23
(又は酸素センサ)が設けられている。また、エンジン
11のシリンダブロックには、冷却水温を検出する冷却
水温センサ24や、エンジン回転速度を検出するための
クランク角センサ25が取り付けられている。また、ア
クセルペダルの開度(アクセル開度)を検出するアクセ
ルセンサ26が設けられている。
On the other hand, a catalyst 22 such as a three-way catalyst for purifying CO, HC, NOx and the like in exhaust gas is provided in the exhaust pipe 21 of the engine 11. An air-fuel ratio sensor 23 for detecting an air-fuel ratio of exhaust gas is provided upstream of the catalyst 22.
(Or an oxygen sensor). The cylinder block of the engine 11 is provided with a cooling water temperature sensor 24 for detecting a cooling water temperature and a crank angle sensor 25 for detecting an engine rotation speed. Further, an accelerator sensor 26 for detecting an accelerator pedal opening (accelerator opening) is provided.

【0011】これら各種センサの出力は、エンジン制御
回路(以下「ECU」と表記する)27に入力される。
このECU27は、マイクロコンピュータを主体として
構成され、内蔵されたROM(記憶媒体)に記憶された
図2のトルクディマンド制御プログラムを実行すること
で、燃料噴射量とスロットル開度を制御する。
The outputs of these various sensors are input to an engine control circuit (hereinafter referred to as "ECU") 27.
The ECU 27 mainly includes a microcomputer, and controls the fuel injection amount and the throttle opening by executing the torque demand control program of FIG. 2 stored in a built-in ROM (storage medium).

【0012】吸気ポート噴射エンジン11では、図3に
示すように、吸気弁開タイミングの直前に燃料噴射量を
決定して噴射セットを行い、吸気弁開タイミングの直前
又は直後に、燃料噴射弁20を駆動して燃料噴射を実行
する。噴射した燃料が実際に筒内に流入するまでの燃料
輸送系には、空気系壁面付着燃料(ウエット)等による
燃料輸送遅れがあるため、筒内流入燃料量は、燃料噴射
タイミングから遅れて変化する。また、筒内充填空気量
は吸気弁閉タイミングまで確定しないため、筒内充填空
気量確定タイミングは、燃料噴射量決定タイミング(吸
気弁開タイミングの直前)よりもかなり遅れる。しか
も、スロットル開度の指令値を電子スロットルに出力し
てから実際にスロットル開度が変化して筒内充填空気量
が変化するまでには、スロットルバルブの応答遅れと吸
入空気の流動遅れがある。
In the intake port injection engine 11, as shown in FIG. 3, the fuel injection quantity is determined immediately before the intake valve opening timing to perform the injection setting, and immediately before or immediately after the intake valve opening timing, the fuel injection valve 20 is opened. To execute fuel injection. In the fuel transport system until the injected fuel actually flows into the cylinder, there is a delay in fuel transport due to fuel (wet) attached to the air system wall, so the amount of fuel flowing into the cylinder changes later than the fuel injection timing. I do. Further, since the in-cylinder charged air amount is not determined until the intake valve closing timing, the in-cylinder charged air amount determining timing is considerably delayed from the fuel injection amount determining timing (immediately before the intake valve opening timing). Moreover, there is a delay in the response of the throttle valve and a delay in the flow of the intake air after the command value of the throttle opening is output to the electronic throttle and before the throttle opening changes and the amount of air charged in the cylinder changes. .

【0013】このような空気系の動特性、燃料輸送系の
動特性及び燃料噴射量決定から筒内充填空気量確定(吸
気弁閉タイミング)までの時間遅れの影響は、過渡時に
大きくなるため、これらの影響を考慮しないと、過渡時
に筒内充填空気量と筒内流入燃料量との比(空燃比)が
目標空燃比からずれてしまう。
The influence of the time delay from the determination of the dynamic characteristics of the air system, the dynamic characteristics of the fuel transport system, and the determination of the fuel injection amount to the determination of the in-cylinder charged air amount (timing of the intake valve closing) becomes large during the transition. If these effects are not taken into consideration, the ratio (air-fuel ratio) between the in-cylinder charged air amount and the in-cylinder inflow fuel amount will deviate from the target air-fuel ratio during a transition.

【0014】そこで、本実施形態では、図4(a)に示
すように、要求トルクに基づいて目標筒内充填空気量の
規範モデルを演算し、この規範モデルと目標空燃比に基
づいて目標筒内流入燃料量を演算すると共に、空気系壁
面付着燃料等による燃料輸送遅れを考慮して実際の筒内
流入燃料量が目標筒内流入燃料量と一致するように燃料
噴射量を制御する。そして、燃料噴射量決定タイミング
から吸気弁閉タイミングまでの遅れ時間(Z-L)とスロ
ットルバルブ15の応答遅れ時間(Z-m)との時間ずれ
分(Z-(L-m))だけスロットル開度の指令値の位相をず
らしてスロットルバルブ15を駆動することで、実際の
筒内充填空気量が上記規範モデルを吸気弁閉タイミング
までの遅れ時間分(Z-L)だけ位相をずらして得られる
目標筒内充填空気量に一致するようにスロットル開度を
制御する。
Therefore, in the present embodiment, as shown in FIG. 4A, a reference model of the target in-cylinder charged air amount is calculated based on the required torque, and the target cylinder is calculated based on the reference model and the target air-fuel ratio. The fuel injection amount is controlled so that the actual in-cylinder fuel amount matches the target in-cylinder inflow fuel amount, taking into account the fuel transport delay due to the fuel adhering to the air system wall and the like, while calculating the in-flow fuel amount. Then, the throttle opening is set by a time difference (Z- (Lm) ) between the delay time (Z- L ) from the fuel injection amount determination timing to the intake valve closing timing and the response delay time (Z- m ) of the throttle valve 15. By driving the throttle valve 15 by shifting the phase of the command value, the actual in-cylinder charged air amount can be obtained by shifting the phase of the reference model by the delay time (Z- L ) until the intake valve closing timing. The throttle opening is controlled to match the target in-cylinder charged air amount.

【0015】以下、この制御を実行する図2のトルクデ
ィマンド制御プログラムの処理内容を説明する。まず、
ステップ101で、アクセルセンサ26の出力からアク
セル開度を検出し、次のステップ102で、このアクセ
ル開度に基づいて要求トルクを算出する。この際、アク
セル開度の他に、エンジン回転速度や車速等も考慮して
要求トルクを算出するようにしても良い。
The processing of the torque demand control program shown in FIG. 2 for executing this control will be described below. First,
In step 101, the accelerator opening is detected from the output of the accelerator sensor 26, and in the next step 102, the required torque is calculated based on the accelerator opening. At this time, the required torque may be calculated in consideration of the engine speed, the vehicle speed, and the like in addition to the accelerator opening.

【0016】この後、ステップ103で、要求トルクを
なまし処理(一次遅れ処理)した後、ステップ104
で、要求トルクをなまし処理した値に所定のゲインを乗
算して、目標筒内充填空気量の規範モデルを演算する。
これらステップ103,104の処理が特許請求の範囲
でいう規範モデル演算手段に相当する役割を果たす。
After that, in step 103, the required torque is smoothed (first-order lag processing), and then in step 104
Then, a standard model of the target in-cylinder charged air amount is calculated by multiplying a value obtained by smoothing the required torque by a predetermined gain.
The processing of these steps 103 and 104 plays a role corresponding to the reference model calculation means referred to in the claims.

【0017】規範モデルの演算後、ステップ105に進
み、筒内流入燃料量と筒内充填空気量とを同期させるた
めのタイミング同期ディレイ時間(Z-(L-m))をエンジ
ン回転速度、吸入空気量等に応じてマップ等により設定
する。ここで、タイミング同期ディレイ時間
(Z-(L-m))は、燃料噴射量決定タイミングから吸気弁
閉タイミングまでの遅れ時間(Z-L)とスロットルバル
ブ15の応答遅れ時間(Z-m)との時間ずれ分に相当す
る。スロットルバルブ15の応答遅れ時間(Z-m)は、
スロットル開度の指令値を電子スロットルに出力してか
ら実際にスロットル開度が変化するまでの遅れ時間であ
る。
After the calculation of the reference model, the routine proceeds to step 105, where the timing synchronization delay time (Z- (Lm) ) for synchronizing the in-cylinder inflow fuel amount and the in-cylinder charged air amount is determined by the engine rotation speed and the intake air amount. It is set by a map or the like according to the above. Here, the timing synchronization delay time (Z- (Lm) ) is defined as the delay time (Z- L ) from the fuel injection amount determination timing to the intake valve closing timing and the response delay time (Z- m ) of the throttle valve 15. This corresponds to the time lag. The response delay time (Z- m ) of the throttle valve 15 is
This is a delay time from when the throttle opening command value is output to the electronic throttle to when the throttle opening actually changes.

【0018】この後、ステップ106で、目標筒内充填
空気量やエンジン回転速度等に基づいてスロットル開度
指令値を演算し、次のステップ107で、このスロット
ル開度指令値に応じた制御信号を、燃料噴射量決定タイ
ミングからタイミング同期ディレイ時間(Z-(L-m))だ
け遅らせて電子スロットルのモータに出力し、スロット
ルバルブ15を駆動してスロットル開度を制御する。こ
れらステップ105〜107の処理が特許請求の範囲で
いうスロットル制御手段に相当する役割を果たす。
Thereafter, at step 106, a throttle opening command value is calculated based on the target cylinder air charge amount, the engine rotation speed, and the like. At the next step 107, a control signal corresponding to the throttle opening command value is calculated. Is output to the electronic throttle motor with a delay of the timing synchronization delay time (Z- (Lm) ) from the fuel injection amount determination timing, and the throttle valve 15 is driven to control the throttle opening. The processing of steps 105 to 107 plays a role corresponding to the throttle control means in the claims.

【0019】一方、燃料噴射量の制御は、ステップ10
8で、要求トルクとエンジン回転速度に基づいて目標空
燃比をマップ等により設定し、次のステップ109で、
目標筒内充填空気量を目標空燃比で割り算して目標筒内
流入燃料量を求める。このステップ109の処理が特許
請求の範囲でいう目標筒内流入燃料量演算手段に相当す
る役割を果たす。
On the other hand, the control of the fuel injection amount is performed in step 10.
In step 8, a target air-fuel ratio is set by a map or the like based on the required torque and the engine speed, and in the next step 109,
The target in-cylinder charged air amount is divided by the target air-fuel ratio to obtain a target in-cylinder inflow fuel amount. The processing of step 109 plays a role corresponding to the target in-cylinder inflow fuel amount calculation means described in the claims.

【0020】この後、ステップ110で、空気系壁面付
着燃料等による燃料輸送遅れを考慮するための燃料輸送
遅れ補正係数を算出する。また、ステップ111で、空
燃比センサ23の出力から実空燃比を検出し、次のステ
ップ112で、実空燃比と目標空燃比との偏差に応じて
空燃比フィードバック補正係数を算出する。
Thereafter, at step 110, a fuel transport delay correction coefficient is calculated in order to take into account the fuel transport delay due to the fuel adhered to the air system wall. In step 111, the actual air-fuel ratio is detected from the output of the air-fuel ratio sensor 23. In the next step 112, the air-fuel ratio feedback correction coefficient is calculated according to the deviation between the actual air-fuel ratio and the target air-fuel ratio.

【0021】この後、ステップ113で、目標筒内流入
燃料量に、燃料輸送遅れ補正係数、空燃比フィードバッ
ク補正係数、水温補正係数等を乗算して最終的な燃料噴
射量を求める。そして、次のステップ114で、この燃
料噴射量に応じたパルス幅の噴射パルスを燃料噴射弁2
0に出力して燃料を噴射する。これらステップ110〜
114の処理が特許請求の範囲でいう燃料噴射制御手段
に相当する役割を果たす。
Thereafter, in step 113, the final fuel injection amount is obtained by multiplying the target cylinder inflow fuel amount by a fuel transport delay correction coefficient, an air-fuel ratio feedback correction coefficient, a water temperature correction coefficient, and the like. Then, in the next step 114, an injection pulse having a pulse width corresponding to the fuel injection amount is supplied to the fuel injection valve 2.
Output to 0 to inject fuel. These steps 110
The processing at 114 plays a role corresponding to the fuel injection control means in the claims.

【0022】以上説明した本実施形態では、図4(a)
に示すように、要求トルクに基づいて目標筒内充填空気
量の規範モデルを演算し、この規範モデルと目標空燃比
に基づいて目標筒内流入燃料量を演算すると共に、空気
系壁面付着燃料等による燃料輸送遅れを考慮して実際の
筒内流入燃料量が目標筒内流入燃料量と一致するように
燃料噴射量を制御し、燃料噴射量決定タイミングから吸
気弁閉タイミングまでの遅れ時間(Z-L)とスロットル
バルブ15の応答遅れ時間(Z-m)との時間ずれ分(Z
-(L-m))だけスロットル開度指令値の位相をずらしてス
ロットルバルブ15を駆動するようにしたので、空気系
の動特性、燃料輸送系の動特性及び燃料噴射量決定から
筒内充填空気量確定(吸気弁閉タイミング)までの時間
遅れを考慮して、筒内充填空気量と筒内流入燃料量の制
御を同期させることができ、常に実際の筒内充填空気量
と筒内流入燃料量との比(空燃比)を目標空燃比に一致
させることができる。これにより、過渡時でも精度の良
い空燃比制御を行うことができて、加速応答性を向上で
きると共に、排気エミッションを低減できる。
In the present embodiment described above, FIG.
As shown in (1), a reference model of the target in-cylinder charged air amount is calculated based on the required torque, and the target in-cylinder inflow fuel amount is calculated based on the reference model and the target air-fuel ratio. The fuel injection amount is controlled such that the actual in-cylinder fuel amount coincides with the target in-cylinder fuel amount in consideration of the fuel transport delay caused by the fuel injection, and the delay time (Z -L ) and the response delay time (Z- m ) of the throttle valve 15 (Z- m ).
-(Lm) ), the throttle valve 15 is driven by shifting the phase of the throttle opening command value by an amount, so that the in-cylinder charged air amount is determined from the dynamic characteristics of the air system, the dynamic characteristics of the fuel transport system, and the fuel injection amount. Taking into account the time delay until the determination (intake valve closing timing), the control of the in-cylinder charged air amount and the in-cylinder inflow fuel amount can be synchronized. (Air-fuel ratio) can be matched with the target air-fuel ratio. As a result, air-fuel ratio control with high accuracy can be performed even during a transient period, so that acceleration responsiveness can be improved and exhaust emissions can be reduced.

【0023】これに対し、図4(b)に示す比較例で
は、燃料噴射量決定タイミングから吸気弁閉タイミング
までの遅れ時間(Z-L)とスロットルバルブ15の応答
遅れ時間(Z-m)との時間ずれ分が考慮されておらず、
燃料噴射量とスロットル開度指令値の位相が同期してい
るため、過渡時の筒内充填空気量と筒内流入燃料量との
比(空燃比)が、両者のタイミングのずれにより、目標
空燃比からずれてしまい、過渡時の空燃比の制御精度が
悪くなる。
On the other hand, in the comparative example shown in FIG. 4B, the delay time (Z- L ) from the fuel injection amount determination timing to the intake valve closing timing and the response delay time (Z- m ) of the throttle valve 15 are shown. And the time lag between is not taken into account,
Since the phase of the fuel injection amount and the phase of the throttle opening command value are synchronized, the ratio (air-fuel ratio) between the in-cylinder charged air amount and the in-cylinder inflow fuel amount at the time of transition is determined by the timing difference between the two. It deviates from the fuel ratio, and the control accuracy of the air-fuel ratio at the time of transition deteriorates.

【0024】尚、本発明は、吸気ポート噴射エンジンに
限定されず、筒内噴射エンジンの均質燃焼にも適用して
実施できる。
It should be noted that the present invention is not limited to the intake port injection engine, but can be applied to homogeneous combustion of a direct injection engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示すエンジン制御システ
ム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment of the present invention.

【図2】トルクディマンド制御の概要を説明するフロー
チャート
FIG. 2 is a flowchart illustrating an outline of torque demand control;

【図3】エンジンのサイクルと筒内流入燃料量と筒内充
填空気量との関係を説明するタイムチャート
FIG. 3 is a time chart for explaining a relationship among an engine cycle, an in-cylinder fuel amount, and an in-cylinder charged air amount;

【図4】(a)は本発明の一実施形態の制御方法を説明
する図、(b)は比較例の制御方法を説明する図
4A is a diagram illustrating a control method according to an embodiment of the present invention, and FIG. 4B is a diagram illustrating a control method according to a comparative example.

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、12…吸気管、14…エ
アフローメータ、15…スロットルバルブ、18…吸気
管圧力センサ、20…燃料噴射弁、25…クランク角セ
ンサ、26…アクセルセンサ、27…ECU(規範モデ
ル演算手段,目標筒内流入燃料量演算手段,燃焼噴射制
御手段,スロットル制御手段)。
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 14 ... Air flow meter, 15 ... Throttle valve, 18 ... Intake pipe pressure sensor, 20 ... Fuel injection valve, 25 ... Crank angle sensor, 26 ... Accelerator sensor, 27 ... ECU (Normal model calculation means, target in-cylinder fuel amount calculation means, combustion injection control means, throttle control means).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3G301 HA01 JA03 JA12 JA13 JA21 KA11 LA03 MA01 MA12 MA18 NA01 NC02 ND01 ND45 NE22 PA01Z PA07Z PA11Z PD03A PD03Z PE01Z PE03Z PE08Z PF03Z  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3G301 HA01 JA03 JA12 JA13 JA21 KA11 LA03 MA01 MA12 MA18 NA01 NC02 ND01 ND45 NE22 PA01Z PA07Z PA11Z PD03A PD03Z PE01Z PE03Z PE08Z PF03Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 運転者の要求する要求トルクを判断し
て、その要求トルクに基づいて内燃機関の運転を制御す
る内燃機関の制御装置において、 前記要求トルクに基づいて目標筒内充填空気量の規範モ
デルを設定する規範モデル演算手段と、 前記目標筒内充填空気量の規範モデルと目標空燃比に基
づいて目標筒内流入燃料量を演算する目標筒内流入燃料
量演算手段と、 吸気系壁面付着燃料等による燃料輸送遅れを考慮して実
際の筒内流入燃料量が前記目標筒内流入燃料量と一致す
るように燃料噴射量を制御する燃料噴射制御手段と、 燃料噴射量決定タイミングから吸気弁閉タイミングまで
の遅れ時間とスロットルバルブの応答遅れ時間との時間
ずれ分だけスロットル開度の指令値の位相をずらしてス
ロットルバルブを駆動することで、実際の筒内充填空気
量が前記規範モデルを前記吸気弁閉タイミングまでの遅
れ時間分だけ位相をずらして得られる目標筒内充填空気
量に一致するようにスロットル開度を制御するスロット
ル制御手段とを備えていることを特徴とする内燃機関の
制御装置。
1. A control device for an internal combustion engine that determines a required torque required by a driver and controls the operation of the internal combustion engine based on the required torque. Reference model calculation means for setting a reference model; target cylinder inflow fuel amount calculation means for calculating a target cylinder inflow fuel amount based on the reference cylinder charge air amount reference model and a target air-fuel ratio; Fuel injection control means for controlling the fuel injection amount so that the actual in-cylinder fuel amount coincides with the target in-cylinder fuel amount in consideration of fuel transport delay due to attached fuel or the like; By driving the throttle valve by shifting the phase of the throttle opening command value by the time difference between the delay time until the valve closing timing and the response delay time of the throttle valve, the actual Throttle control means for controlling the throttle opening so that the in-fill air amount matches the target in-cylinder fill air amount obtained by shifting the phase of the reference model by the delay time until the intake valve closing timing. A control device for an internal combustion engine.
【請求項2】 前記規範モデル演算手段は、前記要求ト
ルクをなまし処理した値に基づいて前記目標筒内充填空
気量の規範モデルを設定することを特徴とする請求項1
に記載の内燃機関の制御装置。
2. The reference model calculation means sets a reference model of the target in-cylinder charged air amount based on a value obtained by smoothing the required torque.
3. The control device for an internal combustion engine according to claim 1.
【請求項3】 運転者の要求する要求トルクを判断し
て、その要求トルクに基づいて内燃機関の運転を制御す
る内燃機関の制御方法において、 前記要求トルクに基づいて目標筒内充填空気量の規範モ
デルを演算し、該規範モデルと目標空燃比に基づいて目
標筒内流入燃料量を演算すると共に、吸気系壁面付着燃
料等による燃料輸送遅れを考慮して実際の筒内流入燃料
量が前記目標筒内流入燃料量と一致するように燃料噴射
量を制御し、 燃料噴射量決定タイミングから吸気弁閉タイミングまで
の遅れ時間とスロットルバルブの応答遅れ時間との時間
ずれ分だけスロットル開度の指令値の位相をずらしてス
ロットルバルブを駆動することで、実際の筒内充填空気
量が前記規範モデルを前記吸気弁閉タイミングまでの遅
れ時間分だけ位相をずらして得られる目標筒内充填空気
量に一致するようにスロットル開度を制御することを特
徴とする内燃機関の制御方法。
3. A control method for an internal combustion engine that determines a required torque required by a driver and controls the operation of the internal combustion engine based on the required torque. The reference model is calculated, and the target in-cylinder fuel amount is calculated based on the reference model and the target air-fuel ratio. The fuel injection amount is controlled so as to match the target in-cylinder inflow fuel amount, and the throttle opening command is given by the time difference between the delay time from the fuel injection amount determination timing to the intake valve closing timing and the response delay time of the throttle valve. By driving the throttle valve by shifting the phase of the value, the actual in-cylinder charged air amount shifts the phase of the reference model by the delay time until the intake valve closing timing. Control method for an internal combustion engine and controls the throttle opening to match the target cylinder air charge quantity to be.
JP2000055919A 2000-02-28 2000-02-28 Control device and control method for internal combustion engine Expired - Fee Related JP4378665B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000055919A JP4378665B2 (en) 2000-02-28 2000-02-28 Control device and control method for internal combustion engine
DE2001109395 DE10109395B4 (en) 2000-02-28 2001-02-27 Torque request based engine control technology that provides a constant air / fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055919A JP4378665B2 (en) 2000-02-28 2000-02-28 Control device and control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001241343A true JP2001241343A (en) 2001-09-07
JP4378665B2 JP4378665B2 (en) 2009-12-09

Family

ID=18576958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055919A Expired - Fee Related JP4378665B2 (en) 2000-02-28 2000-02-28 Control device and control method for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4378665B2 (en)
DE (1) DE10109395B4 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070701A (en) * 2004-08-31 2006-03-16 Denso Corp Control device of internal combustion engine
CN1307365C (en) * 2002-10-04 2007-03-28 丰田自动车株式会社 Control device and control method for internal-combustion engine
JP2010281240A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Control device of internal combustion engine
JP2010285879A (en) * 2009-06-09 2010-12-24 Toyota Motor Corp Internal combustion engine torque control device
JP2012112389A (en) * 2012-03-16 2012-06-14 Nissan Motor Co Ltd Engine control device
US8380422B2 (en) 2007-09-25 2013-02-19 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100880B3 (en) * 2019-01-15 2020-02-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for operating an internal combustion engine and control device for an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3737699A1 (en) * 1987-11-06 1989-05-18 Bayerische Motoren Werke Ag Control device for the amount of fuel to be fed to an internal combustion engine
DE3930396C2 (en) * 1989-09-12 1993-11-04 Bosch Gmbh Robert METHOD FOR ADJUSTING AIR AND FUEL AMOUNTS FOR A MULTI-CYLINDRICAL INTERNAL COMBUSTION ENGINE
JPH1122515A (en) * 1997-07-04 1999-01-26 Unisia Jecs Corp Engine torque calculating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307365C (en) * 2002-10-04 2007-03-28 丰田自动车株式会社 Control device and control method for internal-combustion engine
JP2006070701A (en) * 2004-08-31 2006-03-16 Denso Corp Control device of internal combustion engine
US8380422B2 (en) 2007-09-25 2013-02-19 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for internal combustion engine
JP2010281240A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Control device of internal combustion engine
JP2010285879A (en) * 2009-06-09 2010-12-24 Toyota Motor Corp Internal combustion engine torque control device
JP2012112389A (en) * 2012-03-16 2012-06-14 Nissan Motor Co Ltd Engine control device

Also Published As

Publication number Publication date
JP4378665B2 (en) 2009-12-09
DE10109395A1 (en) 2001-09-27
DE10109395B4 (en) 2011-04-07

Similar Documents

Publication Publication Date Title
US20120097126A1 (en) Control Apparatus of a Direct Injection Gasoline Engine
CN104279068A (en) Internal combustion engine control apparatus
JP5086228B2 (en) Operation control device for internal combustion engine
JPH1182090A (en) Internal combustion engine control system
WO2012137331A1 (en) Internal combustion engine control apparatus
JP4378665B2 (en) Control device and control method for internal combustion engine
JP2002309990A (en) Control device for internal combustion engine
JP2001123879A (en) Combustion state detecting device for internal combustion engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP2001342885A (en) Fuel injection control device for internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JPH10169469A (en) Controller for internal combustion engine
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP3627462B2 (en) Control device for internal combustion engine
JP2001248487A (en) Control device for internal combustion engine
JPH06185396A (en) Basic fuel injection method
JP2002089338A (en) Fuel injection control device for internal combustion engine
JPS61185647A (en) Intake pressure detecting device for internal-combustion engine
JPH09324691A (en) Fuel control unit for combustion engine
JP2005171765A (en) Control device and control method of internal combustion engine
JP3966177B2 (en) Air-fuel ratio control device for internal combustion engine
JP2003214230A (en) Idle rotational speed control device of internal combustion engine
JPH08128348A (en) Control device of engine
JPH1182132A (en) Control device for internal combustion engine
JP2561248B2 (en) Fuel cut control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees