JP2001237227A - Plasma treatment equipment - Google Patents

Plasma treatment equipment

Info

Publication number
JP2001237227A
JP2001237227A JP2000046514A JP2000046514A JP2001237227A JP 2001237227 A JP2001237227 A JP 2001237227A JP 2000046514 A JP2000046514 A JP 2000046514A JP 2000046514 A JP2000046514 A JP 2000046514A JP 2001237227 A JP2001237227 A JP 2001237227A
Authority
JP
Japan
Prior art keywords
gas
plasma
supply pipe
gas supply
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046514A
Other languages
Japanese (ja)
Inventor
Toshinori Segawa
利規 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000046514A priority Critical patent/JP2001237227A/en
Publication of JP2001237227A publication Critical patent/JP2001237227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide plasma treatment equipment wherein the so-called self bias phenomenon is maintained for evading abnormal discharge state of plasma gas at a gas jetting port and obtaining desired sputter effect, and control of a deposition film which is especially regarded as important in etching of an oxide film can be effectively performed. SOLUTION: A choke member 61 for choking a gas channel is inserted in the vicinity of a gas jetting port 13 of a gas supply pipe 51, a pressing member 71 is screwed in the upper stream side of the pipe 51, and the choke member 61 is stabilized. Trenches or holes which are turned into gas channels are formed on the surfaces or the insides of the choke member 61 and the pressing member 71. Consequently, the gas channel can be narrowly formed, so that plasma which is drawn by application of bias can be restrained, an abnormal discharge state at the gas jetting port can be prevented, the so-called self bias phenomenon is maintained, and a deposition film can be effectively controlled. It is unnecessary to narrow the gas supply pipe itself exceeding the needed level, and work is very easy since small trenches and holes are only formed on the choke member or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,ガス供給管に接続
されたガス吐出口から容器内に所定のガスを導入し,電
極に高周波を印加して上記ガスより上記容器内部にプラ
ズマを形成し,上記容器内部で且つ上記電極に対向する
位置に配された被処理物にプラズマ処理を施すプラズマ
処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method in which a predetermined gas is introduced into a container from a gas discharge port connected to a gas supply pipe, a high frequency is applied to an electrode, and a plasma is formed inside the container from the gas. The present invention relates to a plasma processing apparatus for performing a plasma process on an object to be processed disposed inside the container and at a position facing the electrode.

【0002】[0002]

【従来の技術】エッチング等のプラズマ処理に用いられ
るプラズマ処理装置としては,例えば図8に示すものが
ある。図8に示すプラズマ処理装置Z0は,不活性ガス
(Arなど)のイオンを供給するプラズマ発生空間1
と,反応性ガス(C48 などの反応ラジカルを形成す
るガス)を解離するプラズマ処理空間2とが,互いに隣
接して連通可能に形成されている。上記プラズマ発生空
間1は,ドーズ量が制御された低導電性Siで構成され
たプラズマ発生キャビティ3に同心に彫り込まれた複数
の環状溝として形成されている。また,上記プラズマ発
生キャビティ3の下端部には,高ドープの高導電性Si
で構成され,上記プラズマ発生空間1を挟むように環状
に形成されたアノード4が接着されている。また,上記
ベース構造物31は,同心円状の複数のガス溜まり溝5
が形成されたアルミ製のガス溜まり構造物(以下,ガス
チャネル)6の下面側に固定されている。ここで,不活
性ガスが供給されるガス溜まり溝5aは上記プラズマ発
生空間1の上方に形成された供給口13と,反応性ガス
が供給されるガス溜まり溝5bは上記アノード4に形成
された供給口14と,上記ベース構造物31及び上記プ
ラズマ発生キャビティ3内を通してそれぞれ連通されて
おり,適切なピッチで形成された上記供給口13,14
から各空間内に均一に噴射される。更に,上記ガスチャ
ネル6の上面側には,内部にフロロカーボン系の絶縁性
冷媒が循環されるアルミ製の冷却板8が,大気圧側(外
側)からボルトにて結合されている。
2. Description of the Related Art FIG. 8 shows a plasma processing apparatus used for plasma processing such as etching. The plasma processing apparatus Z0 shown in FIG. 8 is a plasma generation space 1 for supplying ions of an inert gas (such as Ar).
A plasma processing space 2 that dissociates a reactive gas (a gas that forms a reactive radical such as C 4 F 8 ) is formed adjacent to each other and can communicate with each other. The plasma generation space 1 is formed as a plurality of annular grooves concentrically engraved in a plasma generation cavity 3 made of low-conductivity Si whose dose is controlled. The lower end of the plasma generation cavity 3 is provided with highly doped highly conductive Si.
The anode 4 is formed in a ring shape and sandwiches the plasma generation space 1. The base structure 31 has a plurality of concentric gas reservoir grooves 5.
Is fixed to the lower surface side of an aluminum gas reservoir structure (hereinafter referred to as a gas channel) 6 in which is formed. Here, the gas reservoir groove 5a to which the inert gas is supplied is formed in the supply port 13 formed above the plasma generating space 1, and the gas reservoir groove 5b to which the reactive gas is supplied is formed in the anode 4. The supply ports 13 are communicated with the supply port 14 through the base structure 31 and the plasma generation cavity 3, respectively, and are formed at an appropriate pitch.
Is uniformly injected into each space. Further, an aluminum cooling plate 8 in which a fluorocarbon-based insulating refrigerant is circulated is connected to the upper surface side of the gas channel 6 by bolts from the atmospheric pressure side (outside).

【0003】また,上記ベース構造物31には,伝熱性
のロッド状構造物(以下,伝熱ロッド)32が上下方向
に貫通する形で埋め込まれている。上記プラズマ発生キ
ャビティ3及びアノード4は,上記ボルト7によって上
記ベース構造物31の上記伝熱ロッド32に対して固定
されており,冷却板8及びガスチャネル6との熱的な連
結が実現されている。即ち,上記プラズマ発生キャビテ
ィ3及びアノード4は,上記伝熱ロッド32を介して上
記冷却板8からの伝熱冷却が実現されている。また,上
記ボルト7の頭部は,反応影響とプラズマへの特異点影
響を低減するためにSiのカバー15で覆われている。
更に,上記ベース構造物31内には,RF電源10aに
接続されたアンテナ9が,上記プラズマ発生空間1の上
方に位置するように同心円状に埋設されている。更に,
上記伝熱ロッド32には,ロッドヒータ11と熱電対1
2とが,上記冷却板8及びガスチャネル6を介して且つ
該冷却板8及び該ガスチャネル6に接せずに挿入されて
おり,プラズマ発生の強弱やプラズマ発生の有無(装置
停止時を含む)といった熱負荷の変化に対する,より安
定した温度制御を可能としている。尚,上記アルミナ製
のベース構造物31自体は,構造的な真空支持部材であ
り,冷却には直接寄与しない。以上のように,冷却板
8,ガスチャネル6,ベース構造物31,プラズマ発生
キャビティ3,及びアノード4は,ボルト等によって互
いに結合されてルーフ20を形成している。上記ルーフ
20は,チャンバ21の上方に形成された開口部を塞ぐ
ように,上記チャンバ21の上縁部に形成されたルーフ
ベース22上に載置され,更に絶縁性のルーフ押さえ2
3によって固定されている。つまり,電気的には上記ア
ノード4,上記冷却板8,上記ガスチャネル6,上記伝
熱ロッド32等と,チャンバ21とでは分断されること
となる。また,上記冷却板8はRF電源10bに接続さ
れている一方,上記チャンバ21は接地されている。こ
れにより,上記アノード4は,上記冷却板8,上記ガス
チャネル6,上記伝熱ロッド32,上記ボルト7を介し
てRF電位が付与されるとともに,チャンバ21には接
地電位が付与されることとなる。また,上記プラズマ処
理空間2は,上記アノード4と,ウェハなどの被処理物
Wが載置され,RF電源25に接続されるカソード24
とで挟まれた領域として形成されている。
Further, a heat conductive rod-shaped structure (hereinafter referred to as a heat transfer rod) 32 is embedded in the base structure 31 so as to penetrate vertically. The plasma generating cavity 3 and the anode 4 are fixed to the heat transfer rod 32 of the base structure 31 by the bolts 7, and a thermal connection between the cooling plate 8 and the gas channel 6 is realized. I have. That is, the heat transfer cooling from the cooling plate 8 to the plasma generating cavity 3 and the anode 4 is realized through the heat transfer rod 32. The head of the bolt 7 is covered with a Si cover 15 to reduce the effect of reaction and the effect of singularities on plasma.
Further, an antenna 9 connected to an RF power supply 10a is buried concentrically in the base structure 31 so as to be located above the plasma generation space 1. Furthermore,
The heat transfer rod 32 includes a rod heater 11 and a thermocouple 1.
2 is inserted through the cooling plate 8 and the gas channel 6 and not in contact with the cooling plate 8 and the gas channel 6, and the strength of plasma generation and the presence or absence of plasma generation (including when the apparatus is stopped) ) Enables more stable temperature control in response to changes in heat load. The alumina base structure 31 itself is a structural vacuum support member and does not directly contribute to cooling. As described above, the cooling plate 8, the gas channel 6, the base structure 31, the plasma generation cavity 3, and the anode 4 are connected to each other by bolts or the like to form the roof 20. The roof 20 is placed on a roof base 22 formed at the upper edge of the chamber 21 so as to cover an opening formed above the chamber 21.
3 fixed. That is, the chamber 21 is electrically separated from the anode 4, the cooling plate 8, the gas channel 6, the heat transfer rod 32, and the like. The cooling plate 8 is connected to the RF power source 10b, while the chamber 21 is grounded. Thereby, the anode 4 is applied with the RF potential through the cooling plate 8, the gas channel 6, the heat transfer rod 32, and the bolt 7, and the ground potential is applied to the chamber 21. Become. In the plasma processing space 2, the anode 4 and the workpiece W such as a wafer are placed and a cathode 24 connected to an RF power supply 25 is placed.
And is formed as a region sandwiched between.

【0004】以上のようなプラズマ処理装置Z0の動作
を簡単に説明する。プラズマ発生空間1内に不活性ガス
が供給され,RF電源10aが作動されて上記アンテナ
9からRF交番磁界が印加されると,同心円状の溝形状
に構成された上記プラズマ発生空間1内において,電子
が誘導結合し,高密度プラズマが形成される(ICP:
Inductive Coupled Plasma)。その一方,高速電子は曲
率ある壁面に吸収消滅され,比較的低温で高密度の不活
性ガスプラズマ(HDP:High Density Plasma )が形
成される。このプラズマ発生空間1内で発生したプラズ
マは,上記プラズマ処理空間2に拡散する。更に,RF
電源23を作動させると,プラズマ処理空間2にもカソ
ード24及びアノード4を介してRF電界が印加され,
容量結合(CCP:Charge Coupled Plasma )によるプ
ラズマ発生が行われ,供給口14から供給された反応性
ガスが励起・解離され,プラズマ処理空間2内に載置さ
れたウェハWは高密度プラズマより供給される不活性ガ
スのイオンと上記反応性ラジカルとのバランスによる反
応性イオンアシスト反応に基づきエッチング処理され
る。
[0004] The operation of the above-described plasma processing apparatus Z0 will be briefly described. When an inert gas is supplied into the plasma generation space 1 and the RF power supply 10a is operated to apply an RF alternating magnetic field from the antenna 9, the plasma generation space 1 having a concentric groove shape is Electrons are inductively coupled to form a high-density plasma (ICP:
Inductive Coupled Plasma). On the other hand, the high-speed electrons are absorbed and annihilated by the curved wall surface, and a high-density inert gas plasma (HDP: High Density Plasma) is formed at a relatively low temperature. The plasma generated in the plasma generation space 1 diffuses into the plasma processing space 2. In addition, RF
When the power supply 23 is operated, an RF electric field is also applied to the plasma processing space 2 via the cathode 24 and the anode 4,
Plasma is generated by capacitive coupling (CCP), the reactive gas supplied from the supply port 14 is excited and dissociated, and the wafer W placed in the plasma processing space 2 is supplied from the high-density plasma. The etching process is performed based on a reactive ion assist reaction based on a balance between the ions of the inert gas and the reactive radicals.

【0005】[0005]

【発明が解決しようとする課題】ところで,一般に,酸
化膜のエッチングにおいては,C48 などデポ性のガ
スを使用し,ウェハ上へのデポ膜堆積とイオンアタック
によるイオンアシスト反応を利用し,垂直エッチングを
行うようにしている。しかしながら,デポ性のガスを使
用するがゆえに,エッチングが行われる一方でデポジシ
ョンも行われることとなる。このため,ウェハ以外のプ
ラズマ被爆部にデポ膜が形成され,このデポ膜はプロセ
スシフト(エッチングレートやレジスト選択比などのプ
ロセス性能が処理時間に呼応してズレていく現象)やパ
ーティクル発生源となり問題となっている。従って,デ
ポ膜制御は酸化膜エッチングにおいて極めて重要な課題
であり,温度条件,表面粗度などの特性を変えたり,毎
回アッシングによるデポ膜排除を行うなどの対策が採ら
れている。例えば,ICPプラズマルーフにバイアス高
周波を印加(バイアスRF印加)してルーフに付着する
デポ膜をスパッタ除去することで,付着膜を除去すると
ともに付着膜をウェハ上に堆積させ(ルーフ部からスパ
ッタされた膜は一部排気されるものの,ウェハ上に供給
されウェハ上のデポ膜形成に有効利用される),より安
定し保護膜も有効活用できる効果も望める。
By the way, generally, in the etching of an oxide film, a deposition gas such as C 4 F 8 is used, and the deposition of a deposition film on a wafer and an ion-assisted reaction by ion attack are used. , Vertical etching is performed. However, since a deposition gas is used, etching is performed while deposition is performed. For this reason, a deposit film is formed on the plasma-exposed area other than the wafer, and this deposit film becomes a source of process shift (a phenomenon in which process performance such as etching rate and resist selectivity shifts in response to processing time) and particles. It is a problem. Therefore, the control of the deposition film is a very important issue in the etching of the oxide film, and measures such as changing the characteristics such as the temperature condition and the surface roughness and removing the deposition film by ashing each time are taken. For example, by applying a high-frequency bias (applying a bias RF) to the ICP plasma roof and sputter-removing the deposition film adhering to the roof, the adhesion film is removed and the adhesion film is deposited on the wafer (sputtered from the roof portion). Although the film is partially exhausted, it is supplied onto the wafer and is effectively used for forming a deposited film on the wafer).

【0006】ところで,先のバイアスRF印加では,所
望のスパッタ効果を発生させるために,膜をアタックす
るイオンにある程度以上のエネルギーを与えることが必
要とされ,このエネルギー供給には,RF回路で付与さ
れるブロッキングコンデンサを用いて発生するセルフバ
イアス効果(後述)が必要である。従来は,ルーフバイ
アスRFパワーを増大していくと,ガス吐出口からプラ
ズマジェットが発生し,1)Vdcの低下,2)Siル
ーフの破壊,を引き起こし,所定の運転が出来ない問題
があった。この2点の問題について以下詳説する。
By the way, in the above-mentioned bias RF application, it is necessary to give a certain amount of energy to ions attacking the film in order to generate a desired sputtering effect, and this energy is supplied by an RF circuit. A self-bias effect (described later) generated by using a blocking capacitor is required. Conventionally, when the roof bias RF power is increased, a plasma jet is generated from the gas discharge port, causing 1) reduction of Vdc and 2) destruction of the Si roof, and there has been a problem that a predetermined operation cannot be performed. . The two problems will be described in detail below.

【0007】まず,Vdcの低下についてである。一般
にはグロー放電RFプラズマでは,回路にブロッキング
コンデンサを有し,トータル電流(電子とイオンの単位
時間当たりでの移動電荷総和)は0である必要条件と,
電子とイオンの質量差異による移動度の違いから,Vd
cと呼ばれるマイナス電位がセルフバイアス効果として
発生し,スパッタ効率が制御される。尚,スパッタ量
は,「Vdc×イオン電流」で決まる総アタックエネル
ギー量に依存し,スパッタ効率は上記Vdcに依存す
る。ルーフ電極は,適当な導電性を付与したSiにて形
成され,ICP形成に必要なRF磁界をキャビティ部に
形成するとともに,バイアス印加の電極としても働く。
プロセス処理に必要なガス(Ar,C48 ,CO,O
2 など)は,ルーフ構造物に形成されたガス吐出口より
供給され,キャビティ部及びキャビティボトム部(=対
向電極面)にICPとCCPがコンバインされたHDP
が形成される。このガス供給口は,φ1〜2mm程度の
穴であり,ルーフ電極の上流に形成されたガスチャネル
により配分され多数の穴から均等なガス流量分配でガス
を導入している。プラズマ形成において,ICPパワ
ー,CCPパワーを増大するに伴い,プラズマ密度は上
昇する。ICPとCCPのパワーバランス(ルーフバイ
アスRFパワー及びルーフICPパワー)に対するVd
cの変化は,図9に示すとおりであり,ICPでのプラ
ズマ密度増大(低温プラズマ)では,全体のプラズマ密
度上昇でのプラズマ抵抗が低下してVdcは小さくな
る。一方,直接バイアス効果を引き起こすRF電界を印
加するCCP用RFパワーを増加すると,パワー印加に
伴いCCP成分が増加してプラズマ密度が上がる一方,
より多くのプラズマ電流を流すためにRF電界(Vp−
p)も増大しこれに追従してVdcも増加する。
First, the reduction of Vdc will be described. Generally, in a glow discharge RF plasma, there is a requirement that a blocking capacitor is provided in a circuit, and a total current (sum of mobile charges of electrons and ions per unit time) is 0;
From the difference in mobility due to the difference in mass between electrons and ions, Vd
A negative potential called c is generated as a self-bias effect, and the sputtering efficiency is controlled. The amount of sputtering depends on the total attack energy determined by “Vdc × ion current”, and the sputtering efficiency depends on Vdc. The roof electrode is formed of Si having an appropriate conductivity, and forms an RF magnetic field necessary for ICP formation in the cavity, and also functions as an electrode for bias application.
Gases required for the process (Ar, C 4 F 8 , CO, O
2 ) is supplied from the gas discharge port formed in the roof structure, and the HDP in which ICP and CCP are combined in the cavity and bottom of the cavity (= facing electrode surface)
Is formed. The gas supply port is a hole having a diameter of about 1 to 2 mm, is distributed by a gas channel formed upstream of the roof electrode, and gas is introduced from many holes at a uniform gas flow rate distribution. In plasma formation, the plasma density increases as the ICP power and the CCP power increase. Vd for ICP and CCP power balance (Roof bias RF power and Roof ICP power)
The change in c is as shown in FIG. 9. When the plasma density increases (low-temperature plasma) in the ICP, the plasma resistance decreases as the whole plasma density increases, and Vdc decreases. On the other hand, when the RF power for CCP for applying the RF electric field causing the direct bias effect is increased, the CCP component increases with the power application, and the plasma density increases.
RF electric field (Vp-
p) also increases, and Vdc increases accordingly.

【0008】しかし,より高性能のエッチングを狙い,
ルーフICPパワー,バイススRFパワーを増大し高密
度プラズマにしていくと,上記のとおり,ガス吐出口1
3,14にプラズマジェットが発生し(図10),Vd
c低下が発生する。これは,あまりに高いプラズマ密度
状態では,バイアスにより引き込まれる電子が多量にな
り,ある閾値を超えると,ガス吐出口が「ホローカソー
ド状態(バイアス印加状態にてマイナス電位に囲まれた
電極内に電子が閉じ込められ,この部分が非常に高いプ
ラズマ密度になる)」に移行し,更に,ガス穴部は圧力
も高くなるため,よりアーク状態(イオン温度がグロー
放電に比べ大幅に上昇)に変化し易くなっていることか
ら発生する現象と考えられる。その結果,イオン移動度
が増大しイオン電流成分が増大することでVdcが低下
する,乃至は,本来,ルーフ電極全体に掛かるべきVd
cが局部のアーク放電部であるガス吐出口に集中してし
まい,ブロッキングコンデンサ部の計測Vdcの発生が
消失する(ガス吐出口近傍のみにVdcが掛かり,ブロ
ッキングコンデンサ部でVdcが発生しなくなる)こと
で所定の状態を形成できなくなってしまったものと考え
られた。次いで,ルーフ電極の破壊についてである。先
のプラズマジェット状態では,ガス吐出口近傍でスパッ
タ現象が発生し,ガス吐出口が広がり,よりアーク現象
が発生し易く変化してしまう。また,ここでの局部加熱
が増大して,熱負荷での局部膨張,特には表面部分での
局部膨張にて異常応力が発生して脆性材料のSi電極が
割れてしまう状態に至ってしまうと考えられていた。
However, in order to achieve higher performance etching,
As the roof ICP power and the vice RF power are increased to produce high-density plasma, the gas outlet 1
Plasma jets were generated on 3, 14 (Fig. 10) and Vd
c reduction occurs. This is because, when the plasma density is too high, a large amount of electrons are attracted by the bias, and when a certain threshold is exceeded, the gas discharge port becomes “hollow cathode state (electrons in the electrode surrounded by the negative potential under the bias applied state. Is confined, and this part has a very high plasma density). ”In addition, since the pressure in the gas hole is also high, the state changes to a more arc state (ion temperature rises significantly compared to glow discharge). It is considered to be a phenomenon caused by the fact that it becomes easier. As a result, the ion mobility increases and the ion current component increases, so that Vdc decreases, or Vd, which should originally be applied to the entire roof electrode, is reduced.
c concentrates on the gas discharge port which is a local arc discharge part, and the generation of the measurement Vdc of the blocking capacitor part disappears (Vdc is applied only in the vicinity of the gas discharge port, and Vdc does not occur in the blocking capacitor part). It was considered that the predetermined state could not be formed. Next, the destruction of the roof electrode will be described. In the state of the plasma jet, a sputter phenomenon occurs near the gas discharge port, the gas discharge port widens, and the arc phenomenon is more likely to occur. In addition, it is considered that the local heating here increases, and a local expansion under a thermal load, particularly a local expansion at a surface portion, causes abnormal stress to be generated, and the Si electrode of a brittle material is broken. Had been.

【0009】ここで,上記のガス吐出口でのプラズマジ
ェット状態,即ち異常アーキング発生を抑制するには,
バイアス印加にて引き込まれるプラズマを抑制する(火
種を与えない)ことがポイントとなる。その方法とし
て,ガス吐出口としてφ0.1mm程度の細穴を形成す
る方法もあるが,厚5〜30mmもの長穴を実際に加工す
ることは極めて困難であり,現実的でない。また,放電
逆流防止には,フィルタ部材を埋め込む方法が知られて
いるが,電極部は直接高温に晒され,イオンアタックを
受け高温になることから,樹脂材料は使用できない。セ
ラミックスフィルタも有効な部材であるが,フィルタ材
料が熱変形で粉(パーティクル)を吹出し,実際のプロ
セスには使用できない。また,非導電性ゆえにチャージ
アップ影響も懸念される。本発明は上記事情に鑑みてな
されたものであり,その目的とするところは,プラズマ
ガスのガス吐出口での異常な放電状態を回避し,所望の
スパッタ効果を得るため,いわゆるセルフバイアス現象
を維持し,特に酸化膜エッチングにて重要視されるデポ
膜制御を効率よく行うことのできるプラズマ処理装置を
提供することである。
Here, in order to suppress the plasma jet state at the gas discharge port, that is, the occurrence of abnormal arcing,
The point is to suppress the plasma drawn in by the bias application (do not give a fire). As a method therefor, there is a method of forming a fine hole having a diameter of about 0.1 mm as a gas discharge port. However, it is extremely difficult to actually process a long hole having a thickness of 5 to 30 mm, which is not practical. In order to prevent discharge backflow, a method of embedding a filter member is known. However, a resin material cannot be used because the electrode portion is directly exposed to a high temperature and is subjected to an ion attack to a high temperature. A ceramic filter is also an effective member, but the filter material blows out powder (particles) due to thermal deformation and cannot be used in an actual process. In addition, charge-up effects may occur due to non-conductivity. The present invention has been made in view of the above circumstances, and a purpose thereof is to avoid a so-called self-bias phenomenon in order to avoid an abnormal discharge state at a gas discharge port of a plasma gas and obtain a desired sputtering effect. An object of the present invention is to provide a plasma processing apparatus that can maintain and efficiently control a deposition film, which is particularly important in oxide film etching.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に,本発明は,ガス供給管に接続されたガス吐出口から
容器内に所定のガスを導入し,電極に高周波を印加して
上記ガスより上記容器内部にプラズマを形成し,上記容
器内部で且つ上記電極に対向する位置に配された被処理
物にプラズマ処理を施すプラズマ処理装置において,上
記ガス供給管の上記ガス吐出口近傍に,ガス流路を狭め
る導電性の絞り部材が挿着されてなることを特徴とする
プラズマ処理装置として構成されている。これにより,
ガス流路を狭く形成できるため,バイアス印加にて引き
込まれるプラズマを抑制することができ,ガス吐出口で
の異常放電状態を防止でき,いわゆるセルフバイアス現
象を維持して効果なデポ膜制御を行うことが可能とな
る。また,ガス供給管そのものを必要以上に細くする必
要がなく,絞り部材に小さな溝などを形成すればよいた
め,加工は極めて容易である。更に,上記絞り部材を,
上記容器の外側方向から上記ガス供給管に挿着するよう
に構成し,上記絞り部材の外側に,上記絞り部材の抜け
を防止する抑え部材を取り付けることが望ましい。この
抑え部材としては,上記ガス供給管に螺着するものや,
或いは上記ガス供給管の径方向に押圧して固定される弾
性部材,例えば割りピンやゴムなどを用いることができ
る。
In order to achieve the above-mentioned object, the present invention introduces a method in which a predetermined gas is introduced into a container from a gas discharge port connected to a gas supply pipe, and a high frequency is applied to an electrode. In a plasma processing apparatus for forming a plasma from a gas inside the container and performing a plasma process on an object to be processed disposed inside the container and at a position facing the electrode, a plasma processing apparatus is provided near the gas discharge port of the gas supply pipe. The plasma processing apparatus is characterized in that a conductive throttle member for narrowing the gas flow path is inserted. This gives
Since the gas flow path can be formed narrow, plasma drawn in by bias application can be suppressed, abnormal discharge state at the gas discharge port can be prevented, and effective deposition film control can be performed while maintaining the so-called self-bias phenomenon. It becomes possible. Further, since the gas supply pipe itself does not need to be made thinner than necessary, and a small groove or the like may be formed in the throttle member, the processing is extremely easy. Further, the above-mentioned drawing member is
It is preferable that the gas supply pipe be inserted into the gas supply pipe from the outside of the container, and a restraining member for preventing the throttle member from coming off is attached to the outside of the throttle member. As the holding member, a member screwed to the gas supply pipe,
Alternatively, an elastic member pressed and fixed in the radial direction of the gas supply pipe, such as a split pin or rubber, can be used.

【0011】[0011]

【発明の実施の形態】以下添付図面を参照して,本発明
の実施の形態及び実施例につき説明し,本発明の理解に
供する。尚,以下の実施の形態及び実施例は,本発明を
具体化した一例であって,本発明の技術的範囲を限定す
る性格のものではない。ここに,図1は本発明の実施の
形態に係るプラズマ処理装置Z1の特徴部分であるガス
供給管の周辺部分の概略構成を示す図,図2は図1にお
けるA矢視図,図3は絞り部材61及び抑え部材71の
斜視図,図4は図2において他の絞り部材61′を用い
た例を示す図,図5は上記絞り部材61′の斜視図,図
6は図2において更に他の絞り部材61″と抑え部材7
1′とを用いた例を示す図,図7は上記絞り部材61″
及び抑え部材71′の斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention. Here, FIG. 1 is a diagram showing a schematic configuration of a peripheral portion of a gas supply pipe which is a characteristic portion of the plasma processing apparatus Z1 according to the embodiment of the present invention, FIG. FIG. 4 is a perspective view of the diaphragm member 61 and the holding member 71, FIG. 4 is a view showing an example using another diaphragm member 61 'in FIG. 2, FIG. 5 is a perspective view of the diaphragm member 61', and FIG. Other diaphragm member 61 ″ and holding member 7
FIG. 7 shows an example using the aperture member 1 '.
And a perspective view of a holding member 71 '.

【0012】本実施の形態に係るプラズマ処理装置Z1
は,その基本構成については上記従来のプラズマ処理装
置とほぼ同様である。本プラズマ処理装置Z1が従来の
プラズマ処理装置と異なるのは,図1に示すように,プ
ラズマ発生キャビティ3内に形成され,ガス吐出口1
3,14にそれぞれ連通するように形成されたガス供給
管51,52内に,導電性の絞り部材61が挿着されて
いる点である。上記ガス供給管51,52は,それぞ
れ,ガス吐出口13,14と同径の小径部51a,52
aと,その上流側に形成された大径部51b,52bと
で構成されている。また,上記絞り部材61,62も,
上記ガス供給管51,52の形状に合わせて,小径部6
1a,62aと大径部61b,62bとで構成されてい
る。絞り部材61,62は,それぞれの小径部61a,
62aの長さが異なるのみで,その他の形状はほぼ同じ
である。更に,上記ガス供給管51,52に挿着された
上記絞り部材61,62の更に上流側には,抑え部材7
1,72が螺着されている。以下,ガス供給管51側の
絞り部材61及び抑え部材71の構成について更に詳し
く説明するが,ガス供給管52側についても全く同様で
ある。
[0012] Plasma processing apparatus Z1 according to the present embodiment
Is basically the same as the above-described conventional plasma processing apparatus. The difference between the present plasma processing apparatus Z1 and the conventional plasma processing apparatus is that, as shown in FIG.
The point is that the conductive throttle member 61 is inserted into the gas supply pipes 51 and 52 formed so as to communicate with the gas supply pipes 3 and 14, respectively. The gas supply pipes 51 and 52 have small diameter portions 51a and 52 having the same diameter as the gas discharge ports 13 and 14, respectively.
a and large-diameter portions 51b and 52b formed on the upstream side. Also, the aperture members 61 and 62 are
According to the shape of the gas supply pipes 51 and 52, the small diameter portion 6
1a, 62a and large diameter portions 61b, 62b. The aperture members 61 and 62 are respectively provided with small diameter portions 61a,
Other shapes are almost the same except for the length of 62a. Further, a holding member 7 is further upstream of the throttle members 61 and 62 inserted into the gas supply pipes 51 and 52.
1, 72 are screwed. Hereinafter, the configurations of the throttle member 61 and the holding member 71 on the gas supply pipe 51 side will be described in more detail, but the same applies to the gas supply pipe 52 side.

【0013】図2は,図1に示す絞り部材61及び抑え
部材71を矢印A方向に見たものである。また,図3
は,上記絞り部材61及び抑え部材71の斜視図であ
る。尚,以下に示す寸法は,あくまでも図1に示すプラ
ズマ発生キャビティ3の最薄部の厚さが6mm程度の場
合を想定した場合の一例にすぎない。図1〜図3に示す
ように,絞り部材61の小径部61aは,ガス供給管5
1の小径部51a(例えばφ3〜4mm程度)よりも若
干小径(例えば隙間が0.1〜0.3mmとなる程度)
に形成されている。また,絞り部材61の大径部61b
は,ガス供給管51の大径部51bと略同径で,その周
上に2か所の切欠部81a,81b(例えば最大切欠幅
0.3mm程度)が形状されており,上記大径部61b
の底面(上記小径部61aが突出している面)には,上
記小径部61aの両側に上記切欠部81a,81bに連
通する切欠部82a,82b(例えば切欠深さ0.2m
m程度)が形成されている。更に,上記大径部61bの
上面には,上記切欠部81a,81bを接続するように
切欠部83(例えば切欠深さ0.1〜0.3mm程度)
が形成されている。また,上記抑え部材71には,その
中心に軸方向の貫通孔91(例えばφ1mm程度)が形
成されている。
FIG. 2 shows the throttle member 61 and the holding member 71 shown in FIG. Also, FIG.
FIG. 4 is a perspective view of the aperture member 61 and the holding member 71. Note that the dimensions shown below are merely examples assuming that the thickness of the thinnest portion of the plasma generating cavity 3 shown in FIG. 1 is about 6 mm. As shown in FIGS. 1 to 3, the small diameter portion 61 a of the throttle member 61 is connected to the gas supply pipe 5.
The diameter is slightly smaller (for example, the gap is 0.1 to 0.3 mm) than the small diameter portion 51a (for example, about 3 to 4 mm).
Is formed. Also, the large diameter portion 61b of the throttle member 61
Has substantially the same diameter as the large diameter portion 51b of the gas supply pipe 51, and has two notches 81a and 81b (for example, a maximum notch width of about 0.3 mm) formed on the circumference thereof. 61b
On the bottom surface (the surface on which the small diameter portion 61a protrudes), the notches 82a and 82b (for example, a notch depth of 0.2 m) communicating with the notches 81a and 81b are provided on both sides of the small diameter portion 61a.
m) is formed. Further, a notch 83 (for example, a notch depth of about 0.1 to 0.3 mm) is formed on the upper surface of the large diameter part 61b so as to connect the notches 81a and 81b.
Are formed. An axial through hole 91 (for example, about 1 mm) is formed at the center of the holding member 71.

【0014】以上のような構成により,図示しないガス
溜まり部から供給されてきたガスは,図3に太線矢印で
示すように,上記抑え部材71の貫通孔91→上記絞り
部材61の大径部61bに形成された切欠部83→81
a(若しくは81b)→82a(若しくは82b)→上
記絞り部材61の小径部61aとガス供給管51の小径
部51aとの隙間,を順次通過してガス吐出口13から
吐出される。このように,ガス流路を狭く形成すること
で,バイアス印加にて引き込まれるプラズマを抑制する
ことができるため,ガス吐出口での異常放電状態を防止
でき,いわゆるセルフバイアス現象を維持して効果なデ
ポ膜制御を行うことが可能となる。また,プラズマ発生
キャビティ3に形成するガス供給管51そのものは必要
以上に細くする必要がなく,絞り部材61や抑え部材7
1の側に溝などを形成すればよいため,加工は極めて容
易である。
With the above structure, the gas supplied from the gas reservoir (not shown) is supplied to the through-hole 91 of the holding member 71 and the large-diameter portion of the throttle member 61 as shown by the thick arrow in FIG. Notch 83 → 81 formed in 61b
a (or 81b) → 82a (or 82b) → discharged from the gas discharge port 13 sequentially passing through the gap between the small diameter portion 61a of the throttle member 61 and the small diameter portion 51a of the gas supply pipe 51. By forming the gas flow path narrow in this way, it is possible to suppress plasma drawn in by the application of a bias, thereby preventing an abnormal discharge state at the gas discharge port and maintaining the so-called self-bias phenomenon. It is possible to perform a proper deposition film control. Further, the gas supply pipe 51 itself formed in the plasma generation cavity 3 does not need to be made thinner than necessary.
Since a groove or the like may be formed on the first side, the processing is extremely easy.

【0015】尚,上記絞り部材61は,プラズマに被爆
されスパッタされるため,その材料としては,Si,高
温処理をしたカーボン(カーボン材の中でも、グラファ
イトは炭状でそのままでは構造的に脆いため,比較的構
造が強固なグラッシーカーボン)などが望ましい。ま
た,Wについても,十分に高純度(現時点では製造は困
難)なものであれば利用可能である。また,上記絞り部
材61は直接高温に晒されることとなるため,高温での
伸びによる破壊や摩擦によるパーティクル発生を防止す
る意味で,Si電極(プラズマ発生キャビティ3)と同
程度の線膨張係数を有する材料を用いることが望ましい
が,その観点からもSi,グラッシーカーボン等が最適
である。一方,上記抑え部材71に関しては,直接プラ
ズマに被爆しないため,基本的に高温耐久性があればよ
いが,ねじ込み固定されている関係で,Si電極と同程
度の線膨張率を有するWを用いることが望ましい。
Since the diaphragm member 61 is exposed to plasma and sputtered, it is made of Si, carbon treated at a high temperature (of carbon materials, graphite is charcoal and structurally brittle as it is). , Glassy carbon having a relatively strong structure) is desirable. Also, W can be used if it has sufficiently high purity (production is difficult at present). Further, since the aperture member 61 is directly exposed to a high temperature, a linear expansion coefficient similar to that of the Si electrode (plasma generation cavity 3) is used in order to prevent destruction due to elongation at a high temperature and generation of particles due to friction. Although it is desirable to use a material having Si, Si, glassy carbon, or the like is optimal from that viewpoint. On the other hand, since the holding member 71 is not directly exposed to the plasma, it should basically have high-temperature durability. However, since it is screwed and fixed, W having the same linear expansion coefficient as the Si electrode is used. It is desirable.

【0016】以上説明したように,本実施の形態に係る
プラズマ処理装置Z1によれば,極めて容易な加工によ
り,ガス吐出口での異常放電状態を回避して安定した放
電が得られるため,Vdc特性を把握の上,適当な条件
にICPとCCPのパワー比をバランスさせながら全体
プラズマ密度を上昇させることで,より効率的な保護デ
ポ膜活用できるとともにSi電極から発生するスパッタ
Siでの解離Fのスカベンジ効果も寄与し,(@LP−
TEOS酸化)高レート(>800nm/min)で高
レジスト選択比(>20)のストレートエッチングが実
現できる。
As described above, according to the plasma processing apparatus Z1 according to the present embodiment, a stable discharge can be obtained by extremely easy processing while avoiding an abnormal discharge state at the gas discharge port. By grasping the characteristics and increasing the overall plasma density while balancing the power ratio of ICP and CCP under appropriate conditions, more efficient use of the protective deposit film and dissociation F by sputter Si generated from the Si electrode can be achieved. Also contributes to the scavenging effect of (@ LP-
TEOS oxidation) Straight etching with a high rate (> 800 nm / min) and a high resist selectivity (> 20) can be realized.

【0017】[0017]

【実施例】上記絞り部材61及び抑え部材71は,その
全体形状やガス流路(溝など)の形状についてさまざま
な変形例が考えられる。絞り部材61の形状の他の例を
図4及び図5に示す。図4,図5に示す絞り部材61′
は,その小径部61a′がガス供給管51の小径部51
aと略同径若しくは若干小径に,また大径部61b′が
ガス供給管51の大径部51bと略同径にそれぞれ形成
されている。また,上記絞り部材61′には,一部の連
結部分84aを残して,中心軸を通るスリット84(例
えば幅0.1〜0.2mm程度)が形成されている。抑
え部材71については上記実施の形態と同様である。以
上のような構成により,図示しないガス溜まり部から供
給されてきたガスは,上記抑え部材71の貫通孔91→
上記絞り部材61′のスリット,を順次通過してガス吐
出口13から吐出され,上記実施の形態と同様の効果が
期待できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various modifications of the throttle member 61 and the holding member 71 are conceivable with respect to the overall shape and the shape of a gas flow path (such as a groove). Another example of the shape of the aperture member 61 is shown in FIGS. A throttle member 61 'shown in FIGS.
Is that the small diameter portion 61a 'is the small diameter portion 51 of the gas supply pipe 51.
The large diameter portion 61b 'is formed to have substantially the same diameter as or slightly smaller than the diameter a, and to have the same diameter as the large diameter portion 51b of the gas supply pipe 51. The aperture member 61 'is formed with a slit 84 (for example, about 0.1 to 0.2 mm in width) passing through the central axis, leaving a part of the connecting portion 84a. The holding member 71 is the same as in the above embodiment. With the above configuration, the gas supplied from the gas reservoir (not shown) is supplied to the through-hole 91 of the holding member 71 →
The gas is discharged from the gas discharge port 13 by sequentially passing through the slits of the throttle member 61 ', and the same effect as in the above embodiment can be expected.

【0018】また,上記抑え部材71は,上記のように
螺着により固定するものに限らず,例えば図6,図7に
示すように,上記ガス供給管51をその径方向に弾性的
に押圧して固定される割りピン71′(弾性部材の一
例)等を用いてもよい。このような割りピン71′を用
いる場合には,ガスは割りピン71′の周辺部から供給
されるため,絞り部材61″としては図6,図7に示す
ように大径部61b″の両端及びその下部に溝85a,
85b,86a,86bを形成した形状とすればよい。
上記実施の形態に係る絞り部材61を用いることも可能
である(但し溝83は不要)。その他,上記抑え部材と
して用いる弾性部材としては,例えば中心に貫通孔を形
成した耐熱ゴム等を用いることも可能である。尚,この
ように耐熱ゴム等を用いる場合においては,外部から十
分な冷却のできる構成とすることが望ましい。尚,ガス
吐出口を含む,プラズマに接触する電極電位の安定など
の観点から,上述の例のように上記抑え部材を用いて上
記絞り部材を固定させ,十分な電気接触をとることが望
ましいが,異常放電防止の観点からは上記抑え部材は必
ずしも必須の部材ではなく,省略することも可能であ
る。また,ガス供給管及び絞り部材の形状は,上記のよ
うに径を2段にしたものに限られるものではなく,例え
ば両者を上流側から下流側に向けて径が小さくなる例え
ば円錐形状とすることも可能である。
The pressing member 71 is not limited to the one fixed by screwing as described above. For example, as shown in FIGS. 6 and 7, the gas supply pipe 51 is elastically pressed in its radial direction. Alternatively, a split pin 71 ′ (an example of an elastic member) or the like that is fixed may be used. When such a split pin 71 'is used, the gas is supplied from the periphery of the split pin 71', so that both ends of the large-diameter portion 61b "are used as the throttle member 61" as shown in FIGS. And a groove 85a in the lower part thereof,
What is necessary is just to make the shape which formed 85b, 86a, 86b.
It is also possible to use the aperture member 61 according to the above-described embodiment (however, the groove 83 is unnecessary). In addition, as the elastic member used as the pressing member, for example, heat-resistant rubber having a through hole formed at the center can be used. When heat-resistant rubber or the like is used as described above, it is desirable to adopt a configuration that allows sufficient cooling from the outside. From the viewpoint of stabilization of the potential of the electrode in contact with the plasma, including the gas discharge port, it is desirable that the restricting member be fixed by using the suppressing member and sufficient electric contact be made as in the above-described example. From the viewpoint of preventing abnormal discharge, the suppressing member is not always an essential member, and may be omitted. Further, the shapes of the gas supply pipe and the throttle member are not limited to those having the two-stage diameter as described above. For example, both are formed in a conical shape in which the diameter decreases from the upstream side to the downstream side. It is also possible.

【0019】[0019]

【発明の効果】以上説明したように,本発明は,ガス供
給管に接続されたガス吐出口から容器内に所定のガスを
導入し,電極に高周波を印加して上記ガスより上記容器
内部にプラズマを形成し,上記容器内部で且つ上記電極
に対向する位置に配された被処理物にプラズマ処理を施
すプラズマ処理装置において,上記ガス供給管の上記ガ
ス吐出口近傍に,ガス流路を狭める導電性の絞り部材が
挿着されてなることを特徴とするプラズマ処理装置とし
て構成されているため,バイアス印加にて引き込まれる
プラズマを抑制することができ,ガス吐出口での異常放
電状態を防止でき,いわゆるセルフバイアス現象を維持
して効果なデポ膜制御を行うことが可能となる。また,
ガス供給管そのものを必要以上に細くする必要がなく,
絞り部材に小さな溝などを形成すればよいため,加工は
極めて容易である。更に,上記絞り部材を,上記容器の
外側方向から上記ガス供給管に挿着するように構成し,
上記絞り部材の外側に,上記絞り部材の抜けを防止し,
十分な電気接触をとった抑え部材を取り付けることが望
ましい。
As described above, according to the present invention, a predetermined gas is introduced into a container from a gas discharge port connected to a gas supply pipe, a high frequency is applied to an electrode, and the gas is introduced into the container from the gas. In a plasma processing apparatus for forming plasma and performing plasma processing on an object to be processed disposed inside the container and at a position facing the electrode, a gas flow path is narrowed near the gas discharge port of the gas supply pipe. The plasma processing system is characterized by the insertion of a conductive diaphragm member, which can suppress plasma drawn in by bias application and prevent abnormal discharge states at gas discharge ports. As a result, effective deposition film control can be performed while maintaining the so-called self-bias phenomenon. Also,
There is no need to make the gas supply pipe itself thinner than necessary.
Since it is sufficient to form a small groove or the like in the aperture member, processing is extremely easy. Further, the throttle member is configured to be inserted into the gas supply pipe from the outside of the container,
Outside of the aperture member, preventing the aperture member from coming off,
It is desirable to attach a restraining member with sufficient electrical contact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態に係るプラズマ処理装置
Z1の特徴部分であるガス供給管の周辺部分の概略構成
を示す図。
FIG. 1 is a diagram showing a schematic configuration of a peripheral portion of a gas supply pipe which is a characteristic portion of a plasma processing apparatus Z1 according to an embodiment of the present invention.

【図2】 図1におけるA矢視図。FIG. 2 is a view taken in the direction of arrow A in FIG. 1;

【図3】 絞り部材61及び抑え部材71の斜視図。FIG. 3 is a perspective view of a diaphragm member 61 and a holding member 71.

【図4】 図2において他の絞り部材61′を用いた例
を示す図。
FIG. 4 is a diagram showing an example in which another aperture member 61 'is used in FIG.

【図5】 上記絞り部材61′の斜視図。FIG. 5 is a perspective view of the aperture member 61 '.

【図6】 図2において更に他の絞り部材61″と抑え
部材71′とを用いた例を示す図。
FIG. 6 is a diagram showing an example in which a further stop member 61 ″ and a holding member 71 ′ are used in FIG. 2;

【図7】 上記絞り部材61″及び抑え部材71′の斜
視図。
FIG. 7 is a perspective view of the aperture member 61 ″ and a holding member 71 ′.

【図8】 従来技術に係るプラズマ処理装置Z0の概略
構成を示す縦断面図。
FIG. 8 is a longitudinal sectional view showing a schematic configuration of a plasma processing apparatus Z0 according to a conventional technique.

【図9】 ICPとCCPのパワーバランス(ルーフバ
イアスRFパワー及びルーフICPパワー)に対するV
dcの変化を示す図。
FIG. 9 shows V with respect to the power balance between the ICP and the CCP (the roof bias RF power and the roof ICP power).
The figure which shows the change of dc.

【図10】 プラズマジェットの説明図。FIG. 10 is an explanatory diagram of a plasma jet.

【符号の説明】[Explanation of symbols]

3…プラズマ発生キャビティ 13,14…ガス吐出口 51,52…ガス供給管 61,61′,61″,62…絞り部材 71,71′…抑え部材 3 Plasma generating cavity 13, 14 Gas discharge port 51, 52 Gas supply pipe 61, 61 ', 61 ", 62 Throttle member 71, 71' Suppression member

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 EA03 EA04 EA05 FA01 JA05 KA17 4K057 DA02 DA20 DD01 DM09 DM37 DM40 DN01 5F004 AA05 AA16 BA20 BB13 BB28 BB29 BC03 CA06 DA00 DA23 DA26  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 EA03 EA04 EA05 FA01 JA05 KA17 4K057 DA02 DA20 DD01 DM09 DM37 DM40 DN01 5F004 AA05 AA16 BA20 BB13 BB28 BB29 BC03 CA06 DA00 DA23 DA26

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス供給管に接続されたガス吐出口から
容器内に所定のガスを導入し,電極に高周波を印加して
上記ガスより上記容器内部にプラズマを形成し,上記容
器内部で且つ上記電極に対向する位置に配された被処理
物にプラズマ処理を施すプラズマ処理装置において,上
記ガス供給管の上記ガス吐出口近傍に,ガス流路を狭め
る導電性の絞り部材が挿着されてなることを特徴とする
プラズマ処理装置。
1. A predetermined gas is introduced into a container from a gas discharge port connected to a gas supply pipe, and a high frequency is applied to an electrode to form plasma from the gas into the container. In a plasma processing apparatus for performing plasma processing on an object to be processed disposed at a position facing the electrode, a conductive throttle member for narrowing a gas flow path is inserted near the gas discharge port of the gas supply pipe. A plasma processing apparatus, comprising:
【請求項2】 上記絞り部材は,上記ガス供給管と略同
径の部材の表面若しくは内部にガス流路となる溝若しく
は孔が形成されてなる請求項1記載のプラズマ処理装
置。
2. The plasma processing apparatus according to claim 1, wherein the throttle member has a groove or a hole serving as a gas flow passage formed on a surface or inside of a member having substantially the same diameter as the gas supply pipe.
【請求項3】 上記絞り部材が,上記容器の外側方向か
ら上記ガス供給管に挿着され, 更に上記絞り部材の外
側に,上記絞り部材の抜けを防止する抑え部材が取り付
けられてなる請求項1又は2記載のプラズマ処理装置。
3. The throttle member is inserted into the gas supply pipe from the outside of the container, and a restraining member is attached to the outside of the throttle member to prevent the throttle member from coming off. 3. The plasma processing apparatus according to 1 or 2.
【請求項4】 上記抑え部材は,上記ガス供給管に螺着
されてなる請求項3記載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 3, wherein said holding member is screwed to said gas supply pipe.
【請求項5】 上記抑え部材は,上記ガス供給管の径方
向に押圧して固定される弾性部材により構成されてなる
請求項3記載のプラズマ処理装置。
5. The plasma processing apparatus according to claim 3, wherein said holding member is constituted by an elastic member pressed and fixed in a radial direction of said gas supply pipe.
JP2000046514A 2000-02-23 2000-02-23 Plasma treatment equipment Pending JP2001237227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046514A JP2001237227A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046514A JP2001237227A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Publications (1)

Publication Number Publication Date
JP2001237227A true JP2001237227A (en) 2001-08-31

Family

ID=18568909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046514A Pending JP2001237227A (en) 2000-02-23 2000-02-23 Plasma treatment equipment

Country Status (1)

Country Link
JP (1) JP2001237227A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037812B1 (en) 2007-11-08 2011-05-30 도쿄엘렉트론가부시키가이샤 Shower plate and substrate processing apparatus
JP2016015496A (en) * 2011-10-07 2016-01-28 東京エレクトロン株式会社 Plasma processing device
TWI642329B (en) * 2016-10-26 2018-11-21 中微半導體設備(上海)有限公司 Gas flow adjustment device, ICP etching equipment, nozzle and gas flow adjustment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037812B1 (en) 2007-11-08 2011-05-30 도쿄엘렉트론가부시키가이샤 Shower plate and substrate processing apparatus
JP2016015496A (en) * 2011-10-07 2016-01-28 東京エレクトロン株式会社 Plasma processing device
TWI642329B (en) * 2016-10-26 2018-11-21 中微半導體設備(上海)有限公司 Gas flow adjustment device, ICP etching equipment, nozzle and gas flow adjustment method

Similar Documents

Publication Publication Date Title
US20230317412A1 (en) Pulsed plasma chamber in dual chamber configuration
US9484190B2 (en) Showerhead-cooler system of a semiconductor-processing chamber for semiconductor wafers of large area
US7524397B2 (en) Lower electrode design for higher uniformity
US9275840B2 (en) Method for providing uniform distribution of plasma density in a plasma treatment apparatus
US6464843B1 (en) Contamination controlling method and apparatus for a plasma processing chamber
US6417111B2 (en) Plasma processing apparatus
US6727654B2 (en) Plasma processing apparatus
JP2748886B2 (en) Plasma processing equipment
JP2004193565A (en) Plasma processing system, plasma processing method, and electrode plate of plasma processing system
JP2004193566A (en) Plasma processing system and plasma processing method
WO2002080251A1 (en) Plasma processing device
JP3319285B2 (en) Plasma processing apparatus and plasma processing method
KR20100134629A (en) High frequency antenna unit and plasma processing apparatus
EP1068632B1 (en) Contamination controlling method and plasma processing chamber
JP6486092B2 (en) Plasma etching method
JP2006186323A (en) Plasma processing apparatus
KR102438638B1 (en) Plasma etching method
JP4123428B2 (en) Etching method
JP2001135626A (en) Plasma cvd device, and plasma cvd film formation method
JP2001237227A (en) Plasma treatment equipment
JP3720901B2 (en) Plasma processing apparatus and antenna manufacturing method
JP3606198B2 (en) Plasma processing equipment
US6582617B1 (en) Plasma etching using polycarbonate mask and low-pressure high density plasma
KR100449524B1 (en) Plasma processing method and apparatus thereof
JP2011108615A (en) Plasma treatment device