JP2001240934A - Method for producing spheroidal graphite cast iron - Google Patents

Method for producing spheroidal graphite cast iron

Info

Publication number
JP2001240934A
JP2001240934A JP2000057940A JP2000057940A JP2001240934A JP 2001240934 A JP2001240934 A JP 2001240934A JP 2000057940 A JP2000057940 A JP 2000057940A JP 2000057940 A JP2000057940 A JP 2000057940A JP 2001240934 A JP2001240934 A JP 2001240934A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
mold
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000057940A
Other languages
Japanese (ja)
Other versions
JP3712338B2 (en
Inventor
Hiroshi Awajiya
浩 淡路谷
Masayuki Nakada
正之 中田
Keiichi Yomo
慶一 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CASTING CO Ltd
Nippon Chuzo Co Ltd
JFE Engineering Corp
Original Assignee
NIPPON CASTING CO Ltd
Nippon Chuzo Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CASTING CO Ltd, Nippon Chuzo Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical NIPPON CASTING CO Ltd
Priority to JP2000057940A priority Critical patent/JP3712338B2/en
Publication of JP2001240934A publication Critical patent/JP2001240934A/en
Application granted granted Critical
Publication of JP3712338B2 publication Critical patent/JP3712338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing spheroidal graphite cast iron having excellent internal quality to a thick spheroidal graphite cast iron product having a thickness of >=200 mm. SOLUTION: The molten metal of a ferrous alloy having a composition containing, by weight, 3.0 to 4.0% C, 2.0 to 3.0% Si, <=0.3% (not inclusive of zero) Mn, <=0.05% P, <=0.02% S and >0.03 to 0.07% Mg and CE value (C+1/3Si) being 4.0 to 4.6% is poured into a die made of a copper alloy or a die consisting of a copper alloy and a ferrous material, thereafter, subjected to forced cooling by making water pass through.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、厚肉球状黒鉛鋳鉄
品の金型鋳造における内部品質の向上に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in internal quality of a thick-walled spheroidal graphite cast iron product in die casting.

【0002】[0002]

【従来の技術】球状黒鉛鋳鉄は、球状黒鉛が微細化する
と黒鉛形状が改善されたり基地組織が緻密化されたりし
て機械特性が向上することが知られている。したがっ
て、鋳鉄製または鋼製金型を使用する金型鋳造は、金型
の冷却効果により球状黒鉛が微細化するため、高品質な
球状黒鉛鋳鉄の製造を可能とする。しかしながら、厚肉
品においては冷却効果が中心部まで十分に及ばないため
に、球状黒鉛が粗大化したり形状悪化したりして内部品
質が低下してしまう。特開平6−108147で見られ
るように、銅合金製の水冷金型を使用して効果的に冷却
する技術が開発されている。しかし、比較的肉厚の薄い
製品を対象として開発されており、肉厚が200mmを
超すような厚肉品への適用については十分に検討されて
いない。
2. Description of the Related Art It is known that when spheroidal graphite is refined, mechanical properties of spheroidal graphite cast iron are improved by improving the shape of the graphite or densifying the base structure. Therefore, mold casting using a cast iron or steel mold enables the production of high quality spheroidal graphite cast iron because the spheroidal graphite is miniaturized by the cooling effect of the mold. However, in a thick-walled product, since the cooling effect does not sufficiently reach the central portion, the spherical graphite is coarsened or the shape is deteriorated, and the internal quality is reduced. As can be seen in Japanese Patent Application Laid-Open No. 6-108147, a technique for effectively cooling using a water-cooled mold made of a copper alloy has been developed. However, it has been developed for a product having a relatively thin thickness, and its application to a thick product having a thickness exceeding 200 mm has not been sufficiently studied.

【0003】一方、表面処理鋼板や快削鋼に見られるよ
うに、近年の鋼板の高級化・機能化により、溶解材料に
用いられる鋼屑からPb、Znといった球状黒鉛鋳鉄の
製造に有害な不純元素が混入することが問題となってい
る。これら有害元素が混入すると、黒鉛の球状化が妨げ
られたり、ピンホールなどの鋳造欠陥を発生させて、品
質が低下してしまう。厚肉品は、有害元素の作用にとく
に敏感であり重要な問題である。
[0003] On the other hand, as seen in surface-treated steel sheets and free-cutting steels, due to the recent sophistication and functionalization of steel sheets, impurities that are harmful to the production of spheroidal graphite cast irons such as Pb and Zn from steel scrap used as a melting material. There is a problem that elements are mixed. When these harmful elements are mixed, the spheroidization of graphite is hindered or casting defects such as pinholes are generated, resulting in deterioration of quality. Thick products are particularly sensitive to the effects of harmful elements and are an important issue.

【0004】[0004]

【発明が解決しようとする課題】肉厚200mm以上の
厚肉球状黒鉛鋳鉄品を金型で鋳造する場合、従来用いら
れている鋳鉄製または鋼製金型では、冷却効果が中心部
まで十分に及ばずに内部品質が低下してしまうため、さ
らに冷却効果を大きくする技術が必要となる。金型を強
制冷却する場合、厚肉品は重量が大きく莫大な熱量を有
するため、冷却効率と安全の両面からの検討する必要が
あり、金型の仕様と通水条件の選定が重要となる。
In the case of casting a thick-walled spheroidal graphite cast iron having a thickness of 200 mm or more with a mold, the cooling effect of the conventionally used cast iron or steel mold is not sufficient to the center. Since the internal quality deteriorates without reaching the level, a technique for further increasing the cooling effect is required. When the mold is forcibly cooled, it is necessary to consider both cooling efficiency and safety because thick-walled products have a large weight and a huge amount of heat, and it is important to select the mold specifications and water flow conditions .

【0005】また、厚肉品は有害元素の作用に敏感であ
るから、有害元素を含有しない厳選された溶解材料を使
用しなければならない。ところが、近年の鋼材の高級化
・機能化により、有害元素を含有しない鋼屑の調達が難
しくなってきている。
[0005] Further, since thick-walled products are sensitive to the action of harmful elements, it is necessary to use carefully selected dissolved materials that do not contain harmful elements. However, with the recent sophistication and functionalization of steel materials, it has become difficult to procure steel scrap containing no harmful elements.

【0006】[0006]

【課題を解決するための手段】そこで、有害元素を含有
しない厳選された原材料を使用して、成分組成が重量基
準でC:3.0〜4.0%、Si:2.0〜3.0%、
Mn:0.3%以下、P:0.05%以下、S:0.0
2%以下、Mg:0.03を超え0.07%以下を含有
し、Pb:0.001%以下、Zn:0.01%以下、
かつCE値(C+1/3Si):4.0〜4.6%に制御
された鉄系合金溶湯を、銅合金製金型または銅合金と鉄
系材料からなる金型に注湯して、溶湯に接する面から冷
却水に接する面までの距離が20〜80mmになるよう
にして、水量密度200〜5000リットル/分・m2
で通水して強制冷却を行えば、肉厚200mm以上の厚
肉球状黒鉛鋳鉄品に優れた内部品質をもたせることがで
きる。
Therefore, using carefully selected raw materials which do not contain harmful elements, the composition of the components is 3.0 to 4.0% by weight and C: 2.0 to 3.0% by weight. 0%,
Mn: 0.3% or less, P: 0.05% or less, S: 0.0
2% or less, Mg: more than 0.03 and 0.07% or less, Pb: 0.001% or less, Zn: 0.01% or less,
A molten iron-based alloy controlled to have a CE value (C + / Si): 4.0 to 4.6% is poured into a copper alloy mold or a mold made of a copper alloy and an iron-based material, and the molten metal is cast. The distance from the surface in contact with the cooling water to the surface in contact with the cooling water is 20 to 80 mm, and the water density is 200 to 5000 l / min · m 2.
If forced cooling is performed by passing water through the above, a thick-walled spheroidal graphite cast iron product having a thickness of 200 mm or more can have excellent internal quality.

【0007】以下に本発明の詳細を説明する。 [A]成分 (1)C:3.0〜4.0重量% 3.0重量%未満では黒鉛粒数が減少してしまい、4.
0重量%を超えるとドロスが発生し易くなるため、3.
0〜4.0重量%とする。 (2)Si:2.0〜3.0重量% 2.0重量%未満では強制冷却により急冷された際のチ
ル発生が促進され、3.0重量%を超えるとドロス発生
や靭性低下を招くので、2.0〜3.0重量%とする。 (3) Mn:0.3重量%以下 Mnは炭化物安定化元素であり、多量に含まれるとチル
発生が促進されるので、0.3重量%未満(ただしゼロ
は含まず)とする。 (4)P:0.05重量%以下 Pは共晶セル境界に偏析して製品を脆化させ、厚肉品で
はとくにその傾向が顕著になるため、0.05重量%以
下とする。 (5)S:0.02重量%以下 Sは黒鉛球状化下阻害元素であり、厚肉品にではとくに
その作用に敏感になるため、0.02重量%以下とす
る。 (6)Mg:0.03〜0.07重量% 0.03重量%以下では肉厚200mm以上の製品中心
部まで黒鉛を充分に球状化させることができず、0.0
7%を超えるとチルやドロスが発生し易くなるため、
0.03〜0.07重量%とする。 (7)Pb:0.001重量%以下 Pbは黒鉛球状化阻害元素であり、肉厚200mm以上
の厚肉品ではとくにその作用が大きく、0.001重量
%を超えると黒鉛形状が崩れるとともに、ミクロ偏析し
て最終凝固部に異常黒鉛を発生させるため、0.001
%以下とする。 (8) Zn:0.01重量%以下 Znはピンホールを発生させて品質を低下させるため、
0.01重量%以下とする。 (9)CE値(C+1/3Si):4.0〜4.6% 4.0重量%未満ではチル、引け巣などが発生しやすく
なり、4.6重量%を超えるとドロスが発生し易くなる
ので、4.0〜4.6重量%とする。 [B]金型仕様と通水条件 厚肉品の中心部まで効果的に強制冷却を行うためには、
冷却部材の熱伝導率の大きいことが必要であるため材質
は、銅合金製金型または銅合金と鉄系材料からなる金型
が適する。しかし、厚肉品を鋳造する場合の金型は重量
が大きく、これを全て銅合金製にするとコストが高くな
ってしまう。そこで、熱伝導率が大きくてはならない溶
湯に接する面から冷却水に接する面までの冷却部材を銅
合金製にして、その外側は鉄系材料としてもいい。厚肉
品の金型には多大な圧力がかかるので、溶湯に接する面
から冷却水に接する面までのある程度の距離が必要とな
る。ところが、この距離が小さいほど強制冷却の効果は
大きくなるので、厚肉品内部の品質は向上し、さらに、
注湯直後の金型表面温度の上昇も抑制される。したがっ
て、品質向上と金型寿命の両面から、溶湯に接する面か
ら冷却水に接する面までの距離は小さいことが望まし
い。これらの点について検討を重ねた結果、溶湯に接す
る面から冷却水までの距離を20〜80mmにして、金
型製品面の面積に対する通水量の密度である水量密度を
200リットル/分・m2以上で通水して強制冷却を行
えば、肉厚200mm以上の厚肉品の中心部まで効果的
に冷却できることがわかった。水量密度が5000リッ
トル/分・m2を超えると冷却効果の差が小さくなるの
で、200〜5000リットル/分・m2の範囲とす
る。 [C]原材料 溶解材料として最も多く使用されている鋼屑には、昨今
の鋼板の機能化によりPb,Znといった有害元素が含
有されているため、極微量の有害元素混入が問題となる
厚肉球状黒鉛鋳鉄品の溶解材料には適さない。鉄鉱石を
高炉中で還元して得られる高炉溶銑は、外部からの不純
物混入が無く、予備処理により有害元素を最小限に抑え
ることが可能であり、さらに直鋳で使用すれば溶解エネ
ルギーも節約されるので、厚肉品の原材料として最適で
ある。したがって、高炉溶銑を主原料に使用し、残りに
有害元素を含有しない厳選された鋼屑と合金鉄を用い
る。
The details of the present invention will be described below. [A] component (1) C: 3.0 to 4.0% by weight If the content is less than 3.0% by weight, the number of graphite particles decreases, and
If the content exceeds 0% by weight, dross is likely to be generated.
0 to 4.0% by weight. (2) Si: 2.0 to 3.0% by weight When less than 2.0% by weight, chill generation during rapid cooling by forced cooling is promoted, and when more than 3.0% by weight, dross generation and a decrease in toughness are caused. Therefore, the content is 2.0 to 3.0% by weight. (3) Mn: 0.3% by weight or less Mn is a carbide stabilizing element, and when contained in a large amount, chill generation is promoted. Therefore, Mn is set to less than 0.3% by weight (excluding zero). (4) P: 0.05% by weight or less P segregates at the eutectic cell boundary and embrittles the product. This tendency is particularly remarkable in thick-walled products. (5) S: 0.02% by weight or less S is an element that inhibits spheroidization of graphite, and is particularly sensitive to its action in thick-walled products. (6) Mg: 0.03 to 0.07% by weight If the content is 0.03% by weight or less, graphite cannot be sufficiently spheroidized to the center of a product having a thickness of 200 mm or more.
If it exceeds 7%, chill and dross are likely to occur,
0.03 to 0.07% by weight. (7) Pb: 0.001% by weight or less Pb is a graphite spheroidizing element, and its effect is particularly large in a thick product having a thickness of 200 mm or more. 0.001 to generate micrographs and abnormal graphite in the final solidified part
% Or less. (8) Zn: 0.01% by weight or less Zn causes pinholes and deteriorates the quality.
Not more than 0.01% by weight. (9) CE value (C + / Si): 4.0 to 4.6% If less than 4.0% by weight, chills and shrinkage cavities are likely to occur, and if more than 4.6% by weight, dross is likely to occur. Therefore, it is set to 4.0 to 4.6% by weight. [B] Mold specifications and water flow conditions In order to effectively perform forced cooling down to the center of thick-walled products,
Since the cooling member needs to have high thermal conductivity, the material is suitably a copper alloy mold or a mold made of a copper alloy and an iron-based material. However, the mold for casting a thick-walled product has a large weight, and if it is entirely made of a copper alloy, the cost increases. Therefore, the cooling member from the surface in contact with the molten metal, which should not have high thermal conductivity, to the surface in contact with the cooling water may be made of a copper alloy, and the outside may be made of an iron-based material. Since a large pressure is applied to a thick mold, a certain distance from the surface in contact with the molten metal to the surface in contact with the cooling water is required. However, the smaller this distance, the greater the effect of forced cooling, the better the quality inside thick-walled products,
An increase in the mold surface temperature immediately after pouring is also suppressed. Therefore, it is desirable that the distance from the surface in contact with the molten metal to the surface in contact with the cooling water is small from both aspects of quality improvement and mold life. As a result of repeated investigations on these points, the distance from the surface in contact with the molten metal to the cooling water was set to 20 to 80 mm, and the water density, which is the density of the water flow with respect to the area of the mold product surface, was 200 l / min · m 2. As described above, it was found that if forced cooling is performed by passing water, cooling can be effectively performed to the center of a thick product having a thickness of 200 mm or more. When the water density exceeds 5,000 liters / minute · m 2 , the difference in cooling effect becomes small, so the range is 200 to 5000 liters / minute · m 2 . [C] Raw material Steel scrap, which is most frequently used as a melting material, contains harmful elements such as Pb and Zn due to the recent functionalization of steel sheets. Not suitable for melting material of spheroidal graphite cast iron. The blast furnace hot metal obtained by reducing iron ore in a blast furnace is free of external impurities, and can minimize harmful elements by pretreatment. It is most suitable as a raw material for thick products. Therefore, blast furnace hot metal is used as the main raw material, and the rest is made of carefully selected steel scrap and alloy iron that do not contain harmful elements.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施形態におけ
る球状黒鉛鋳鉄の製造方法について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing spheroidal graphite cast iron according to one embodiment of the present invention will be described below.

【0009】高炉溶銑を主原料として使用し、溶解炉中
でこれに鋼屑と合金鉄を加えて成分調整を行った後、球
状化処理及び接種処理を施してから、銅合金製金型また
は銅合金と鉄系材料からなる金型に注湯する。金型内に
通水して強制冷却を行えば、黒鉛が微細化及び形状改善
されて、肉厚200mm以上の厚肉品に対しても優れた
品質をもたせることができる。
[0009] After using blast furnace molten iron as a main raw material, adjusting the components by adding steel chips and ferromagnetic iron to the molten iron in a melting furnace, performing spheroidizing treatment and inoculating treatment, and then using a copper alloy mold or Pouring into a mold made of copper alloy and iron-based material. If forced cooling is performed by passing water through the mold, graphite is refined and the shape is improved, and excellent quality can be obtained even for a thick product having a thickness of 200 mm or more.

【0010】高炉溶銑は脱燐・脱硫処理を施された高純
度のものを使用する。成分調製のために加える鋼屑は、
表面処理等が施されていない球状黒鉛鋳鉄に有害な元素
を含まないものを厳選して使用する。これにFe−Si
合金、場合によっては加炭材を加えて、溶解炉中で成分
調整を行って、鋳鉄溶湯を溶製する。
As the blast furnace hot metal, high-purity hot metal subjected to a dephosphorization / desulfurization treatment is used. Steel scrap added for component preparation
Spherical graphite cast iron that has not been subjected to surface treatment, etc., is carefully selected from those that do not contain harmful elements. Fe-Si
The alloy and, if necessary, the carburizing material are added, the components are adjusted in a melting furnace, and the cast iron melt is melted.

【0011】球状化処理は、黒鉛を球状化させる目的
で、黒鉛球状化元素であるMg,Ce,Ca等を溶湯に
添加する溶湯処理である。添加合金はFe−Si−Mg
系が最も一般的であり、そのうち多くのものには球状化
補助元素としてREM、Caを少量添加してある。とこ
ろが、厚肉球状黒鉛鋳鉄品では、REM、Caはチャン
キー黒鉛発生の原因となるので、これらの元素が添加さ
れていないFe−Si−Mg合金を使用することが好ま
しい。添加方法としては、取鍋底に添加合金を装入し
て、ここに鋳鉄溶湯を流し込む置注ぎ/サンドイッチ法
が最も一般的であるが、一部では取鍋上部にタンディッ
シュカバーを取り付けたタンディッシュ法、プランジャ
により溶湯中に添加合金を装入するプランジャ法なども
行われている。
The spheroidizing process is a process of adding graphite spheroidizing elements such as Mg, Ce, and Ca to a molten metal for the purpose of spheroidizing graphite. The added alloy is Fe-Si-Mg
The system is the most common, and many of them have a small amount of REM and Ca added as a spheroidizing auxiliary element. However, in a thick-walled spheroidal graphite cast iron product, REM and Ca cause the generation of chunky graphite. Therefore, it is preferable to use an Fe-Si-Mg alloy to which these elements are not added. The most common method of addition is the pouring / sandwich method, in which the additive alloy is charged to the bottom of the ladle and the molten cast iron is poured into it, but in some cases the tundish has a tundish cover attached to the top of the ladle. A plunger method of charging an additive alloy into a molten metal by a plunger and a plunger method is also performed.

【0012】接種処理は、黒鉛化を促進するために少量
のFe−Si合金、または、適当な合金を溶湯に添加す
る溶湯処理である。添加方法は、取鍋中で球状化処理と
同時に行う方法もあるが、厚肉品は鋳型に注湯してから
凝固終了するまでの時間が長く、この間に接種効果が減
衰してしまうので、注湯直前に接種を行う後期接種が好
ましい。後期接種の方法としては、注湯直前に取鍋中に
ワイヤ状の接種合金を自動的に溶湯中に送り込む方法、
注湯時の湯流れ中に棒状の接種合金を湯で洗わせる方
法、鋳型に掛堰を設置して掛堰内で接種合金を添加する
方法などが行われている。
The inoculation treatment is a molten metal treatment in which a small amount of an Fe-Si alloy or a suitable alloy is added to the molten metal to promote graphitization. There is also a method of adding at the same time as the spheroidizing treatment in a ladle, but the thick-walled product takes a long time from pouring into the mold to the end of solidification, during which the inoculation effect is attenuated, Late inoculation, in which inoculation is performed immediately before pouring, is preferred. As a method of late inoculation, a method of automatically feeding a wire-like inoculum alloy into a molten metal in a ladle immediately before pouring,
A method of washing a rod-shaped inoculum alloy with hot water during pouring of molten metal, a method of installing a hanging weir in a mold and adding the inoculum alloy in the hanging weir, and the like have been performed.

【0013】金型は、溶湯に接する面から冷却水に接す
る面までは銅合金製で、その距離が20〜80mm、水
量密度が200〜5000リットル/分・m2の範囲内
であることが必要であり、そのためには管内に適当な水
圧が必要となる。適正水圧は金型の設計により異なる
が、水圧が大きくなると冷却水の沸点が上昇して沸騰現
象が起こりにくくなるので、水圧は大きい方が望まし
い。
The mold is made of a copper alloy from the surface in contact with the molten metal to the surface in contact with the cooling water, the distance is 20 to 80 mm, and the water density is in the range of 200 to 5000 l / min · m 2. Required, which requires an appropriate water pressure in the pipe. The appropriate water pressure varies depending on the design of the mold, but if the water pressure increases, the boiling point of the cooling water rises and the boiling phenomenon hardly occurs.

【0014】[0014]

【実施例】以下、高純度高炉溶銑を主原材料に用いて、
銅合金とステンレスからなる水冷金型に注湯した後通水
して厚肉球状黒鉛鋳鉄品を製造した実施例について説明
する。
[Embodiment] Hereinafter, using high purity blast furnace hot metal as a main raw material,
An example in which a thick-walled spheroidal graphite cast iron product is manufactured by pouring water into a water-cooled mold made of a copper alloy and stainless steel and then passing water through the pouring will be described.

【0015】主原材料の高炉溶銑を低周波誘導炉に装入
して、ここに鋼屑及びFe−Si合金を加えて鋳鉄溶湯
を溶製した。高炉溶銑の成分は重量基準でC:3.94
%、Si:0.00%、Mn:0.12%、P:0.0
13%、S:0.007%、Pb:0.0004%、Z
n:0.003%で、溶湯全体重量の約90%にこれを
使用した。この鋳鉄溶湯に、取鍋中でFe−Si−Mg
合金による球状化処理を施した後、Fe−Si合金を溶
湯重量に対して0.1%後期接種してから1330〜1
340℃で金型に注湯して、幅500mm×奥行き50
0mm×高さ800mmのブロック材を製造した。球状
化処理後の取鍋成分は重量基準でC:3.55%、S
i:2.27%、Mn:0.21%、P:0.015
%、S:0.007%、Mg:0.045%、Pb:
0.0004%、Zn:0.003%であった。金型は
図1に示す銅合金とステンレスからなる水冷金型1(以
下銅合金製水冷金型1という)と、図2に示す鋳鉄製金
型2の2種類を用意した。銅合金製水冷金型1は、厚さ
50mmの銅合金製内部材3とステンレス製外部材4か
ら成り、銅合金製内部材3とステンレス製外部材4の間
に直径38mmの通水路5があり、溶湯と接する面と冷
却水と接する面の距離が31mmとなっている。注湯と
同時に300m/分、流量密度850リットル/分・m
2で通水して強制冷却を行った。通水路内の水圧は金型
の入側が284kPa、出側が127kPaであった。
こうして製造したブロック材の断面を観察したところ、
ピンホール等の鋳造欠陥は観察されなかった。ブロック
材の中心部から、図2の要領でサンプルを採取して、組
織観察と引張試験を行った結果を表1と図3に示す。図
3に見られるように、銅合金製水冷金型と鋳鉄製金型の
どちらのサンプルにも、チャンキー黒鉛や異常黒鉛の発
生は無かった。両サンプルを比較すると、表1に示す通
り、銅合金製水冷金型の方が黒鉛粒径が小さく、黒鉛球
状化率が高く、引張特性が高かった。
A blast furnace molten iron as a main raw material was charged into a low frequency induction furnace, and steel scrap and an Fe-Si alloy were added thereto to form a molten cast iron. The composition of the blast furnace hot metal is C: 3.94 on a weight basis.
%, Si: 0.00%, Mn: 0.12%, P: 0.0
13%, S: 0.007%, Pb: 0.0004%, Z
n: 0.003%, which was used for about 90% of the total weight of the molten metal. Fe-Si-Mg is added to this molten cast iron in a ladle.
After performing the spheroidizing treatment with the alloy, the Fe-Si alloy was inoculated at a late stage of 0.1% with respect to the weight of the molten metal, and thereafter, 1330 to 1
Pouring into a mold at 340 ° C, width 500mm x depth 50
A block material of 0 mm × 800 mm height was manufactured. The ladle component after the spheroidization treatment is C: 3.55% by weight, S
i: 2.27%, Mn: 0.21%, P: 0.015
%, S: 0.007%, Mg: 0.045%, Pb:
0.0004%, Zn: 0.003%. Two types of molds were prepared: a water-cooled mold 1 made of a copper alloy and stainless steel shown in FIG. 1 (hereinafter referred to as a copper-cooled water-cooled mold 1) and a cast iron mold 2 shown in FIG. The copper alloy water-cooling mold 1 includes a copper alloy inner member 3 having a thickness of 50 mm and a stainless steel outer member 4, and a water passage 5 having a diameter of 38 mm is provided between the copper alloy inner member 3 and the stainless steel outer member 4. The distance between the surface in contact with the molten metal and the surface in contact with the cooling water is 31 mm. 300m / min, flow density 850 liter / min.m at the same time as pouring
Water was passed through 2 to perform forced cooling. The water pressure in the water passage was 284 kPa on the inlet side of the mold and 127 kPa on the outlet side.
When observing the cross section of the block material thus manufactured,
No casting defects such as pinholes were observed. A sample was taken from the center of the block material in the manner shown in FIG. 2, and the results of a structure observation and a tensile test were shown in Table 1 and FIG. As can be seen from FIG. 3, neither chunky graphite nor abnormal graphite was generated in both the copper alloy water-cooled mold and the cast iron mold. When the two samples were compared, as shown in Table 1, the copper alloy water-cooled mold had a smaller graphite particle size, a higher graphite spheroidization rate, and higher tensile properties.

【0016】[0016]

【表1】 [Table 1]

【0017】なお、上記実施例では、金型に銅合金と鉄
系材料(ステンレス)からなる水冷金型を用いている
が、もちろんすべて銅合金製の金型を用いてもよい。
In the above embodiment, the mold is a water-cooled mold made of a copper alloy and an iron-based material (stainless steel). However, a mold entirely made of a copper alloy may be used.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
高純度高炉溶銑を主原料とし、各成分が制御された溶湯
を、銅合金製金型または銅合金と鉄系材料からなる金型
に注湯して、金型内に通水して強制冷却を行えば、肉厚
200mm以上の厚肉球状黒鉛鋳鉄品に対しても優れた
内部品質をもたせることができる。
As described above, according to the present invention,
High-purity blast furnace molten iron is used as the main raw material, and the molten metal whose components are controlled is poured into a copper alloy mold or a mold composed of a copper alloy and an iron-based material, and water is forced into the mold for forced cooling. , Excellent internal quality can be imparted to a thick-walled spheroidal graphite cast iron product having a thickness of 200 mm or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】銅合金製水冷金型を示す図(図中(A)は平面
図を示し、図中(B)は側面図を示す)。
FIG. 1 is a view showing a water cooling mold made of a copper alloy ((A) in the figure shows a plan view, and (B) in the figure shows a side view).

【図2】鋳鉄製金型を示す図(図中(A)は平面図を示
し、図中(B)は側面図を示す)。
FIG. 2 is a view showing a cast iron mold (FIG. 2A shows a plan view, and FIG. 2B shows a side view).

【図3】ブロック材からのサンプル採取位置を示す斜視
図。
FIG. 3 is a perspective view showing a sampling position from a block material.

【図4】ブロック材中心部のミクロ組織を示す図。FIG. 4 is a diagram showing a microstructure of a central part of a block material.

【符号の説明】[Explanation of symbols]

1 銅合金製水冷金型(銅合金と鉄系材料からなる金
型)
1 Water cooling mold made of copper alloy (Mold made of copper alloy and iron-based material)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 正之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 四方 慶一 神奈川県川崎市川崎区白石町2番1号 日 本鋳造株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Masayuki Nakata, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Keiichi Shikata 2-1, Shiraishi-cho, Kawasaki-ku, Kawasaki-shi, Kawasaki, Kanagawa Prefecture. Nihon Casting Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量基準にてC:3.0〜4.0%、S
i:2.0〜3.0%、Mn:0.3%以下(ただしゼ
ロは含まず)、P:0.05%以下、S:0.02%以
下、Mg:0.03を超え0.07%以下を含有し、か
つ前記組成においてCE値(C+1/3Si):4.0〜
4.6%である鉄系合金溶湯を、銅合金製金型または銅
合金と鉄系材料からなる金型に注湯した後通水してこれ
を強制冷却することを特徴とする球状黒鉛鋳鉄の製造方
法。
1. C: 3.0 to 4.0% by weight, S
i: 2.0 to 3.0%, Mn: 0.3% or less (excluding zero), P: 0.05% or less, S: 0.02% or less, Mg: more than 0.03 and 0 0.07% or less, and CE value (C ++ 1Si): 4.0 to
A spheroidal graphite cast iron characterized in that 4.6% of a molten iron-based alloy is poured into a copper alloy mold or a mold made of a copper alloy and an iron-based material, and then water-cooled for forced cooling. Manufacturing method.
【請求項2】 前記鉄系合金溶湯に混合される不純物と
して、重量基準にてPb:0.001%以下、Zn:
0.01%以下の内の1種以上を制御することを特徴と
する、請求項1に記載の球状黒鉛鋳鉄の製造方法。
2. As impurities mixed in the molten iron-based alloy, Pb: 0.001% or less, Zn:
The method for producing spheroidal graphite cast iron according to claim 1, wherein at least one of 0.01% or less is controlled.
【請求項3】 前記球状黒鉛鋳鉄の肉厚が200mm以
上であることを特徴とする、請求項1または請求項2に
記載の球状黒鉛鋳鉄の製造方法。
3. The method for producing spheroidal graphite cast iron according to claim 1, wherein the thickness of the spheroidal graphite cast iron is 200 mm or more.
【請求項4】 前記銅合金製金型または銅合金と鉄系材
料からなる前記金型において、溶湯に接する面と冷却水
に接する面の距離が20〜80mmであり、水量密度2
00〜5000リットル/分・m2をもつ冷却水で冷却
されることを特徴とする、請求項1ないし請求項3いず
れかに記載の球状黒鉛鋳鉄の製造方法。
4. In the copper alloy mold or the mold made of a copper alloy and an iron-based material, a distance between a surface in contact with the molten metal and a surface in contact with the cooling water is 20 to 80 mm, and a water density 2
The method for producing spheroidal graphite cast iron according to any one of claims 1 to 3, wherein the spheroidal graphite cast iron is cooled by cooling water having a flow rate of 00 to 5000 liters / minute · m 2 .
【請求項5】 前記球状黒鉛鋳鉄の主原料に高炉溶銑を
用いることを特徴とする、請求項1ないし4いずれかに
記載の球状黒鉛鋳鉄の製造方法。
5. The method for producing spheroidal graphite cast iron according to claim 1, wherein blast furnace hot metal is used as a main raw material of said spheroidal graphite cast iron.
JP2000057940A 2000-02-29 2000-02-29 Method for producing spheroidal graphite cast iron Expired - Fee Related JP3712338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000057940A JP3712338B2 (en) 2000-02-29 2000-02-29 Method for producing spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000057940A JP3712338B2 (en) 2000-02-29 2000-02-29 Method for producing spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2001240934A true JP2001240934A (en) 2001-09-04
JP3712338B2 JP3712338B2 (en) 2005-11-02

Family

ID=18578604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000057940A Expired - Fee Related JP3712338B2 (en) 2000-02-29 2000-02-29 Method for producing spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP3712338B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758208B (en) * 2009-12-17 2012-12-12 上海宏钢电站设备铸锻有限公司 Method for fast cooling heavy section ductile iron castings
CN103388100A (en) * 2013-07-17 2013-11-13 天润曲轴股份有限公司 Method for controlling carbon equivalent of base iron and application of method
CN105420595A (en) * 2015-11-04 2016-03-23 中建材宁国新马耐磨材料有限公司 Martensite, bainite and austenite combined phase liner plate and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101758208B (en) * 2009-12-17 2012-12-12 上海宏钢电站设备铸锻有限公司 Method for fast cooling heavy section ductile iron castings
CN103388100A (en) * 2013-07-17 2013-11-13 天润曲轴股份有限公司 Method for controlling carbon equivalent of base iron and application of method
CN105420595A (en) * 2015-11-04 2016-03-23 中建材宁国新马耐磨材料有限公司 Martensite, bainite and austenite combined phase liner plate and preparation method thereof

Also Published As

Publication number Publication date
JP3712338B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
WO2013051698A1 (en) Method for producing spheroidal graphite cast iron and vehicle component using said spheroidal graphite cast iron
JP6998015B2 (en) Manufacturing method of mold casting of spheroidal graphite cast iron
CN102031442B (en) Preparation and application method of inoculant for tissue deterioration and refinement of high-speed steel for roller
CN103924149A (en) Nodular cast iron crank axle of compressor and manufacture method thereof
US3822735A (en) Process for casting molten silicon-aluminum killed steel continuously
CN102181779B (en) Composite inoculant used for grey cast iron and preparation method and application method of composite inoculant
JP2010131635A (en) Die-cast molding method for iron and die-cast molded body
Hemanth et al. Effect of cooling rate on eutectic cell count, grain size, microstructure, and ultimate tensile strength of hypoeutectic cast iron
EP0067500A1 (en) Method of casting compacted graphite iron by inoculation in the mould
JP3712338B2 (en) Method for producing spheroidal graphite cast iron
US3367395A (en) Method and apparatus for treating molten metals
KR101024358B1 (en) The method of the continuous casting iron for spheroidal graphite cast iron
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
JP2007327083A (en) Spheroidal graphite cast iron and its production method
CN103981333B (en) A kind of preparation method of non-Al deoxidization steel ferrimanganic magnesium alloy reductor
JP3768778B2 (en) Method for producing thick spheroidal graphite cast iron product
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
US3810753A (en) Process for casting molten aluminum killed steel continuously and the solidified steel shapes thus produced
JP6191781B1 (en) Spheroidal graphite cast iron with excellent gas defect resistance
Wang et al. Effect of rare earth on primary carbides in H13 die steel and their addition method: a review
US3744997A (en) Metallurgical grain refinement process
RU2241574C1 (en) Method for casting iron articles with spheroidal graphite
JP7220428B2 (en) Method for manufacturing spheroidal graphite cast iron casting
WO2018043685A1 (en) Spherical graphite cast iron semi-solid casting method and semi-solid cast product
US20180243823A1 (en) Method of manufacturing of a casted part or ingot of a metallic alloy attaining a minimal segragation in the casting process

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees