JP2001238853A - Ophthalmoscopy device - Google Patents

Ophthalmoscopy device

Info

Publication number
JP2001238853A
JP2001238853A JP2000050128A JP2000050128A JP2001238853A JP 2001238853 A JP2001238853 A JP 2001238853A JP 2000050128 A JP2000050128 A JP 2000050128A JP 2000050128 A JP2000050128 A JP 2000050128A JP 2001238853 A JP2001238853 A JP 2001238853A
Authority
JP
Japan
Prior art keywords
light source
measuring
cornea
light
corneal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000050128A
Other languages
Japanese (ja)
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000050128A priority Critical patent/JP2001238853A/en
Publication of JP2001238853A publication Critical patent/JP2001238853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve light utilization efficiency and contrast of a reflected image from a cornea under an illumination optics system that utilizes internal reflection of light transmission members. SOLUTION: When measuring a shape of a cornea including its vicinity, visible LED light sources 2 and an infrared LED light source 33 are turned on, a luminous flux from the light source 33 is projected onto the cornea of an eye E to be examined through a dichroic mirror 20, the reflected light beam from the cornea passes through two apertures 15 and focuses two separate spots of reflected cornea images on the center section of an arrayed sensor 37. The signals are taken into an operation means 41 one after another and a three-dimensional position of the eye E to be examined is probed. The openings 13 illuminated by illumination members 3 become secondary light sources, and the reflected image from the cornea passes through apertures 16, 8 and focuses on a photographing means 24 through dichroic mirrors 20, 22. Another infrared LED light source 5 is turned on at the time of alignment, and when alignment is determined image signals of the photographing means 24 are taken into the operation means for analysis, the signals of the arrayed sensor 37 where the reflected image of the cornea is projected are also recorded, and by utilizing distance information obtained from these signals for shape analysis of the cornea a correct measurement is put into practice.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、眼科病院や眼鏡店
で使用される検眼装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optometric apparatus used in an ophthalmic hospital or an optician.

【0002】[0002]

【従来の技術】従来の角膜形状測定装置においては、光
透過部材の内部反射を利用した照明光学系が特開平7−
294552号公報又は特開平9−276224号公報
において提案されており、光透過部材に設けた光拡散部
の角膜反射像を解析して角膜形状測定を行っている。
2. Description of the Related Art In a conventional corneal shape measuring apparatus, an illumination optical system utilizing internal reflection of a light transmitting member is disclosed in Japanese Patent Application Laid-Open No.
This is proposed in 294552 or JP-A-9-276224, in which a corneal reflection image of a light diffusing portion provided on a light transmitting member is analyzed to measure a corneal shape.

【0003】また、従来のケラトメータなどの角膜形状
測定装置では、光源により拡散部材を介して視標を均一
に照明し、二次光源となるその視標の角膜反射像を解析
しており、この場合は角膜測定用光源の他に前眼部照明
用光源が設けられている。
In a conventional corneal shape measuring apparatus such as a keratometer, a target is uniformly illuminated by a light source via a diffusion member, and a corneal reflection image of the target serving as a secondary light source is analyzed. In this case, a light source for anterior segment illumination is provided in addition to the light source for corneal measurement.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来例の角膜周辺の形状測定機能と眼屈折機能とを複合
化した装置においては、虹彩は赤外光反射率が高いため
に、角膜反射像のコントラストが低下して解析が困難に
なるという問題点がある。一方、可視光で角膜測定をす
ると被検眼が縮瞳を生ずるために屈折測定に影響が生
じ、また角膜周辺部を測定する照明光源部が光軸方向に
厚いと、測定光学系が被検眼から離れるために、装置が
大型化するという問題点が生ずる。
However, in the above-described apparatus in which the function of measuring the shape around the cornea and the function of refracting the eye are combined, the iris has a high infrared light reflectance. However, there is a problem that the contrast is reduced and analysis becomes difficult. On the other hand, when measuring the cornea with visible light, the subject's eye causes miosis, which affects the refraction measurement.If the illumination light source for measuring the peripheral part of the cornea is thick in the optical axis direction, the measurement optical system moves from the subject's eye. As a result, there is a problem that the size of the apparatus increases.

【0005】本発明の目的は、上述の問題点を解消し、
光透過部材の内部反射を利用した照明光学系の光利用効
率及び角膜反射像のコントラストを向上した検眼装置を
提供することにある。
An object of the present invention is to solve the above-mentioned problems,
It is an object of the present invention to provide an optometry apparatus in which the light use efficiency of an illumination optical system using the internal reflection of a light transmitting member and the contrast of a corneal reflection image are improved.

【0006】本発明の他の目的は、簡素な構成で角膜測
定が屈折測定に影響しない検眼装置を提供することにあ
る。
It is another object of the present invention to provide an optometry apparatus in which a corneal measurement does not affect a refraction measurement with a simple configuration.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る検眼装置は、光透過性部材を有し光軸方
向に略等厚で径に比して薄く片面に光拡散部を備えた照
明部材と、該照明部材の内部を照明する光源と、前記照
明部材の被検眼側に設けた光透過部及び光不透過部から
成る視標マスク部材と、前記光源により前記照明部材を
介して照明した前記視標マスク部材の角膜反射像を撮像
する撮像手段とを有し、前記角膜反射像を解析して角膜
形状を求めることを特徴とする。
An optometry apparatus according to the present invention for achieving the above object has a light-transmitting member, is substantially equal in thickness in the optical axis direction, is thinner than the diameter, and has a light diffusing portion on one side. A light source for illuminating the interior of the lighting member, a target mask member including a light transmitting portion and a light opaque portion provided on the subject's eye side of the lighting member, and the lighting member using the light source. Imaging means for capturing a corneal reflection image of the optotype mask member illuminated via the reticle, and analyzing the corneal reflection image to determine a corneal shape.

【0008】また、本発明に係る検眼装置は、角膜周辺
を含む角膜形状測定用の可視光源部と、該可視光源部を
介して赤外光を投影する角膜中心部曲率測定用の赤外光
源と、眼底に光束を投影して眼屈折を測定する屈折測定
手段とを有することを特徴とする。
An optometry apparatus according to the present invention comprises a visible light source section for measuring a corneal shape including the periphery of the cornea, and an infrared light source for measuring a central corneal curvature for projecting infrared light through the visible light source section. And a refraction measuring means for measuring the refraction of the eye by projecting a light beam on the fundus.

【0009】本発明に係る検眼装置は、角膜周辺を含む
角膜形状測定用の可視光を投影する複数の視標と、該複
数の視標の間に設けた角膜中心部曲率測定用又は前眼部
照明用の赤外光を発する開口と、眼底に光束を投影して
眼屈折を測定する屈折測定手段とを有することを特徴と
する。
An optometry apparatus according to the present invention includes a plurality of targets for projecting visible light for measuring a corneal shape including the periphery of the cornea, and a corneal center curvature measuring or anterior eye provided between the plurality of targets. It is characterized by having an opening for emitting infrared light for partial illumination, and a refraction measuring means for measuring a refraction of the eye by projecting a light beam on the fundus.

【0010】本発明に係る検眼装置は、角膜周辺を含む
角膜形状測定用の可視視標光源と、角膜中心部曲率測定
用の赤外視標光源と、眼底に光束を投影して眼屈折を測
定する屈折測定手段とを有し、角膜形状測定時に前記赤
外視標光源を消灯することを特徴とする。
An optometry apparatus according to the present invention comprises a visual target light source for measuring a corneal shape including the periphery of the cornea, an infrared target light source for measuring a curvature of a central portion of the cornea, and a light beam projected onto the fundus to refract eye refraction. Refraction measuring means for measuring, and the infrared target light source is turned off when measuring the corneal shape.

【0011】本発明に係る検眼装置は、角膜周辺を含む
角膜形状測定用の可視光源部と、該可視光源部を通して
前眼部を照明する赤外光を発する赤外光源と、該赤外光
源で照明した前眼部を撮像する撮像手段と、眼底に光束
を投影して眼屈折を測定する屈折測定手段とを有するこ
とを特徴とする。
An optometry apparatus according to the present invention comprises a visible light source for measuring a corneal shape including a periphery of the cornea, an infrared light source for emitting infrared light for illuminating an anterior eye through the visible light source, and the infrared light source. And a refraction measuring means for measuring a refraction of the eye by projecting a light beam on the fundus of the eye.

【0012】本発明に係る検眼装置は、測定光軸の円周
上に設けた直接前眼部を照明する複数の点状光源と、該
点状光源で照明した前眼部を撮像する撮像手段と、該撮
像手段の映像を表示する表示手段と、前記点状光源の角
膜反射像の位置を検出して角膜形状を測定する角膜測定
手段とを有することを特徴とする。
An optometry apparatus according to the present invention comprises a plurality of point light sources provided on a circumference of a measurement optical axis for directly illuminating an anterior eye part, and imaging means for imaging the anterior eye part illuminated by the point light source. And a display means for displaying an image of the imaging means, and a corneal measuring means for measuring a corneal shape by detecting a position of a corneal reflection image of the point light source.

【0013】本発明に係る検眼装置は、被検眼の眼底及
び角膜のそれぞれに光束を投影しその反射光を検出して
眼屈折測定及び角膜形状測定をする検眼装置において、
測定光軸の円周上に設け直接前眼部を照明する複数の点
状光源と、該点状光源で照明した前眼部を撮像する撮像
手段と、前記点状光源の角膜反射像の位置を検出して角
膜形状を測定する角膜測定手段とを有することを特徴と
する。
An optometry apparatus according to the present invention is an optometry apparatus for projecting a light beam onto each of a fundus and a cornea of an eye to be inspected, detecting reflected light thereof, and measuring an eye refraction and a corneal shape.
A plurality of point light sources provided on the circumference of the measurement optical axis to directly illuminate the anterior segment, imaging means for imaging the anterior segment illuminated by the point light source, and a position of a corneal reflection image of the point light source And a corneal measuring means for detecting the corneal shape and measuring the corneal shape.

【0014】[0014]

【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は実施例の検眼装置の構成図を示
し、眼屈折測定と角膜中心部曲率測定と角膜周辺を含む
形状測定が可能である。光路O1の円周に沿って共通プ
リント基板1が設けられ、共通プリント基板1に多数の
角膜形状測定用の可視LED光源2が配置されている。
可視LED光源2の前面には、アクリル樹脂などから成
る円形板状の光透過性照明部材3が配設されており、照
明部材3の被検眼Eと反対側の背面には、一部分を除い
てアルミニュウムなどを塗布した反射面が形成されてい
る。このアルミニュウムを塗布していない部分は光透過
部となっており、この光透過部の後方にプリント基板1
よりも径の小さなリング状の共通プリント基板4が配設
されており、この共通プリント基板4には角膜中心部曲
率測定用の赤外LED光源5が取り付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 shows a configuration diagram of an optometry apparatus according to an embodiment, in which an eye refraction measurement, a corneal central curvature measurement, and a shape measurement including the periphery of the cornea are possible. A common printed circuit board 1 is provided along the circumference of the optical path O <b> 1, and a large number of visible LED light sources 2 for measuring a corneal shape are arranged on the common printed circuit board 1.
A circular plate-shaped light-transmissive lighting member 3 made of acrylic resin or the like is provided on the front surface of the visible LED light source 2, and a part of the back surface of the lighting member 3 opposite to the subject's eye E is partially removed. A reflecting surface coated with aluminum or the like is formed. The portion not coated with aluminum is a light transmitting portion, and the printed circuit board 1 is provided behind the light transmitting portion.
A ring-shaped common printed circuit board 4 having a smaller diameter is provided, and an infrared LED light source 5 for measuring the curvature of the central portion of the cornea is attached to the common printed circuit board 4.

【0015】また、照明部材3には複数の同心のリング
状光拡散部6が設けられている。照明部材3の外縁部7
は45度にカットされ、可視LED光源2から入射する
光束はこの面において反射されて、外縁部7から中心部
に内面反射を繰り返しながら、照明部材3の内部を進行
するようになっている。そして、リング状光拡散部6に
至ると光束は拡散反射されて、その一部が被検眼Eを照
明するようになっている。
The illumination member 3 is provided with a plurality of concentric ring-shaped light diffusion portions 6. Outer edge 7 of lighting member 3
Is cut at 45 degrees, and the light beam incident from the visible LED light source 2 is reflected on this surface, and travels inside the illumination member 3 while repeating internal reflection from the outer edge 7 to the center. When the light reaches the ring-shaped light diffusion portion 6, the light is diffusely reflected, and a part of the light illuminates the eye E.

【0016】照明部材3の中心部には円形開口8が設け
られており、その内側には反射面となるリング部材9が
取り付けられている。可視LED光源2の光束はこのリ
ング部材9の反射面で反射され、再び照明部材3の内部
に戻るようにされている。照明部材3の外縁部7には、
アクリル樹脂などの短円筒状の光透過部材10が接着さ
れており、また光透過部材10と照明部材3の接合面は
光を部分的に反射透過するようになっている。光透過部
材10の被検眼E側の端面11は斜めにカットした光反
射面とされている。これによって、可視LED光源2の
光束の一部は光透過部材10内に入り、端面11で反射
されて被検眼Eの角膜を照明するようにされている。
A circular opening 8 is provided at the center of the lighting member 3, and a ring member 9 serving as a reflection surface is attached inside the opening. The luminous flux of the visible LED light source 2 is reflected by the reflection surface of the ring member 9 and returns to the inside of the illumination member 3 again. On the outer edge 7 of the lighting member 3,
A short cylindrical light transmitting member 10 such as an acrylic resin is adhered, and a joint surface between the light transmitting member 10 and the lighting member 3 partially reflects and transmits light. The end surface 11 of the light transmitting member 10 on the eye E side is a light reflecting surface cut obliquely. Thereby, a part of the light flux of the visible LED light source 2 enters the light transmitting member 10 and is reflected on the end face 11 to illuminate the cornea of the eye E to be examined.

【0017】照明部材3の被検眼E側に密着して、図2
に示すような金属薄板などから成る視標マスク部材12
が設けられている。視標マスク部材12の照明部材3側
は光反射面となっており、光拡散部6で反射されて照明
部材3を出射しマスク部2に当たった光束を反射して照
明部材3の内部に戻すことによって、光束の利用効率を
向上するようになっている。
FIG. 2 shows a state in which the illumination member 3 is in close contact with the eye E side.
The target mask member 12 made of a thin metal plate as shown in FIG.
Is provided. The illumination member 3 side of the optotype mask member 12 is a light reflecting surface, and reflects the light flux which is reflected by the light diffusion portion 6 and exits the illumination member 3 and impinges on the mask portion 2 to be reflected inside the illumination member 3. By returning, the utilization efficiency of the light beam is improved.

【0018】視標マスク部材12には、複数の同心リン
グ開口13、8個の角膜中心部曲率測定用の開口14、
2個の位置検出用の開口15、測定反射光束が通る中心
開口16が設けられており、その他の部分は光束を透過
しないようになっている。また、照明部材3の開口14
と開口15に相当する部分には、反射面はなく光束を透
過するようになっており、赤外LED光源5の光束は照
明部材3を透過し、開口14を通して角膜を照明するよ
うにされている。
The optotype mask member 12 has a plurality of concentric ring openings 13, eight corneal central curvature measurement openings 14,
Two apertures 15 for position detection and a central aperture 16 through which the measurement reflected light beam passes are provided, and the other portions are configured not to transmit the light beam. Also, the opening 14 of the lighting member 3
The portion corresponding to the opening 15 has no reflective surface and transmits light. The light of the infrared LED light source 5 passes through the illumination member 3 and illuminates the cornea through the opening 14. I have.

【0019】被検眼Eの前方の測定光路O1上には、ダ
イクロイックミラー20、レンズ21、ダイクロイック
ミラー22、レンズ23、撮像手段24が順次に配列さ
れている。ダイクロイックミラー22の反射方向の光路
O2上には、ミラー25、視度可変レンズ26、固視視
標27が配列されている。また、光路O1の光学的同軸
であるダイクロイックミラー20の入射方向の屈折測定
光路O3上には、レンズ21よりも径の小さい対物レン
ズ28、ミラー29、孔あきミラー30、瞳孔に共役な
中心開口絞り31、レンズ32、正視眼底と共役な赤外
LED光源33が順次に配列されている。赤外LED光
源33は屈折測定と被検眼位置検出用に兼用され、ダイ
クロイックミラー20はこの光源33の波長光を反射す
る特性を有している。
On the measurement optical path O1 in front of the eye E, a dichroic mirror 20, a lens 21, a dichroic mirror 22, a lens 23, and an imaging means 24 are sequentially arranged. A mirror 25, a diopter variable lens 26, and a fixation target 27 are arranged on the optical path O2 in the reflection direction of the dichroic mirror 22. Also, on the refraction measurement optical path O3 in the incident direction of the dichroic mirror 20, which is optically coaxial with the optical path O1, an objective lens 28, a mirror 29, a perforated mirror 30, and a central aperture conjugate to the pupil are provided. An aperture 31, a lens 32, and an infrared LED light source 33 conjugate to the standard eye fundus are sequentially arranged. The infrared LED light source 33 is used for both refraction measurement and eye position detection, and the dichroic mirror 20 has a characteristic of reflecting the wavelength light of the light source 33.

【0020】孔あきミラー30の反射方向の光路上に
は、瞳孔と共役なリング絞り34、光束を軸から離れる
方向に偏向する光偏向部材35、レンズ36、レンズ3
6により正視眼底と共役となるCCDなどのアレイセン
サ37が順次に配列されている。また、ミラー29の反
射方向の光路O3の両側には、位置検出用のレンズ38
とミラー39が配置されている。そして、撮像手段24
の出力は表示モニタ40、演算手段41にそれぞれ接続
され、アレイセンサ37の出力は演算手段41を介して
表示モニタ40に接続されている。
On the optical path in the reflection direction of the perforated mirror 30, a ring stop 34 conjugate with the pupil, a light deflecting member 35 for deflecting a light beam away from the axis, a lens 36, a lens 3
6, array sensors 37, such as CCDs, conjugated to the ocular fundus are sequentially arranged. A lens 38 for position detection is provided on both sides of the optical path O3 in the reflection direction of the mirror 29.
And a mirror 39 are arranged. And the imaging means 24
Are connected to the display monitor 40 and the calculation means 41, respectively, and the output of the array sensor 37 is connected to the display monitor 40 via the calculation means 41.

【0021】このような構成により、固視視標27は角
膜屈折測定時に使用され、視度可変レンズ26、ミラー
25、ダイクロイックミラー22、レンズ21、ダイク
ロイックミラー20を介して被検眼Eに呈示される。
With such a configuration, the fixation target 27 is used at the time of corneal refraction measurement, and is presented to the eye E through the diopter variable lens 26, the mirror 25, the dichroic mirror 22, the lens 21, and the dichroic mirror 20. You.

【0022】角膜周辺を含む形状測定時には、可視LE
D光源2と赤外LED光源33が点灯する。赤外LED
光源33からの光束は、レンズ32、中心開口絞り3
1、孔あきミラー30の孔部、ミラー29、対物レンズ
28を通り、ダイクロイックミラー20で反射されて被
検眼Eの角膜に投影される。その角膜反射光は2つの開
口15を通り、ダイクロイックミラー20で反射され、
レンズ28の外側を通ってミラー29で反射され、光路
O3の両側のレンズ38とミラー39を介して、アレイ
センサ37の中心部に図3に示すような分離した2点像
Tとして結像し、更に赤外LED光源33による眼底反
射光によるリング像Rが結像する。この角膜反射光の光
強度は大きいので、位置検出時には赤外LED光源33
を屈折測定時よりも弱く点灯することにより、位置検出
時にはリング像Rは映らない。
When measuring the shape including the periphery of the cornea, the visible LE
The D light source 2 and the infrared LED light source 33 are turned on. Infrared LED
The light beam from the light source 33 passes through the lens 32 and the central aperture stop 3
1. The light passes through the hole of the perforated mirror 30, the mirror 29, and the objective lens 28, is reflected by the dichroic mirror 20, and is projected on the cornea of the eye E to be examined. The corneal reflected light passes through the two openings 15 and is reflected by the dichroic mirror 20,
The light passes through the outside of the lens 28, is reflected by the mirror 29, and forms a two-point image T as shown in FIG. 3 at the center of the array sensor 37 via the lens 38 and the mirror 39 on both sides of the optical path O3. Further, a ring image R formed by the fundus reflection light from the infrared LED light source 33 is formed. Since the light intensity of the corneal reflected light is large, the infrared LED light source 33 is used at the time of position detection.
Is turned on weaker than at the time of refraction measurement, so that the ring image R is not displayed at the time of position detection.

【0023】アレイセンサ37の信号は逐次に演算手段
41に取り込まれて2点像Tの位置が検出され、それら
の位置から三次元的な被検眼Eの位置が分かる。それに
基づいてスプリット位置マークMが表示モニタ40に表
示される。
The signals of the array sensor 37 are sequentially taken into the calculating means 41 to detect the positions of the two-point images T, and from these positions, the three-dimensional position of the eye E can be known. Based on this, the split position mark M is displayed on the display monitor 40.

【0024】スプリット位置マークMの状態により距離
を表示し、表示する画面位置により軸アライメントを表
示する。検者はこれを見て位置を合わせる。照明部材3
の光拡散部6からの光束で照明された開口13は二次光
源となり、これによる角膜反射像が生ずる。その映像は
開口16、8を通り、ダイクロイックミラー20、22
を介してレンズ21、23により撮像手段24に結像す
る。
The distance is displayed by the state of the split position mark M, and the axis alignment is displayed by the displayed screen position. The examiner looks at this and adjusts the position. Lighting member 3
The opening 13 illuminated with the light beam from the light diffusing unit 6 serves as a secondary light source, thereby generating a corneal reflection image. The images pass through apertures 16 and 8 and dichroic mirrors 20 and 22
An image is formed on the image pickup means 24 by the lenses 21 and 23 through.

【0025】赤外LED光源5は前眼部照明用を兼ねて
おり、位置合わせ時に点灯する。表示モニタ40には、
図1に示すように前眼部像E’、光源5の角膜反射像
5’、視標マスク部材10の開口13によるリング像1
3’が映り、スプリット位置マークMも表示される。位
置が合うと、撮像手段24の映像信号が演算手段41に
解析のために取り込まれる。このとき、リング像13’
のコントラストを上げるために赤外LED光源5は消灯
する。同時に、角膜反射像Tが映ったアレイセンサ37
の信号も記録され、これから得た距離情報を角膜形状解
析に使用して、距離による倍率の違いを補正し正確な測
定を実施する。
The infrared LED light source 5 is also used for illuminating the anterior ocular segment, and is turned on at the time of positioning. The display monitor 40 includes:
As shown in FIG. 1, an anterior segment image E ′, a corneal reflection image 5 ′ of the light source 5, and a ring image 1 formed by the opening 13 of the target mask member 10.
3 'is displayed, and the split position mark M is also displayed. When the positions match, the video signal of the imaging means 24 is taken into the calculating means 41 for analysis. At this time, the ring image 13 '
In order to increase the contrast, the infrared LED light source 5 is turned off. At the same time, the array sensor 37 showing the corneal reflection image T
Is recorded, and the distance information obtained from this signal is used for corneal shape analysis to correct the difference in magnification due to the distance and perform accurate measurement.

【0026】角膜中心部の形状である曲率半径を測定す
るケラトメータとして使用する場合には、可視LED光
源2は消灯する。図4はそのときの表示モニタ40の映
像を示し、赤外LED光源5の角膜反射像5’の中心に
表示されたスプリツト位置マークMにより位置合わせを
行う。位置が合うと、角膜反射像5’が映った映像信号
を演算手段41に取り込み、角膜反射像5’の位置を認
識して角膜乱視及び角膜曲率を求める。
When used as a keratometer for measuring the radius of curvature which is the shape of the central part of the cornea, the visible LED light source 2 is turned off. FIG. 4 shows an image on the display monitor 40 at that time, and the alignment is performed by the split position mark M displayed at the center of the corneal reflection image 5 ′ of the infrared LED light source 5. When the positions match, the video signal showing the corneal reflection image 5 'is taken into the arithmetic means 41, and the position of the corneal reflection image 5' is recognized to obtain corneal astigmatism and corneal curvature.

【0027】赤外LED光源5の光束を拡散部材を介さ
ずに被検眼Eに直接投影しているために、赤外光でも像
5’のコントラストが高く、前眼部を照明するための十
分な明るさが得られる。また、角膜測定用光源を前眼部
照明に兼用しているために、構成を簡素化でき縮瞳を起
こさないので、屈折測定と連続して行っても影響は生じ
ない。
Since the luminous flux of the infrared LED light source 5 is directly projected onto the eye E without passing through the diffusing member, the contrast of the image 5 'is high even with infrared light, which is sufficient for illuminating the anterior eye. Brightness can be obtained. Further, since the light source for corneal measurement is also used for illumination of the anterior segment of the eye, the structure can be simplified and no miosis occurs, so that there is no effect even if the measurement is performed continuously with the refraction measurement.

【0028】赤外LED光源5としては、前眼部の表示
部位を明るく照明する程度の指向性を有する集光部材を
備えたLEDが、コントラストと光強度の点で望まし
い。赤外LED光源5により前眼部のほぼ全表示域を明
るく照明する。これらの角膜反射像5’の位置は視標と
異なり一定ではないために、予め工場出荷時に標準球で
それらの位置を校正記憶しておき、演算時にはその値を
使用して角膜測定を行う。
As the infrared LED light source 5, an LED provided with a light-collecting member having a directivity enough to brightly illuminate the display portion of the anterior segment is desirable in terms of contrast and light intensity. Almost the entire display area of the anterior segment is brightly illuminated by the infrared LED light source 5. Since the positions of these corneal reflection images 5 'are not constant unlike the optotypes, the positions are calibrated and stored in advance with a standard sphere at the time of factory shipment, and the corneal measurement is performed using the values at the time of calculation.

【0029】開口14を赤外LED光源5とほぼ同様の
大きさにしておけば、開口14の像と角膜反射像5’と
は区別できない。また、視標と見倣すことができる8個
の開口14の角膜反射像位置を解析して角膜形状を求め
てもよい。赤外LED光源5の位置が定まらないため
に、個々の開口14は不均一に照明されるので、その像
14’の重心を校正して記憶しておく。開口14はリン
グ視標として機能するリング開口13の間に設けられて
いるために、角膜周辺測定に好都合な可視光源と中心部
測定に好都合な赤外光源を使い分けることができる。こ
れらの開口14を照明する赤外LED光源5を消灯した
ときは、角膜上に等間隔のリング像13’が発生する。
If the size of the opening 14 is substantially the same as that of the infrared LED light source 5, the image of the opening 14 cannot be distinguished from the corneal reflection image 5 '. Alternatively, the corneal shape may be determined by analyzing the corneal reflection image positions of the eight apertures 14 that can be imitated as a target. Since the position of the infrared LED light source 5 is not fixed, the individual apertures 14 are illuminated unevenly. Therefore, the center of gravity of the image 14 'is calibrated and stored. Since the opening 14 is provided between the ring openings 13 functioning as a ring target, it is possible to selectively use a visible light source that is convenient for peripheral corneal measurement and an infrared light source that is convenient for central portion measurement. When the infrared LED light source 5 that illuminates these openings 14 is turned off, ring images 13 'at equal intervals are generated on the cornea.

【0030】眼屈折測定時には、同様に可視LED光源
2を消灯する。位置合わせ時の表示モニタ40の映像は
図4と同様である。位置合わせが終わると赤外LED光
源33を強く点灯する。アレイセンサ37にはその点像
Tと眼底反射像Rが映り、その信号を演算手段41に取
り込んでリング像Rの形状を解析して屈折値を求める。
また、像Tの位置で距離を求め必要に応じて、その距離
により屈折値を補正する。
At the time of eye refraction measurement, the visible LED light source 2 is similarly turned off. The image on the display monitor 40 at the time of positioning is the same as that in FIG. When the alignment is completed, the infrared LED light source 33 is turned on strongly. The point image T and the fundus reflection image R are reflected on the array sensor 37, and the signals are taken into the calculating means 41 to analyze the shape of the ring image R to obtain the refraction value.
Further, the distance is obtained at the position of the image T, and the refraction value is corrected according to the distance as necessary.

【0031】図5は変形例における光分割部の正面図を
示し、位置合わせ検出用の赤外LED光源33の角膜反
射像Tをアレイセンサ37ではなく撮像手段24により
受光している。レンズ21に代るレンズ41を設け、レ
ンズ23の径を開口15はカバーする程度に大きくす
る。また、光分割部材20の代りに光分割部材42が設
けられ、この光分割部材42の開口8を通る光束が当た
る中心部43には、赤外LED光源33の波長光を反射
する薄膜が施されており、その周りはその波長光を透過
するように構成されている。また、開口15を通る光束
が当たる部分には楔ガラス44が貼り付けられており、
この楔ガラス44には、赤外LED光源33の波長光を
透過し、可視LED光源2と赤外LED光源5の波長光
は透過しない薄膜が施されている。
FIG. 5 is a front view of a light splitting unit according to a modification, in which a corneal reflection image T of an infrared LED light source 33 for position detection is received not by the array sensor 37 but by the imaging means 24. A lens 41 is provided instead of the lens 21, and the diameter of the lens 23 is made large enough to cover the opening 15. Further, a light splitting member 42 is provided instead of the light splitting member 20, and a thin film that reflects the wavelength light of the infrared LED light source 33 is provided on a central portion 43 of the light splitting member 42 where a light beam passing through the opening 8 hits. And its surroundings are configured to transmit light of that wavelength. A wedge glass 44 is attached to a portion where the light beam passing through the opening 15 hits,
The wedge glass 44 is provided with a thin film that transmits the wavelength light of the infrared LED light source 33 and does not transmit the wavelength lights of the visible LED light source 2 and the infrared LED light source 5.

【0032】赤外LED光源33の角膜反射光として開
口15を通る光束は、楔ガラス44により偏向して、角
膜の中心に分離した2点像Tを結像する。位置合わせ時
には、その2点像Tが角膜反射像5’やリング像13’
と共に表示モニタ40に表示されるので、検者はこれを
見て位置合わせをする。測定時には、角膜反射像5’や
リング像13’と共にこの2点像Tを記録し、演算によ
り測定取込時の位置を検出して角膜形状測定を正確に行
う。
The light flux passing through the opening 15 as the corneal reflection light of the infrared LED light source 33 is deflected by the wedge glass 44 to form a two-point image T separated at the center of the cornea. At the time of positioning, the two-point image T is converted into a corneal reflection image 5 'and a ring image 13'.
Is displayed on the display monitor 40, and the examiner sees this and performs positioning. At the time of measurement, the two-point image T is recorded together with the corneal reflection image 5 'and the ring image 13', and the position at the time of taking in the measurement is detected by calculation to accurately measure the corneal shape.

【0033】なお、光透過性照明部材3のリング状光拡
散部6は、被検眼E側に設けても支障はない。
It should be noted that the ring-shaped light diffusing portion 6 of the light-transmitting illumination member 3 may be provided on the eye E side without any problem.

【0034】[0034]

【発明の効果】以上説明したように本発明に係る検眼装
置は、照明部材を介して照明した視標マスク部材の角膜
反射像を撮像し、その角膜反射像を解析して角膜形状を
求めることにより、角膜反射像のコントラストと共に光
束の利用効率を向上することができる。
As described above, the optometry apparatus according to the present invention captures a corneal reflection image of an optotype mask member illuminated via an illumination member, and analyzes the corneal reflection image to determine a corneal shape. Accordingly, it is possible to improve the light flux utilization efficiency together with the contrast of the corneal reflection image.

【0035】また、本発明に係る検眼装置は、角膜周辺
を合む角膜形状測定用の可視光源部と、可視光源部を通
して赤外光を投影する角膜中心部曲率測定用の赤外光源
とを設けたことにより、光学系を小型化して簡素な構成
とすることができる。
Further, the optometry apparatus according to the present invention comprises a visible light source section for measuring a corneal shape surrounding the cornea, and an infrared light source for measuring a corneal central curvature for projecting infrared light through the visible light source section. With the provision, the optical system can be reduced in size and can have a simple configuration.

【0036】本発明に係る検眼装置は、可視光を投影す
る複数の視標を使用して角膜周辺を含む角膜形状測定を
行い、複数の視標の間に設けた開口から前眼部照明用の
赤外光を発して眼底に光束を投影し眼屈折測定を行うこ
とにより、効率の良い正確な測定を実施することができ
る。
The optometry apparatus according to the present invention measures the corneal shape including the periphery of the cornea using a plurality of targets for projecting visible light, and illuminates the anterior ocular segment through an opening provided between the plurality of targets. By emitting infrared light and projecting a light beam onto the fundus and performing eye refraction measurement, efficient and accurate measurement can be performed.

【0037】本発明に係る検眼装置は、角膜形状測定時
に赤外光視標光源を消灯することにより、角膜反射像の
コントラストを向上して精度の良い測定を実施すること
ができる。
The optometry apparatus according to the present invention can improve the contrast of the corneal reflection image and perform accurate measurement by turning off the infrared light target light source during the measurement of the corneal shape.

【0038】本発明に係る検眼装置は、角膜周辺を含む
角膜形状測定用の可視光源部を通して赤外光を発する赤
外光源により前眼部を撮像し、これと異なる赤外光を眼
底に投影して眼屈折測定を行うことにより、測定と別波
長の赤外光により前眼部を照明しているために眼屈折測
定に影響を与えることがない。
The optometry apparatus according to the present invention captures an image of the anterior eye using an infrared light source that emits infrared light through a visible light source unit for measuring a corneal shape including the periphery of the cornea, and projects infrared light different from this to the fundus. By performing the eye refraction measurement, since the anterior segment is illuminated with infrared light having a different wavelength from the measurement, the eye refraction measurement is not affected.

【0039】本発明に係る検眼装置は、測定光軸の円周
上の複数の点状光源により前眼部を撮像し、この点状光
源の角膜反射像位置を検出して角膜形状を測定すること
により、角膜測定用光源を前眼部撮像用光源に兼用でき
るので、構成を簡素化することができる。
In the optometry apparatus according to the present invention, the anterior segment is imaged by a plurality of point light sources on the circumference of the measurement optical axis, and the corneal reflection image position of the point light source is detected to measure the corneal shape. Thereby, the light source for corneal measurement can be used also as the light source for imaging the anterior segment, so that the configuration can be simplified.

【0040】本発明に係る検眼装置は、測定光軸の円周
上の複数の点状光源により前眼部を撮像して表示手段に
表示し、またこの点状光源の角膜反射像位置を検出して
角膜形状を測定することにより、角膜測定光源を前眼部
撮像光源に兼用できるので、簡素な構成で眼屈折測定と
角膜形状測定を行うことができる。
In the optometry apparatus according to the present invention, the anterior segment is imaged by a plurality of point light sources on the circumference of the measurement optical axis and displayed on the display means, and the corneal reflection image position of the point light source is detected. By measuring the corneal shape in this way, the corneal measurement light source can be used also as the anterior segment imaging light source, so that the eye refraction measurement and the corneal shape measurement can be performed with a simple configuration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の検眼装置の構成図である。FIG. 1 is a configuration diagram of an optometry apparatus according to an embodiment.

【図2】視標マスク部材の正面図である。FIG. 2 is a front view of a target mask member.

【図3】屈折測定時のアレイセンサの正面図である。FIG. 3 is a front view of the array sensor during refraction measurement.

【図4】角膜曲率測定時の表示モニタ画面の説明図であ
る。
FIG. 4 is an explanatory diagram of a display monitor screen at the time of measuring corneal curvature.

【図5】変形例の光分割部の正面図である。FIG. 5 is a front view of a light splitting unit according to a modified example.

【符号の説明】[Explanation of symbols]

2 可視LED光源 3 光透過性照明部材 5、33 赤外LED光源 6 リング状光拡散部 8、13、14、15、16 開口 10 光透過部材 12 視標マスク部材 24 撮像手段 27 固視視標 31 中心開口絞り 34 リング絞り 35 光偏向部材 37 アレイセンサ 40 表示モニタ 41 演算手段 42 光分割部材 44 楔ガラス Reference Signs List 2 visible LED light source 3 light-transmissive illumination member 5, 33 infrared LED light source 6 ring-shaped light diffusion portion 8, 13, 14, 15, 16 opening 10 light transmission member 12 optotype mask member 24 imaging means 27 fixation target Reference Signs List 31 center aperture stop 34 ring stop 35 light deflection member 37 array sensor 40 display monitor 41 calculation means 42 light splitting member 44 wedge glass

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01B 11/24 M Fターム(参考) 2F065 AA00 AA04 AA06 AA19 AA46 AA51 BB07 BB29 CC16 DD02 EE00 FF01 FF09 GG07 GG13 GG17 GG21 HH02 HH06 HH12 HH13 HH14 JJ03 JJ05 JJ09 JJ19 JJ26 LL00 LL04 LL12 LL20 LL30 LL41 LL49 LL50 NN02 QQ23 QQ28 SS02 SS13 TT02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) G01B 11/24 MF term (Reference) 2F065 AA00 AA04 AA06 AA19 AA46 AA51 BB07 BB29 CC16 DD02 EE00 FF01 FF09 GG07 GG13 GG17 GG21 HH02 HH06 HH12 HH13 HH14 JJ03 JJ05 JJ09 JJ19 JJ26 LL00 LL04 LL12 LL20 LL30 LL41 LL49 LL50 NN02 QQ23 QQ28 SS02 SS13 TT02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光透過性部材を有し光軸方向に略等厚で
径に比して薄く片面に光拡散部を備えた照明部材と、該
照明部材の内部を照明する光源と、前記照明部材の被検
眼側に設けた光透過部及び光不透過部から成る視標マス
ク部材と、前記光源により前記照明部材を介して照明し
た前記視標マスク部材の角膜反射像を撮像する撮像手段
とを有し、前記角膜反射像を解析して角膜形状を求める
ことを特徴とする検眼装置。
An illumination member having a light transmissive member, having a substantially equal thickness in the optical axis direction, a thickness smaller than the diameter and a light diffusing portion on one side, a light source for illuminating the interior of the illumination member, An optotype mask member comprising a light transmitting portion and a light opaque portion provided on the side of the eye to be examined of the illumination member, and an imaging means for imaging a corneal reflection image of the optotype mask member illuminated by the light source via the illumination member. An optometric apparatus comprising: analyzing a corneal reflection image to determine a corneal shape.
【請求項2】 前記視標マスク部材の前記照明部材側を
反射面とした請求項1に記載の検眼装置。
2. The optometric apparatus according to claim 1, wherein the illumination member side of the optotype mask member is a reflection surface.
【請求項3】 角膜周辺を含む角膜形状測定用の可視光
源部と、該可視光源部を介して赤外光を投影する角膜中
心部曲率測定用の赤外光源と、眼底に光束を投影して眼
屈折を測定する屈折測定手段とを有することを特徴とす
る検眼装置。
3. A visible light source section for measuring a corneal shape including the periphery of the cornea, an infrared light source for measuring a central corneal curvature for projecting infrared light through the visible light source section, and a light beam projected on a fundus. A refraction measuring means for measuring the refraction of the eye.
【請求項4】 複数の点状の角膜反射像により角膜中心
部の曲率を測定する請求項3に記載の検眼装置。
4. The optometry apparatus according to claim 3, wherein the curvature of the central portion of the cornea is measured by a plurality of point-like corneal reflection images.
【請求項5】 角膜周辺を含む角膜形状測定用の可視光
を投影する複数の視標と、該複数の視標の間に設けた角
膜中心部曲率測定用又は前眼部照明用の赤外光を発する
開口と、眼底に光束を投影して眼屈折を測定する屈折測
定手段とを有することを特徴とする検眼装置。
5. A plurality of targets for projecting visible light for measuring a corneal shape including the periphery of the cornea, and an infrared ray for measuring curvature of a central portion of the cornea or illuminating an anterior eye provided between the plurality of targets. An optometry apparatus comprising: an opening for emitting light; and a refraction measuring unit for measuring a refraction of an eye by projecting a light beam on a fundus.
【請求項6】 角膜周辺を含む角膜形状測定用の可視視
標光源と、角膜中心部曲率測定用の赤外視標光源と、眼
底に光束を投影して眼屈折を測定する屈折測定手段とを
有し、角膜形状測定時に前記赤外視標光源を消灯するこ
とを特徴とする検眼装置。
6. A visual target light source for measuring the shape of the cornea including the periphery of the cornea, an infrared target light source for measuring the curvature of the central part of the cornea, and refraction measuring means for measuring the refraction of the eye by projecting a light beam onto the fundus. An optometric apparatus, comprising: turning off the infrared target light source when measuring a corneal shape.
【請求項7】 角膜周辺を含む角膜形状測定用の可視光
源部と、該可視光源部を通して前眼部を照明する赤外光
を発する赤外光源と、該赤外光源で照明した前眼部を撮
像する撮像手段と、眼底に光束を投影して眼屈折を測定
する屈折測定手段とを有することを特徴とする検眼装
置。
7. A visible light source section for measuring a corneal shape including the periphery of the cornea, an infrared light source emitting infrared light for illuminating an anterior eye through the visible light source section, and an anterior eye section illuminated by the infrared light source An optometric apparatus comprising: an imaging unit that captures an image of a subject; and a refraction measuring unit that measures a refraction of an eye by projecting a light beam onto the fundus.
【請求項8】 測定光軸の円周上に設けた直接前眼部を
照明する複数の点状光源と、該点状光源で照明した前眼
部を撮像する撮像手段と、該撮像手段の映像を表示する
表示手段と、前記点状光源の角膜反射像の位置を検出し
て角膜形状を測定する角膜測定手段とを有することを特
徴とする検眼装置。
8. A plurality of point-like light sources provided directly on the circumference of the measurement optical axis for illuminating the anterior segment, imaging means for imaging the anterior segment illuminated by the point-like light source, and An optometry apparatus comprising: display means for displaying an image; and corneal measurement means for measuring a corneal shape by detecting a position of a corneal reflection image of the point light source.
【請求項9】 被検眼の眼底及び角膜のそれぞれに光束
を投影しその反射光を検出して眼屈折測定及び角膜形状
測定をする検眼装置において、測定光軸の円周上に設け
直接前眼部を照明する複数の点状光源と、該点状光源で
照明した前眼部を撮像する撮像手段と、前記点状光源の
角膜反射像の位置を検出して角膜形状を測定する角膜測
定手段とを有することを特徴とする検眼装置。
9. An optometric apparatus for projecting a light beam onto each of the fundus and the cornea of an eye to be examined and detecting reflected light thereof to measure refraction of the eye and corneal shape, and provided directly on the circumference of the measurement optical axis and directly in front of the anterior eye A plurality of point light sources for illuminating a portion, imaging means for imaging an anterior segment illuminated by the point light sources, and corneal measuring means for detecting a position of a corneal reflection image of the point light source and measuring a corneal shape An optometry apparatus comprising:
JP2000050128A 2000-02-25 2000-02-25 Ophthalmoscopy device Pending JP2001238853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050128A JP2001238853A (en) 2000-02-25 2000-02-25 Ophthalmoscopy device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050128A JP2001238853A (en) 2000-02-25 2000-02-25 Ophthalmoscopy device

Publications (1)

Publication Number Publication Date
JP2001238853A true JP2001238853A (en) 2001-09-04

Family

ID=18571956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050128A Pending JP2001238853A (en) 2000-02-25 2000-02-25 Ophthalmoscopy device

Country Status (1)

Country Link
JP (1) JP2001238853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961121A (en) * 2011-08-30 2013-03-13 欧科路光学器械有限公司 Ophthalmological analysis apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102961121A (en) * 2011-08-30 2013-03-13 欧科路光学器械有限公司 Ophthalmological analysis apparatus and method
JP2013056152A (en) * 2011-08-30 2013-03-28 Oculus Optikgeraete Gmbh Ophthalmic analytical instrument and method
US8899753B2 (en) 2011-08-30 2014-12-02 Oculus Optikgeraete Gmbh Ophthalmological analysis instrument and method

Similar Documents

Publication Publication Date Title
US8908917B2 (en) Eye tracking apparatus including indication of eye direction
US6116738A (en) Corneal topographer with central and peripheral measurement capability
JPS6153052B2 (en)
JP4535580B2 (en) Ophthalmic equipment
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JP2001112715A (en) Eye examination device
JP2002200045A (en) Ophthalmic instrument
JP2000135200A (en) Optometric apparatus
JP3206936B2 (en) Eye refractometer
JP2001238853A (en) Ophthalmoscopy device
JP4745550B2 (en) Corneal measuring device
JP2001231754A (en) Ophthalmometer
JPH0898807A (en) Ophthalmological device
JPH09276224A (en) Ophthalmic device
JPH0654807A (en) Ophthalmic device
JPS6117494B2 (en)
JP2000070222A (en) Eye examination device
JP4838428B2 (en) Ophthalmic equipment
JP4700780B2 (en) Ophthalmic examination equipment
JP3200236B2 (en) Keratometer
JP4880829B2 (en) Corneal shape measuring device
JP2001340297A (en) Optometric device
JP3510312B2 (en) Eye refractive power measuring device
JPH105196A (en) Eye discriminating device
JPS6219851B2 (en)