JP2001240392A - Method and device for calculating deflection angle for boom working vehicle - Google Patents

Method and device for calculating deflection angle for boom working vehicle

Info

Publication number
JP2001240392A
JP2001240392A JP2000050591A JP2000050591A JP2001240392A JP 2001240392 A JP2001240392 A JP 2001240392A JP 2000050591 A JP2000050591 A JP 2000050591A JP 2000050591 A JP2000050591 A JP 2000050591A JP 2001240392 A JP2001240392 A JP 2001240392A
Authority
JP
Japan
Prior art keywords
boom
telescopic boom
angle
telescopic
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000050591A
Other languages
Japanese (ja)
Other versions
JP4683686B2 (en
Inventor
Shinji Noguchi
野口  真児
Toshihisa Aoki
俊久 青木
Masashi Nishimoto
昌司 西本
Hirosuke Kusanagi
裕亮 草薙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tadano Ltd
Original Assignee
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadano Ltd filed Critical Tadano Ltd
Priority to JP2000050591A priority Critical patent/JP4683686B2/en
Publication of JP2001240392A publication Critical patent/JP2001240392A/en
Application granted granted Critical
Publication of JP4683686B2 publication Critical patent/JP4683686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Jib Cranes (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately grasp deflection of a telescopic boom. SOLUTION: In a boom working vehicle provided with a telescopic boom turned up and down on a vehicle, when a turned-down angle in turn-down by which a virtual telescopoic boom A0 generating no dead weight deflection is turned down upto a position where a tip of an actual telescopic boom B generating dead weight deflection is located is calculated as a boom deflection angle α, the first turn-up and -down angle θβ in a base end part of the boom B and the second turn-up and -down angle θα in the tip of the boom B are detected respectively, and a difference θb-θa between the detected first and second angles θb, θa is multiplied by a predetermined factor K to calculate the boom deflection angle α =K(θb-θa).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ブーム作業車の撓
み角度算出方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for calculating a bending angle of a boom working vehicle.

【0002】[0002]

【従来の技術】従来伸縮ブームの撓みを考慮したクレー
ンの作業半径算出装置が知られている。このクレーンの
作業半径算出装置は、車両上に起伏自在な伸縮ブームを
備えたブーム作業車において、伸縮ブームの基部の傾斜
角度検出器により傾斜角θbを検出しこの傾斜角θbの
余弦に伸縮ブームの長さLを掛け合わせたLCOSθb
を求め、伸縮ブームの先端部の傾斜角度検出器により傾
斜角θaを検出しこの傾斜角θaの余弦に伸縮ブームの
長さLを掛け合わせたLCOSθaを求め、LCOSθ
bとLCOSθaを加算し平均処理して作業半径R=
(LCOSθa+LCOSθb)/2を算出する方法が
取られていた。
2. Description of the Related Art Conventionally, there has been known a crane working radius calculating device which takes into account the bending of a telescopic boom. This device for calculating the working radius of a crane is used for a boom working vehicle equipped with a telescopic boom that can be raised and lowered on a vehicle, detects a tilt angle θb with a tilt angle detector at a base of the telescopic boom, and adjusts a cosine of the tilt angle θb to the telescopic boom. LCOSθb multiplied by the length L of
, The inclination angle θa is detected by the inclination angle detector at the tip of the telescopic boom, and the cosine of the tilt angle θa is multiplied by the length L of the telescopic boom to obtain LCOSθa.
b and LCOSθa are added and averaged to obtain a working radius R =
A method of calculating (LCOSθa + LCOSθb) / 2 has been adopted.

【0003】[0003]

【発明が解決しょうとする課題】ところで、上記方法に
よる算出は、傾斜角θaによる作業半径と傾斜角θbに
よる作業半径を加算して単に平均処理しただけで正確に
作業半径Rを算出するものではなかった。
By the way, the calculation by the above method does not calculate the working radius R accurately by simply averaging the sum of the working radius based on the tilt angle θa and the working radius based on the tilt angle θb. Did not.

【0004】本発明は、伸縮ブームの撓みを正確に把握
することができるブーム作業車の撓み角度の算出方法及
び装置を提供することを目的とするものである。
It is an object of the present invention to provide a method and an apparatus for calculating a bending angle of a boom working vehicle, which can accurately grasp the bending of a telescopic boom.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に係る本発明のブーム作業車の撓み角度の
算出方法は、車両上に起伏自在な伸縮ブームを備えたブ
ーム作業車において、自重撓みが生じない仮想の伸縮ブ
ームを自重撓みが生じる実際の伸縮ブーム先端が位置す
る位置まで倒伏させる際の倒伏角を伸縮ブームの撓み角
度として算出するブーム作業車の撓み角度算出方法であ
って、伸縮ブームの基端部における第1の起伏角度と伸
縮ブームの先端部における第2の起伏角度とをそれぞれ
検出し、検出した第1の起伏角度と第2の起伏角度の差
に予め決定しておいた係数を掛けて前記伸縮ブームの撓
み角度を算出するものである。
In order to achieve the above object, a method for calculating a bending angle of a boom working vehicle according to the present invention according to a first aspect of the present invention includes a boom working vehicle having a telescopic boom that can be raised and lowered on a vehicle. In the bending angle calculation method for a boom working vehicle, the virtual telescopic boom that does not cause its own weight deflection is tilted to the position where the actual telescopic boom tip where the own weight deflection occurs is located as the bending angle of the telescopic boom. A first undulation angle at the base end of the telescopic boom and a second undulation angle at the distal end of the telescopic boom are detected, and the difference between the detected first undulation angle and the detected second undulation angle is determined in advance. The bending angle of the telescopic boom is calculated by multiplying the determined coefficient.

【0006】請求項2に係る本発明のブーム作業車の撓
み角度の算出方法は、請求項1において、伸縮ブームの
長さを検出し、当該伸縮ブームの長さに基づいて前記係
数を変更可能にするものである。
According to a second aspect of the present invention, in the method for calculating the bending angle of the boom working vehicle according to the first aspect, the length of the telescopic boom is detected, and the coefficient can be changed based on the length of the telescopic boom. It is to be.

【0007】請求項3に係る本発明のブーム作業車の撓
み角度の算出装置は、車両上に起伏自在な伸縮ブームを
備えたブーム作業車において、自重撓みが生じない仮想
の伸縮ブームを自重撓みが生じる実際の伸縮ブーム先端
が位置する位置まで倒伏させる際の倒伏角を伸縮ブーム
の撓み角度として算出するブーム作業車の撓み角度算出
装置であって、伸縮ブームの基端部に第1起伏角度検出
器と伸縮ブームの先端部に第2起伏角度検出器とをそれ
ぞれ配置し、両検出器からの信号を受け第1起伏角度検
出器の検出値と第2起伏角度検出器の検出値の差に予め
決定しておいた係数を掛けて前記伸縮ブームの撓み角度
を算出する算出手段を設けたことを特徴とするものであ
る。
According to a third aspect of the present invention, there is provided an apparatus for calculating a bending angle of a boom working vehicle, comprising: a boom working vehicle provided with a telescopic boom that can be raised and lowered on the vehicle; A bending angle calculation device for a boom working vehicle that calculates, as a bending angle of the telescopic boom, a tilting angle when the telescopic boom is to a position where an actual telescopic boom tip is generated, wherein a first undulating angle is provided at a base end of the telescopic boom. A detector and a second undulation angle detector are disposed at the tip of the telescopic boom, respectively, and the signals from both detectors are received, and the difference between the detection value of the first undulation angle detector and the detection value of the second undulation angle detector is obtained. And a calculating means for calculating the deflection angle of the telescopic boom by multiplying the telescopic boom by a predetermined coefficient.

【0008】請求項4に係る本発明のブーム作業車の撓
み角度の算出装置は、請求項3において、伸縮ブームの
長さ検出器を配置し、前記算出手段は、当該長さ検出器
からの信号に基づいて前記係数を変更可能にしてあるこ
とを特徴とするものである。
According to a fourth aspect of the present invention, there is provided an apparatus for calculating a bending angle of a boom working vehicle according to the third aspect, further comprising: a telescopic boom length detector; The coefficient can be changed based on a signal.

【0009】[0009]

【発明の実施の形態】以下本発明のブーム作業車の撓み
角度の算出方法及び装置について、図1〜図3に基づい
て以下に説明する。まず、本発明のブーム作業車の撓み
角度の算出方法について、図3に車両上に起伏自在な伸
縮ブームを備えたブーム作業車の伸縮ブームを模式的に
直線で図示して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and an apparatus for calculating a deflection angle of a boom working vehicle according to the present invention will be described below with reference to FIGS. First, the method for calculating the bending angle of the boom working vehicle according to the present invention will be described with reference to FIG. 3, which schematically illustrates a telescopic boom of a boom working vehicle provided with a telescopic boom that can be raised and lowered on the vehicle, with a schematic straight line.

【0010】θbは、伸縮ブームの基端部の起伏角(対
地起伏角)を検出した第1の起伏角度で、θaは、伸縮
ブームの先端部の起伏角(対地起伏角)を検出した第2
の起伏角度である。A0は、自重撓みが生じない仮想の
伸縮ブームを模式的に直線で表している。Bは、自重撓
みが生じる実際の伸縮ブームを模式的に表している。A
1は、仮想の伸縮ブームA0を実際の伸縮ブームBの先
端が位置する位置まで倒伏させた時の仮想の伸縮ブーム
を表している。αは、伸縮ブームの撓み角度であって、
仮想の伸縮ブームA0を仮想の伸縮ブームA1にまで倒
伏させる際の倒伏角である。
[0010] θb is the first undulation angle at which the undulation angle at the base end of the telescopic boom (ground undulation angle) is detected, and θa is the first undulation angle at which the tip part of the telescopic boom is detected (ground undulation angle). 2
Is the undulation angle. A0 schematically represents a virtual telescopic boom that does not cause its own weight deflection by a straight line. B schematically shows the actual telescopic boom in which the self-weight deflection occurs. A
Reference numeral 1 denotes a virtual telescopic boom when the virtual telescopic boom A0 is lowered to the position where the tip of the actual telescopic boom B is located. α is the bending angle of the telescopic boom,
This is the falling angle when the virtual telescopic boom A0 is lowered to the virtual telescopic boom A1.

【0011】Kは、第1の起伏角度θbと第2の起伏角
度θaの差に掛け合わせ、前記伸縮ブームの撓み角度α
を算出するために、予め決定しておいた係数である。こ
の係数は、ブームの形状によって変わるもので予め実測
したものであっても、計算により算出できるようにした
ものであってもよい。θは、伸縮ブーム全体の傾斜角で
あって、仮想の伸縮ブームA1の起伏角である。
K is multiplied by the difference between the first undulation angle θb and the second undulation angle θa, and the deflection angle α of the telescopic boom is obtained.
Is a coefficient determined in advance to calculate This coefficient varies depending on the shape of the boom, and may be measured in advance or may be calculated by calculation. θ is the inclination angle of the entire telescopic boom, and is the undulation angle of the virtual telescopic boom A1.

【0012】このように構成したブーム作業車の撓み角
度算出方法は、伸縮ブームの撓み角度αをα=K(θb
−θa)で算出し、伸縮ブーム全体の傾斜角θをθ=θ
b−α=θb−K(θb−θa)で算出できる。
The method for calculating the bending angle of the boom working vehicle constructed as described above is based on the fact that the bending angle α of the telescopic boom is given by α = K (θb
−θa) and calculate the inclination angle θ of the entire telescopic boom as θ = θ
b−α = θb−K (θb−θa).

【0013】このようにして算出した伸縮ブームの撓み
角度αは、仮想の伸縮ブームA0を実際の伸縮ブームB
の先端が位置する位置まで倒伏させる際の倒伏角として
算出するようにしているものだから、伸縮ブーム全体の
傾斜角θは正確に算出できる。よって、伸縮ブーム全体
の傾斜角θが正確に算出できれば、作業半径Rや実際の
伸縮ブームBの先端までの高さHを正確に算出すること
を可能にするものである。
The bending angle α of the telescopic boom calculated as described above is obtained by changing the virtual telescopic boom A0 to the actual telescopic boom B.
The inclination angle θ of the entire telescopic boom can be accurately calculated because the inclination angle θ is calculated as the inclination angle at the time of falling down to the position where the tip of the telescopic boom is located. Therefore, if the inclination angle θ of the entire telescopic boom can be accurately calculated, the working radius R and the actual height H to the tip of the telescopic boom B can be accurately calculated.

【0014】なお、上記実施形態では、係数Kを予め決
定しておくために、予め実測したり、計算により算出で
きるようにしたものであるが、伸縮ブームBの長さLを
検出し、当該伸縮ブームBの長さLにより前記係数Kを
変更可能に構成してもよい。特に、伸縮ブーム長さLが
長くなると撓み量が増すので、伸縮ブームBの長さLが
長くなれば伸縮ブームBの撓み角度αが大きくなるよう
に伸縮ブームBの長さLと係数Kを関係付けておけばよ
い。
In the above embodiment, the coefficient K is determined in advance so that it can be measured or calculated in advance. However, the length L of the telescopic boom B is detected and The coefficient K may be changed according to the length L of the telescopic boom B. In particular, when the length B of the telescopic boom increases, the amount of flexure increases. Therefore, when the length L of the telescopic boom B increases, the length L and the coefficient K of the telescopic boom B are adjusted so that the flexure angle α of the telescopic boom B increases. You only need to associate them.

【0015】また、伸縮ブームBは多段ブームで構成さ
れており、同時伸縮方式の場合係数Kは、伸縮ブームB
の長さによって変更するようにしておけばよいが、順次
伸縮の場合のように伸長するブーム段と伸長しないブー
ム段がある場合には、伸縮ブームBの長さだけでなく伸
長したブーム段によっても係数Kを変更するようにして
おけばよい。
The telescopic boom B is composed of a multi-stage boom. In the case of the simultaneous telescopic system, the coefficient K is
If there is a boom stage that extends and a boom stage that does not extend as in the case of sequential expansion and contraction, not only the length of the telescopic boom B but also the extended boom stage The coefficient K may be changed.

【0016】次に、上記実施形態では、本発明のブーム
作業車の撓み角度の算出方法を説明したが、図2に図示
する高所作業車を例にして本発明のブーム作業車の撓み
角度の算出装置を図1〜図3に図示し以下に説明する。
Next, in the above-described embodiment, the method of calculating the bending angle of the boom working vehicle of the present invention has been described. However, the bending angle of the boom working vehicle of the present invention will be described by taking the aerial work vehicle shown in FIG. 2 as an example. 1 to 3 are shown in FIGS. 1 to 3 and will be described below.

【0017】図2において、Bは、伸縮ブームであっ
て、当該伸縮ブームBは、車両1上に旋回駆動自在に配
置した旋回台2に起伏駆動自在に配置している。伸縮ブ
ームBは、基ブーム4に中間ブーム5を、中間ブーム5
に中間ブーム6を、中間ブーム6に先ブーム7を、順次
嵌挿し各ブーム間に適宜伸縮駆動手段を配置している。
伸縮ブームBの先端には作業台を配置し、伸縮ブームB
を適宜伸縮、起伏、旋回させることにより作業台を任意
の位置に移動させ、作業台に搭乗した作業者を高所位置
に位置させ高所作業できるようにしてある。
In FIG. 2, B is a telescopic boom, and the telescopic boom B is disposed on a swivel 2 which is disposed on the vehicle 1 so as to be capable of turning. The telescopic boom B has an intermediate boom 5 on the base boom 4 and an intermediate boom 5
The intermediate boom 6 and the leading boom 7 are sequentially inserted into the intermediate boom 6, and the expansion / contraction driving means is appropriately arranged between the booms.
A workbench is placed at the end of the telescopic boom B.
The workbench is moved to an arbitrary position by appropriately expanding, lowering, and swiveling, so that an operator who is on the workbench is positioned at a high position to perform work at a high position.

【0018】本発明に係るブーム作業車の撓み角度算出
装置は、このような高所作業車に次のようにして配置し
てある。8は、伸縮ブームBの基端部に配置した第1起
伏角度検出器(対地角検出)であり、9は、伸縮ブーム
Bの先端部に配置した第2起伏角度検出器(対地角検
出)である。10は、伸縮ブームBのブーム長さ検出器
である。
The apparatus for calculating the deflection angle of a boom working vehicle according to the present invention is arranged in such an aerial work vehicle as follows. Reference numeral 8 denotes a first undulation angle detector (detection of ground angle) disposed at the base end of the telescopic boom B, and reference numeral 9 denotes a second undulation angle detector (detection of ground angle) disposed at the distal end of the telescopic boom B. It is. Reference numeral 10 denotes a boom length detector of the telescopic boom B.

【0019】11は、上記した自重撓みが生じない仮想
の伸縮ブームA0を自重撓みが生じる実際の伸縮ブーム
Bの先端が位置する位置まで倒伏させた際の倒伏角を伸
縮ブームの撓み角度αとして算出する算出手段であ
る。、12は、減算器であって、第1起伏角度検出器8
からの検出値θbと第2起伏角度検出器9からの検出値
θaの信号を受けて、θb−θaを算出する。13は、
撓み角度算出器であって、減算器12の出力信号に予め
決定しておいた係数Kを掛け合わせ、伸縮ブームの撓み
角度α=K(θb−θa)を算出する。14は、伸縮ブー
ム全体の傾斜角検出器であって、撓み角度算出器13の
出力信号と第1起伏角度検出器8からの検出値θbの信
号を受けて、伸縮ブーム全体の傾斜角θ=θb−α=θ
b−K(θb−θa)を算出する。
Reference numeral 11 denotes a bending angle of the telescopic boom A when the virtual telescopic boom A0 having no self-weight deflection is laid down to a position where the tip of the actual telescopic boom B where the self-weight deflection is generated is located. It is a calculating means for calculating. , 12 are subtractors, and the first undulation angle detector 8
And the signal of the detection value θa from the second undulation angle detector 9, and calculates θb−θa. 13 is
The bending angle calculator calculates a bending angle α = K (θb−θa) of the telescopic boom by multiplying the output signal of the subtractor 12 by a predetermined coefficient K. Reference numeral 14 denotes an inclination angle detector for the entire telescopic boom, which receives an output signal of the bending angle calculator 13 and a signal of the detection value θb from the first undulation angle detector 8 and receives the inclination angle θ of the entire telescopic boom. θb−α = θ
b−K (θb−θa) is calculated.

【0020】15は、補正器であって、ブーム長さ検出
器10からのブーム長さ検出値Lの信号を受けて、伸縮
ブームの長さLにより前記係数Kを補正し、補正出力信
号を撓み角度算出器13に出力する。補正器15は、ブ
ーム長さLが長くなると撓み量が増すので、伸縮ブーム
Bの長さLが長くなれば伸縮ブームBの撓み角度αが大
きくなるように伸縮ブームBの長さLに対する係数Kを
補正するようにしてある。
Reference numeral 15 denotes a corrector, which receives a signal of the boom length detection value L from the boom length detector 10 and corrects the coefficient K by the length L of the telescopic boom, and outputs a corrected output signal. Output to the deflection angle calculator 13. The compensator 15 calculates a coefficient for the length L of the telescopic boom B so that the bending amount increases as the length B of the telescopic boom increases as the length L of the telescopic boom B increases. K is corrected.

【0021】また、伸縮ブームBは多段ブームで構成さ
れており、同時伸縮方式の場合は係数Kは伸縮ブームB
の長さLによって変更するようにしておけばよいが、順
次伸縮の場合のように伸長するブーム段と伸長しないブ
ーム段がある場合には、ブーム長さ検出器10からのブ
ーム長さ検出値Lの信号だけでなく、伸長したブーム段
を検出する検出器を配置しこれによって係数Kを変更す
るようにしてもよい。
The telescopic boom B is composed of a multi-stage boom. In the case of the simultaneous telescopic system, the coefficient K is
May be changed according to the length L of the boom, but if there is a boom stage that extends and a boom stage that does not extend as in the case of sequential expansion and contraction, the boom length detection value from the boom length detector 10 A detector for detecting not only the L signal but also the extended boom stage may be provided to change the coefficient K.

【0022】16は、作業半径算出器であって、伸縮ブ
ーム全体の傾斜角検出器14とブーム長さ検出器10か
らの信号を受けて作業半径R=LCOSθを算出し、作
業半径Rの信号を出力する。17は、ブーム高さ算出器
であって、伸縮ブーム全体の傾斜角検出器14とブーム
長さ検出器10からの信号を受けてブーム高さH=LS
INθを算出し、ブーム高さHの信号を出力する。この
ようにして算出した作業半径信号あるいはブーム高さ信
号は、安全装置の演算過程に使用する信号として用いた
り、作業半径やブーム高さを表示する表示器の信号とし
て用いられる。
Reference numeral 16 denotes a working radius calculator which receives signals from the tilt angle detector 14 and the boom length detector 10 of the entire telescopic boom, calculates a working radius R = LCOSθ, and outputs a signal of the working radius R. Is output. Reference numeral 17 denotes a boom height calculator, which receives signals from the tilt angle detector 14 and the boom length detector 10 of the entire telescopic boom, and receives the boom height H = LS.
INθ is calculated, and a signal of the boom height H is output. The work radius signal or the boom height signal calculated in this way is used as a signal used in the operation process of the safety device, or as a signal of a display for displaying the work radius or the boom height.

【0023】このように構成した本発明のブーム作業車
の撓み角度算出装置は、算出手段11で伸縮ブームの撓
み角度αならびに伸縮ブーム全体の傾斜角θを算出でき
る。すなわち、算出手段11で算出する伸縮ブームの撓
み角度αは、仮想の伸縮ブームA0を実際の伸縮ブーム
Bの先端が位置する位置まで倒伏させた仮想の伸縮ブー
ムA1の倒伏角として算出するようにしているものだか
ら、伸縮ブーム全体の傾斜角θは従来技術で説明した場
合のものより正確に算出できる。よって、伸縮ブーム全
体の傾斜角θが正確に算出できれば、作業半径Rや伸縮
ブームの先端までの高さHを正確に算出することを可能
にするものである。
In the apparatus for calculating the bending angle of the boom working vehicle according to the present invention, the calculating means 11 can calculate the bending angle α of the telescopic boom and the inclination angle θ of the entire telescopic boom. That is, the bending angle α of the telescopic boom calculated by the calculating means 11 is calculated as the falling angle of the virtual telescopic boom A1 which is obtained by lowering the virtual telescopic boom A0 to the position where the tip of the actual telescopic boom B is located. , The inclination angle θ of the entire telescopic boom can be calculated more accurately than in the case described in the related art. Therefore, if the inclination angle θ of the entire telescopic boom can be accurately calculated, the working radius R and the height H to the tip of the telescopic boom can be accurately calculated.

【0024】なお、上記実施形態では、係数Kをブーム
長さ検出器10からの信号を受けて補正器15で補正す
るようにしたが、この補正器を用いずに予め実測した
り、計算により算出して予め決定した係数Kを用いるよ
うにしてもよい。また、ブーム長さ検出器10に替えて
手動で調整できる調整手段を備え、当該調整手段からの
信号で補正器による係数Kの調整ができるようにしても
よい。このようにしておけば、同形式の伸縮ブームであ
っても撓みが微妙に異なる場合にも対応できる。
In the above embodiment, the coefficient K is corrected by the compensator 15 in response to the signal from the boom length detector 10. However, the coefficient K is measured in advance without using the compensator or calculated by calculation. The coefficient K calculated and determined in advance may be used. In addition, an adjusting means that can be manually adjusted instead of the boom length detector 10 may be provided so that the coefficient K can be adjusted by the corrector with a signal from the adjusting means. By doing so, it is possible to cope with a case where the bending is slightly different even with the same type of telescopic boom.

【0025】次に、上記実施形態では伸縮ブ―ムBを一
つの直進ブームで構成した場合の実施形態について説明
したが、二つの直進ブームで構成し折り曲げ式ブームと
した時の実施形態について図4〜図5に図示し以下に説
明する。
Next, in the above-described embodiment, the embodiment in which the telescopic boom B is constituted by one rectilinear boom has been described. However, the embodiment in the case where the telescopic boom is constituted by two rectilinear booms to form a folding type boom will be described. 4 to 5 and described below.

【0026】図4に図示する高所作業車は、図2に図示
して説明した伸縮ブームBの先端部に第2伸縮ブームC
を起伏駆動自在(起伏駆動手段は図示していない。)に
配置してある。第2伸縮ブームCは、伸縮ブームBと同
様に複数段のブームを順次嵌挿させ伸縮駆動自在に配置
(第2伸縮ブームCの配置構成は前記伸縮ブームBと同
様であるので、詳細な説明は省略する。)しており、第
2伸縮ブームCの先端部には作業台を配置している。そ
して第2伸縮ブームCは、格納時に伸縮ブームBと第2
伸縮ブームCを全縮小した後伸縮ブームBの上に平行に
折畳まれるようにしている。
The aerial work vehicle shown in FIG. 4 has a second telescopic boom C at the distal end of the telescopic boom B shown and described in FIG.
Is arranged so as to be able to be driven up and down (the up and down driving means is not shown). Like the telescopic boom B, the second telescopic boom C is sequentially inserted with a plurality of stages of booms and is disposed so as to be capable of telescopic drive. Is omitted.), And a workbench is arranged at the tip of the second telescopic boom C. Then, the second telescopic boom C and the second telescopic boom B
After the telescopic boom C is completely reduced, the telescopic boom B is folded in parallel on the telescopic boom B.

【0027】このような高所作業車に配置される本発明
に係るブーム作業車の撓み角度算出装置は、次のように
構成してある。図5に図示する符号8〜符号17は図1
に図示説明したものと同じであるので、詳細な説明は省
略する。18は、伸縮ブームBと第2伸縮ブームCとの
起伏角を検出する第3起伏角検出器(対機角検出)であ
り、19は、第2伸縮ブームCの先端部に配置した第4
起伏角度検出器(対地角検出)である。20は、第2伸
縮ブームBのブーム長さL2を検出する第2伸縮ブーム
長さ検出器である。
The bending angle calculating device for a boom working vehicle according to the present invention, which is disposed on such a high working vehicle, is configured as follows. Reference numerals 8 to 17 shown in FIG.
Since they are the same as those shown in FIG. Reference numeral 18 denotes a third undulation angle detector for detecting the undulation angle between the telescopic boom B and the second telescopic boom C (anti-machine angle detection), and reference numeral 19 denotes a fourth telescopic boom disposed at the distal end of the second telescopic boom C.
An undulation angle detector (detection of ground angle). Reference numeral 20 denotes a second telescopic boom length detector that detects a boom length L2 of the second telescopic boom B.

【0028】21は、第3起伏角算出器であって、第2
起伏角検出器9の検出値信号θaと第3起伏角検出器1
8の検出信号θcを受けて、第2伸縮ブームBの基端部
の起伏角信号θc1の信号を出力する。22は、減算器
であって、第3起伏角算出器21からの検出値θc1と
第4起伏角度検出器19からの検出値θdの信号を受け
て、θc1−θdを算出する。23は、撓み角度算出器
であって、減算器22の出力信号に予め決定しておいた
係数K2を掛け合わせ、第2伸縮ブームBの撓み角度β
=K2(θc1−θd)を算出する。24は、第2伸縮ブ
ーム全体の傾斜角θ2を算出する第2伸縮ブーム全体の
傾斜角算出器であって、撓み角度算出器23の出力信号
と第3起伏角算出器21からの算出値θc1の信号を受
けて、第2伸縮ブームブーム全体の傾斜角θ2=θc1
−β=θc1−K2(θc1−θd)を算出する。
Reference numeral 21 denotes a third undulation angle calculator,
The detected value signal θa of the undulation angle detector 9 and the third undulation angle detector 1
In response to the detection signal θc of No. 8, a signal of the undulation angle signal θc1 at the base end of the second telescopic boom B is output. Reference numeral 22 denotes a subtractor, which receives signals of the detected value θc1 from the third undulation angle calculator 21 and the detected value θd from the fourth undulation angle detector 19, and calculates θc1−θd. 23 is a deflection angle calculator which multiplies the output signal of the subtractor 22 by a predetermined coefficient K2 to calculate the deflection angle β of the second telescopic boom B.
= K2 (θc1-θd). Reference numeral 24 denotes a tilt angle calculator for the entire second telescopic boom for calculating the tilt angle θ2 of the entire second telescopic boom. The output signal of the deflection angle calculator 23 and the calculated value θc1 from the third undulation angle calculator 21 are provided. , The inclination angle θ2 = θc1 of the entire second telescopic boom boom
-Β = θc1−K2 (θc1−θd) is calculated.

【0029】25は、補正器であって、第2伸縮ブーム
長さ検出器20からのブーム長さ検出値L2信号を受け
て、第2伸縮ブームの長さにより前記係数K2を補正
し、補正出力信号を撓み角度算出器23に出力する。補
正器25は、第2伸縮ブームCのブーム長さL2が長く
なると撓み量が増すので、第2伸縮ブームCの長さL2
が長くなれば第2伸縮ブームCの撓み角度βが大きくな
るように第2伸縮ブームCの長さL2に対する係数K2
を補正するようにしてある。
Reference numeral 25 denotes a compensator which receives the boom length detection value L2 signal from the second telescopic boom length detector 20 and corrects the coefficient K2 according to the length of the second telescopic boom. The output signal is output to the deflection angle calculator 23. When the boom length L2 of the second telescopic boom C becomes longer, the compensator 25 increases the amount of flexure.
Becomes longer, the coefficient K2 with respect to the length L2 of the second telescopic boom C so that the deflection angle β of the second telescopic boom C becomes larger.
Is corrected.

【0030】また、第2伸縮ブームCは多段ブームで構
成されており、同時伸縮方式の場合係数K2は第2伸縮
ブームCの長さL2によって変更するようにしておけば
よいが、順次伸縮の場合のように伸長するブーム段と伸
長しないブーム段がある場合には、第2伸縮ブーム長さ
検出器20からのブーム長さ検出値L2信号だけでな
く、伸長したブーム段を検出する検出器を配置しこれに
よって係数K2を変更するようにしてもよい。
The second telescopic boom C is composed of a multi-stage boom. In the case of the simultaneous telescopic system, the coefficient K2 may be changed according to the length L2 of the second telescopic boom C. If there is a boom stage that extends and a boom stage that does not extend as in the case, not only the boom length detection value L2 signal from the second telescopic boom length detector 20 but also a detector that detects the extended boom stage May be arranged to change the coefficient K2.

【0031】26は、第2伸縮ブームCの作業半径算出
器であって、第2伸縮ブーム全体の傾斜角検出器24と
第2伸縮ブーム長さ検出器20からの信号を受けて第2
伸縮ブームCの作業半径R2=L2COSθ2を算出
し、第2伸縮ブームの作業半径R2の信号を出力する。
27は、第2伸縮ブームのブーム高さ算出器であって、
第2伸縮ブーム全体の傾斜角検出器24と第2伸縮ブー
ム長さ検出器20からの信号を受けて第2伸縮ブームの
ブーム高さH2=L2SINθ2を算出し、ブーム高さ
H2の信号を出力する。
Reference numeral 26 denotes a working radius calculator for the second telescopic boom C, which receives signals from the tilt angle detector 24 and the second telescopic boom length detector 20 of the second telescopic boom as a whole and receives a second signal.
The work radius R2 = L2COSθ2 of the telescopic boom C is calculated, and a signal of the work radius R2 of the second telescopic boom is output.
27 is a boom height calculator of the second telescopic boom,
Receiving signals from the tilt angle detector 24 of the entire second telescopic boom and the second telescopic boom length detector 20, the boom height H2 = L2SINθ2 of the second telescopic boom is calculated, and the signal of the boom height H2 is output. I do.

【0032】28は、総合作業半径算出器であって、作
業半径算出器16からの作業半径R信号と作業半径算出
器26からの作業半径R2信号を受けて、伸縮ブームB
と第2伸縮ブームCの両方の伸縮ブームの撓みを考慮し
た作業半径R3を算出する。この場合、伸縮ブームBの
起伏方向と第2伸縮ブームCの起伏方向は逆向で、撓み
も互いに逆方向に撓むものであるから、第2伸縮ブーム
Cの起伏方向を正とし伸縮ブームBの起伏方向を負とし
て算出するようにしてある。すなわち、総合作業半径算
出器28で算出されるR3はR3=−R+R2として算
出するようにしている。
Reference numeral 28 denotes a total work radius calculator which receives the work radius R signal from the work radius calculator 16 and the work radius R2 signal from the work radius calculator 26, and
The work radius R3 is calculated in consideration of the bending of both the telescopic booms of the second telescopic boom C and the second telescopic boom C. In this case, the up-and-down direction of the telescopic boom B and the up-and-down direction of the second telescopic boom C are opposite, and the bending is also in the opposite directions. Therefore, the undulating direction of the second telescopic boom C is positive and the undulating direction of the telescopic boom B is It is calculated as negative. That is, R3 calculated by the total work radius calculator 28 is calculated as R3 = −R + R2.

【0033】29は、総合ブーム高さ算出器であって、
ブーム高さ算出器17からのブーム高さH信号とブーム
高さ算出器27からのブーム高さH2信号を受けて、伸
縮ブームBと第2伸縮ブームCの両方の伸縮ブームの撓
みを考慮したブーム高さを算出する。この場合、総合ブ
ーム高さ算出器29で算出されるH3はH3=H+H2
として算出するようにしている。
29 is a total boom height calculator,
Receiving the boom height H signal from the boom height calculator 17 and the boom height H2 signal from the boom height calculator 27, the bending of the telescopic booms of both the telescopic boom B and the second telescopic boom C is considered. Calculate the boom height. In this case, H3 calculated by the total boom height calculator 29 is H3 = H + H2.
Is calculated.

【0034】30は、演算手段であつて、上記したよう
に、図1に図示して説明した伸縮ブームBの算出手段1
1の部分と、第2伸縮ブームCによる 算出手段11に
該当する部分と、両者の作業半径とブーム高さを合わせ
る総合作業半径算出器28と、総合ブーム高さ算出器2
9で構成している。
Numeral 30 denotes a calculating means, as described above, the calculating means 1 for the telescopic boom B shown and described in FIG.
1, a part corresponding to the calculating means 11 by the second telescopic boom C, a total work radius calculator 28 for matching the work radius and the boom height of both parts, and a total boom height calculator 2
9.

【0035】このようにして算出された作業半径R3の
信号あるいはブーム高さH3の信号は、安全装置の演算
過程に使用する信号として用いたり、作業半径やブーム
高さを表示する表示器の信号として用いられる。
The signal of the working radius R3 or the signal of the boom height H3 calculated in this manner is used as a signal used in the operation process of the safety device, or a signal of a display for displaying the working radius or the boom height. Used as

【0036】このように構成した本発明のブーム作業車
の撓み角度算出装置は、二つの直進ブームで構成し折り
曲げ式ブームとした高所作業車であっても、演算手段3
0で伸縮ブームの撓み角度αならびに第2伸縮ブームの
撓み角度βを算出し、伸縮ブーム全体の傾斜角θならび
に第2伸縮ブーム全体の傾斜角θ2を正確に算出でき
る。よって、それぞれの伸縮ブーム全体の傾斜角θ,θ
2が正確に算出できれば、両伸縮ブームによる作業半径
R3や両伸縮ブームによる伸縮ブーム先端までの高さH
3を正確に算出することを可能にするものである。
The apparatus for calculating the bending angle of the boom working vehicle of the present invention having the above-described structure is capable of calculating the operation means 3 even if the bending work boom is constituted by two straight-moving booms.
With zero, the bending angle α of the telescopic boom and the bending angle β of the second telescopic boom can be calculated, and the tilt angle θ of the entire telescopic boom and the tilt angle θ2 of the second telescopic boom can be accurately calculated. Therefore, the inclination angles θ, θ of the entire telescopic boom are
2 can be calculated accurately, the working radius R3 by the two telescopic booms and the height H to the tip of the telescopic boom by the two telescopic booms
3 can be calculated accurately.

【0037】なお、上記実施形態では二つの直進ブーム
で構成し折り曲げ式ブームとし伸縮ブームと第2伸縮ブ
ームは互いに逆方向に起伏する高所作業車で説明した
が、同方向に起伏する高所作業車にも適用できること勿
論である。この場合総合作業半径算出器28で算出され
るR3はR3=R+R2として算出するようにすればよ
い。
In the above-described embodiment, the telescopic boom and the second telescopic boom are described as high-place work vehicles which are composed of two rectilinear booms and are of a folding type, and which undulate in the opposite directions. Of course, it can be applied to a work vehicle. In this case, R3 calculated by the total work radius calculator 28 may be calculated as R3 = R + R2.

【0038】また、上記実施形態では、第2伸縮ブーム
の基端部の起伏角を、伸縮ブームBと第2伸縮ブームC
との起伏角を検出する第3起伏角検出器(対機角検出)
18と、伸縮ブームBの先端部に配置した第2起伏角検
出器θaで検出して、第3起伏角算出器21で算出する
ようにしたが、第2伸縮ブームの基端部に起伏角検出器
(対地角検出)を配置して直接検出させるようにしても
よい。
Further, in the above embodiment, the undulation angle of the base end of the second telescopic boom is set to the telescopic boom B and the second telescopic boom C.
3rd undulation angle detector for detecting the undulation angle with the camera
18 and the second undulation angle detector θa disposed at the distal end of the telescopic boom B, and is calculated by the third undulation angle calculator 21. A detector (detection of ground angle) may be arranged to directly detect.

【0039】更に、上記実施形態では、高所作業車に用
いられる伸縮ブームの撓みを考慮した伸縮ブームの撓み
角度を算出するようにしたが、高所作業車に限らず伸縮
ブームを備えた作業車に適用できること勿論のことであ
る。
Further, in the above-described embodiment, the bending angle of the telescopic boom is calculated in consideration of the bending of the telescopic boom used in the aerial work vehicle. Of course, it can be applied to cars.

【0040】[0040]

【発明の効果】以上の如く構成し作用する本発明に係る
ブーム作業車の撓み角度の算出方法及び装置は、伸縮ブ
ームの撓み角度を、撓みの生じない仮想の伸縮ブームを
撓みの生じる実際の伸縮ブームの先端が位置する位置ま
で倒伏させた仮想の伸縮ブームの倒伏角として算出する
ようにしているものだから、伸縮ブーム全体の傾斜角を
正確に算出できる。よって、伸縮ブーム全体の傾斜角が
正確に算出できれば、作業半径や伸縮ブームの先端まで
の高さを正確に算出することを可能にするものである。
The method and the apparatus for calculating the bending angle of the boom working vehicle according to the present invention, which is constructed and operated as described above, are designed so that the bending angle of the telescopic boom can be changed to the actual telescopic boom which does not bend. Since the virtual telescopic boom is tilted down to the position where the tip of the telescopic boom is located, the tilt angle of the telescopic boom as a whole can be accurately calculated. Therefore, if the inclination angle of the entire telescopic boom can be accurately calculated, the working radius and the height to the tip of the telescopic boom can be accurately calculated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のブーム作業車の撓み角度の算出装置を
説明する説明図である。
FIG. 1 is an explanatory diagram illustrating a device for calculating a deflection angle of a boom working vehicle according to the present invention.

【図2】本発明のブーム作業車の撓み角度の算出装置を
備えた高所作業車を説明する説明図である。
FIG. 2 is an explanatory view illustrating an aerial work vehicle equipped with a boom work vehicle deflection angle calculating device according to the present invention.

【図3】本発明のブーム作業車の撓み角度の算出方法を
説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a method for calculating a deflection angle of a boom working vehicle according to the present invention.

【図4】本発明のブーム作業車の撓み角度の算出装置を
備えた別の高所作業車を説明する説明図である。
FIG. 4 is an explanatory view illustrating another aerial work vehicle equipped with the boom work vehicle deflection angle calculating device of the present invention.

【図5】図4の高所作業車に備えた本発明のブーム作業
車の撓み角度の算出装置を説明する説明図である。
FIG. 5 is an explanatory view illustrating a bending angle calculating device of a boom working vehicle according to the present invention provided in the aerial work vehicle of FIG. 4;

【符号の説明】[Explanation of symbols]

B 実際の伸縮ブーム A0 仮想の伸縮ブーム A1 仮想の伸縮ブーム K 係数 8 第1起伏角検出器 9 第2起伏角検出器 10 ブーム長さ検出器 11 算出手段 12 減算器 13 撓み角度算出器 14 ブーム全体の傾斜角算出器 16 作業半径算出器 17 ブーム高さ算出器 B Actual telescopic boom A0 Virtual telescopic boom A1 Virtual telescopic boom K coefficient 8 First undulation angle detector 9 Second undulation angle detector 10 Boom length detector 11 Calculation means 12 Subtractor 13 Flexure angle calculator 14 Boom Overall tilt angle calculator 16 Working radius calculator 17 Boom height calculator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】車両上に起伏自在な伸縮ブームを備えたブ
ーム作業車において、 自重撓みが生じない仮想の伸縮ブームを自重撓みが生じ
る実際の伸縮ブーム先端が位置する位置まで倒伏させる
際の倒伏角を伸縮ブームの撓み角度として算出するブー
ム作業車の撓み角度算出方法であって、 伸縮ブームの基端部における第1の起伏角度と伸縮ブー
ムの先端部における第2の起伏角度とをそれぞれ検出
し、検出した第1の起伏角度と第2の起伏角度の差に予
め決定しておいた係数を掛けて前記伸縮ブームの撓み角
度を算出するブーム作業車の撓み角度算出方法。
1. A boom working vehicle having a telescopic boom that can be raised and lowered on a vehicle, wherein the virtual telescopic boom that does not cause its own weight deflection falls down to the position where the actual telescopic boom tip that causes its own weight deflection is located. A method for calculating a bending angle of a boom working vehicle that calculates an angle as a bending angle of a telescopic boom, wherein a first undulating angle at a base end of the telescopic boom and a second undulating angle at a distal end of the telescopic boom are detected. And calculating a deflection angle of the telescopic boom by multiplying the detected difference between the first undulation angle and the second undulation angle by a predetermined coefficient.
【請求項2】伸縮ブームの長さを検出し、当該伸縮ブー
ムの長さに基づいて前記係数を変更可能にする請求項1
記載のブーム作業車の撓み角度算出方法。
2. The telescopic boom length is detected, and the coefficient can be changed based on the telescopic boom length.
The bending angle calculation method of the boom working vehicle described in the above.
【請求項3】車両上に起伏自在な伸縮ブームを備えたブ
ーム作業車において、 自重撓みが生じない仮想の伸縮ブームを自重撓みが生じ
る実際の伸縮ブーム先端が位置する位置まで倒伏させる
際の倒伏角を伸縮ブームの撓み角度として算出するブー
ム作業車の撓み角度算出装置であって、 伸縮ブームの基端部に第1起伏角度検出器と伸縮ブーム
の先端部に第2起伏角度検出器とをそれぞれ配置し、両
検出器からの信号を受け第1起伏角度検出器の検出値と
第2起伏角度検出器の検出値の差に予め決定しておいた
係数を掛けて前記伸縮ブームの撓み角度を算出する算出
手段を設けたことを特徴とするブーム作業車の撓み角度
算出装置。
3. A boom working vehicle provided with a telescopic boom that can be raised and lowered on a vehicle, wherein the virtual telescopic boom that does not cause its own weight deflection falls down to the position where the actual telescopic boom tip that causes its own weight deflection is located. A bending angle calculating device for a boom working vehicle that calculates an angle as a bending angle of a telescopic boom, comprising: a first undulating angle detector at a base end of the telescopic boom; and a second undulating angle detector at a distal end of the telescopic boom. The telescopic boom is arranged by receiving signals from the two detectors and multiplying a difference between a detection value of the first undulation angle detector and a detection value of the second undulation angle detector by a predetermined coefficient. Calculating means for calculating a bending angle of the boom working vehicle.
【請求項4】伸縮ブームの長さ検出器を配置し、前記算
出手段は、当該長さ検出器からの信号に基づいて前記係
数を変更可能にしてあることを特徴とする請求項3記載
のブーム作業車の撓み角度算出装置。
4. The apparatus according to claim 3, wherein a length detector of the telescopic boom is arranged, and said calculating means is capable of changing said coefficient based on a signal from said length detector. Deflection angle calculator for boom work vehicles.
JP2000050591A 2000-02-28 2000-02-28 Method and apparatus for calculating deflection angle of boom work vehicle Expired - Fee Related JP4683686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050591A JP4683686B2 (en) 2000-02-28 2000-02-28 Method and apparatus for calculating deflection angle of boom work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050591A JP4683686B2 (en) 2000-02-28 2000-02-28 Method and apparatus for calculating deflection angle of boom work vehicle

Publications (2)

Publication Number Publication Date
JP2001240392A true JP2001240392A (en) 2001-09-04
JP4683686B2 JP4683686B2 (en) 2011-05-18

Family

ID=18572357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050591A Expired - Fee Related JP4683686B2 (en) 2000-02-28 2000-02-28 Method and apparatus for calculating deflection angle of boom work vehicle

Country Status (1)

Country Link
JP (1) JP4683686B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505807A (en) * 2008-10-16 2012-03-08 イートン コーポレーション Work vehicle motion control
CN102502405A (en) * 2011-10-31 2012-06-20 徐州重型机械有限公司 Boom angle detecting device, detection method and crane comprising detecting device
CN102730584A (en) * 2012-06-27 2012-10-17 三一重工股份有限公司 Protection apparatus and protection method for principal arm of crane, and crane
EP2644558A1 (en) 2012-03-26 2013-10-02 Tadano, Ltd. Work machine with flexible boom
CN103395696A (en) * 2013-08-12 2013-11-20 徐州重型机械有限公司 Hoisting height control system and method of crane
CN103523670A (en) * 2013-10-23 2014-01-22 中联重科股份有限公司 Suspension arm amplitude detection device and method and crane
JP2017211265A (en) * 2016-05-25 2017-11-30 三菱重工業株式会社 Surveying device, movable body, surveying method and program
CN113135512A (en) * 2021-04-29 2021-07-20 徐州重型机械有限公司 Crane boom monitoring method, device and system and crane
CN113697697A (en) * 2021-08-16 2021-11-26 中国海洋石油集团有限公司 3D area limitation anti-collision device and method for offshore base type crane
CN113830685A (en) * 2021-10-12 2021-12-24 临工集团济南重机有限公司 Control method and control system for rotation speed of rotary table and aerial work platform
WO2022188324A1 (en) * 2021-03-09 2022-09-15 浙江三一装备有限公司 Dynamic simulation display method and system for working machine structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548184A (en) * 1978-09-28 1980-04-05 Tadano Tekkosho Kk Method of obtaining work radius response signal of crane
JPS5612293A (en) * 1979-07-06 1981-02-06 Kato Seisakusho Kk Crane work radius calculator
JPH01256496A (en) * 1988-04-04 1989-10-12 Tadano Ltd Load vibration preventer at time of ungrounding of slinging load of crane with boom
JPH01259420A (en) * 1988-04-11 1989-10-17 Canon Inc Trigonometric function arithmetic unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548184A (en) * 1978-09-28 1980-04-05 Tadano Tekkosho Kk Method of obtaining work radius response signal of crane
JPS5612293A (en) * 1979-07-06 1981-02-06 Kato Seisakusho Kk Crane work radius calculator
JPH01256496A (en) * 1988-04-04 1989-10-12 Tadano Ltd Load vibration preventer at time of ungrounding of slinging load of crane with boom
JPH01259420A (en) * 1988-04-11 1989-10-17 Canon Inc Trigonometric function arithmetic unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505807A (en) * 2008-10-16 2012-03-08 イートン コーポレーション Work vehicle motion control
CN102502405A (en) * 2011-10-31 2012-06-20 徐州重型机械有限公司 Boom angle detecting device, detection method and crane comprising detecting device
US8768562B2 (en) 2012-03-26 2014-07-01 Tadano Ltd. Work machine
EP2644558A1 (en) 2012-03-26 2013-10-02 Tadano, Ltd. Work machine with flexible boom
JP2013199349A (en) * 2012-03-26 2013-10-03 Tadano Ltd Work machine
CN103359617A (en) * 2012-03-26 2013-10-23 株式会社多田野 Work machine
CN102730584A (en) * 2012-06-27 2012-10-17 三一重工股份有限公司 Protection apparatus and protection method for principal arm of crane, and crane
CN103395696A (en) * 2013-08-12 2013-11-20 徐州重型机械有限公司 Hoisting height control system and method of crane
CN103523670A (en) * 2013-10-23 2014-01-22 中联重科股份有限公司 Suspension arm amplitude detection device and method and crane
JP2017211265A (en) * 2016-05-25 2017-11-30 三菱重工業株式会社 Surveying device, movable body, surveying method and program
WO2022188324A1 (en) * 2021-03-09 2022-09-15 浙江三一装备有限公司 Dynamic simulation display method and system for working machine structure
CN113135512A (en) * 2021-04-29 2021-07-20 徐州重型机械有限公司 Crane boom monitoring method, device and system and crane
CN113135512B (en) * 2021-04-29 2024-02-13 徐州重型机械有限公司 Crane boom monitoring method, device and system and crane
CN113697697A (en) * 2021-08-16 2021-11-26 中国海洋石油集团有限公司 3D area limitation anti-collision device and method for offshore base type crane
CN113697697B (en) * 2021-08-16 2023-10-03 中国海洋石油集团有限公司 Anti-collision device and anti-collision method for limiting 3D region of offshore base crane
CN113830685A (en) * 2021-10-12 2021-12-24 临工集团济南重机有限公司 Control method and control system for rotation speed of rotary table and aerial work platform

Also Published As

Publication number Publication date
JP4683686B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP2001240392A (en) Method and device for calculating deflection angle for boom working vehicle
CN102862915B (en) Performance line display unit
JP2013523558A (en) Construction machine, stability control system, and control method
JP2001158599A (en) Positioning device for boom for high lift work
JP6421451B2 (en) Camera posture detection device
JP4744664B2 (en) Control device for working machine with boom
JP2020066520A (en) Crane vehicle
JP2020066519A (en) Deformation amount measurement device and deformation amount measurement method
JP4021529B2 (en) Control device for work equipment
US20220289402A1 (en) Passenger boarding bridge
JP4177919B2 (en) Platform leveling device for aerial work platforms
JP2006193307A (en) Remote controller of high lift work vehicle
JP5235115B2 (en) Operation equipment for aerial work platforms
JPH06239584A (en) Suspension cargo position display device for crane
JP2577945Y2 (en) Workbench movement control device for boom work vehicles
JP2001341991A (en) Operation control device for vehicle for high lift work
JP2011020839A (en) Control device of working machine with outrigger
JPH0527433Y2 (en)
JP2002362896A (en) Safety system for vehicle for high lift work
JPS62111900A (en) Platform display unit for height service car
JP2000355488A (en) Leveling device for high lift work vehicle
JP2003155198A (en) Loading/unloading assisting device for industrial vehicle and industrial vehicle
JP3255519B2 (en) Control equipment for aerial work vehicles
JPS59159010A (en) Leader angle correcting apparatus
JPS60181431A (en) Excavation working vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees