JP2001235718A - Method for recycling treatment of liquid crystal panel and system for recycling treatment - Google Patents

Method for recycling treatment of liquid crystal panel and system for recycling treatment

Info

Publication number
JP2001235718A
JP2001235718A JP2000046156A JP2000046156A JP2001235718A JP 2001235718 A JP2001235718 A JP 2001235718A JP 2000046156 A JP2000046156 A JP 2000046156A JP 2000046156 A JP2000046156 A JP 2000046156A JP 2001235718 A JP2001235718 A JP 2001235718A
Authority
JP
Japan
Prior art keywords
liquid crystal
supercritical
crystal panel
solvent
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046156A
Other languages
Japanese (ja)
Inventor
Mitsuo Kamiwano
満雄 上和野
Kazuhiko Nishi
和彦 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000046156A priority Critical patent/JP2001235718A/en
Publication of JP2001235718A publication Critical patent/JP2001235718A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Liquid Crystal (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of recycling a liquid crystal panel and a system for the recycling process by which a liquid crystal panel can be efficiently processed, the effective components in the liquid crystal panel can be recovered at high yield, and discharge of harmful substances accompanied by the process can be decreased. SOLUTION: The liquid crystal panel to be processed is sent to or put into a supercritical reaction chamber 13 in a supercritical reactor 8 without separating plastics or metals. The liquid crystal panel is decomposed and dissolved by a supercritical fluid in the supercritical reaction chamber 13. The decomposed and dissolved product in the supercritical fluid is sent to a solid trapping chamber 15 where a solid component 1 in the liquid crystal panel is recovered. Further the temperature of the product is decreased by a cooling device 18 and the product is sent to a solid trapping tank 19 where a crystallized solid component 2 in the liquid crystal panel is recovered. Then the pressure of the product is reduced to the atmospheric pressure through a high-pressure controlling valve V1 and the product is sent to a separation tank 21, where a solid component 3 in the liquid crystal panel is crystallized while the liquid crystal and the synthetic resin material in the liquid crystal panel are separated into phases of a solvent, solvent-soluble liquid component, solvent-insoluble liquid component and gas component and each component is recovered as a material for recycling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶パネルを有害物
質の排出を低減した状態で処理し,液晶パネル内の有用
金属,ガラスを回収するととも,液晶および樹脂を無害
な低分子化合物に分解し,回収するリサイクル処理方法
およびリサイクル処理システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention treats a liquid crystal panel with reduced emission of harmful substances, collects useful metals and glass in the liquid crystal panel, and decomposes liquid crystals and resins into harmless low-molecular compounds. , A recycling method and a recycling system for collecting.

【0002】液晶ディスプレーは現在,ノート型パソコ
ン,ビデオカメラ,携帯電話,電卓,時計などの表示デ
バイスとして汎用されている。さらに近年では屋内外用
大型液晶ディスプレーや液晶テレビ等の開発が進み,そ
の用途,生産量は極めて大きくなっている。これらの液
晶ディスプレーは,液晶ディスプレー自体の故障の他,
液晶ディスプレーが接続されている機器の故障や寿命あ
るいは型遅れによっても廃棄され,年間膨大な量が廃棄
されている現状にある。
[0002] Liquid crystal displays are currently widely used as display devices for notebook computers, video cameras, mobile phones, calculators, clocks and the like. Further, in recent years, the development of large-sized indoor and outdoor liquid crystal displays, liquid crystal televisions, and the like has been advanced, and their uses and production have become extremely large. These liquid crystal displays are not only defective in the liquid crystal display itself, but also
At present, a huge amount of liquid crystal displays are discarded due to failure, service life, or delay of equipment connected to the liquid crystal display.

【0003】図4には,液晶ディスプレーの構成の一例
としてパソコン用TFT(Thin Film Transistor)方式
カラー液晶ディスプレーの概略が示されている。図中の
プラスチックシャーシ(31),ランプ(32),ランプ反射板
(33),ランプカバー(34),拡散シート(36),(39) ,プリ
ズムシート(37),(38) ,導光板(40),反射シート(41)は
液晶ディスプレーを解体,分別することで部品として再
使用,あるいは資源として再利用することが可能である
が,液晶ディスプレーの本体を成す液晶パネル(35)やそ
の内部に封入されている液晶,回路基盤(42)等の処理法
は確立されていない状況にある。
FIG. 4 schematically shows a TFT (Thin Film Transistor) type color liquid crystal display for a personal computer as an example of the structure of the liquid crystal display. Plastic chassis (31), lamp (32), lamp reflector in the figure
(33), lamp cover (34), diffusion sheets (36) and (39), prism sheets (37) and (38), light guide plate (40), and reflection sheet (41) disassemble and separate the liquid crystal display. Can be reused as parts or as resources, but the processing method for the liquid crystal panel (35), which constitutes the main body of the liquid crystal display, the liquid crystal enclosed inside, and the circuit board (42), etc. The situation has not been established.

【0004】図5には現在汎用されているTFT方式の
カラー液晶パネルの一例の断面概略図が示されている。
液晶パネル(35)は,カラーフィルタ基盤板ガラス(43),
TFT基盤板ガラス(44)をエポキシ系のシール樹脂(45)
で接着し,その間隙に液晶(46)およびアクリル系樹脂製
のスペーサー(47)を封入して構成されている。カラーフ
ィルタ基盤板ガラス(43)の片側面にはアクリル系樹脂製
の偏光板(48)が接着されており,液晶と接する面には
赤,青,緑,黒の色材より構成されるカラーフィルタ(4
9),液晶を配向させる配向膜を含む透明電極(50)が設置
されている。また,TFT基盤板ガラス(44)の片側面に
も同様にアクリル系樹脂製の偏光板(51)が接着されてお
り,液晶に接する面には配向膜及びTFT(52)を含む透
明電極(53)が設置されている。
FIG. 5 is a schematic cross-sectional view showing an example of a TFT color liquid crystal panel which is currently widely used.
The liquid crystal panel (35) is a color filter base plate glass (43),
TFT base plate glass (44) is epoxy-based sealing resin (45)
And a liquid crystal (46) and a spacer (47) made of an acrylic resin are sealed in the gap. A polarizing plate (48) made of acrylic resin is adhered to one side of the color filter base plate glass (43), and a color filter composed of red, blue, green, and black color materials is attached to the surface in contact with the liquid crystal. (Four
9) A transparent electrode (50) including an alignment film for aligning the liquid crystal is provided. Similarly, a polarizing plate (51) made of an acrylic resin is adhered to one side of the TFT base plate glass (44), and a transparent electrode (53) including an alignment film and a TFT (52) is provided on the surface in contact with the liquid crystal. ) Is installed.

【0005】上記透明電極(ITO)(50),(53)は,一
般にアクリル系の導電性樹脂中にTFT(52)を構成する
よう作製されており,内部にはインジウムやモリブデ
ン,タンタル等のレアメタル,貴金属等の高付加価値有
用金属やチタン,アルミニウム,スズ,タングステン,
マンガン,ゲルマニウム等の金属,さらにはそのまま廃
棄された場合に環境に対して有害となるクロム,ヒ素,
鉛,カドミウム,ガリウム等の金属が存在している。ま
た,上記液晶としては,大別してネマティック液晶,ス
メクティック液晶,強誘電性液晶が用いられるが,それ
らの物質は全て直鎖アルキル基やシアノ基で修飾された
ベンゼン環およびシクロヘキサン環が−COO−,−C
H=CH−,−CHCH−の結合で結ばれた直鎖状
の基本構造を有しており一部の液晶については毒性を有
することが知られている。また,一般に液晶ディスプレ
ーは複数の液晶物質を混合して用いている。
The above transparent electrodes (ITO) (50) and (53) are generally formed so as to constitute a TFT (52) in an acrylic conductive resin, and have an indium, molybdenum, tantalum or the like inside. High value-added useful metals such as rare metals and precious metals, titanium, aluminum, tin, tungsten,
Metals such as manganese and germanium, as well as chromium, arsenic,
Metals such as lead, cadmium and gallium are present. Nematic liquid crystals, smectic liquid crystals, and ferroelectric liquid crystals are generally used as the liquid crystal. All of these substances have a benzene ring and a cyclohexane ring modified with a straight-chain alkyl group or a cyano group having —COO—, -C
H = CH -, - CH 2 CH 2 - For the liquid crystal part have a linear basic structure connected by bonds are known to have a toxicity. In general, a liquid crystal display uses a mixture of a plurality of liquid crystal substances.

【0006】液晶パネルのリサイクル処理においては,
透明電極,TFTに含まれるレアメタル,貴金属,特に
インジウム等の高付加価値有用金属成分を再利用できる
状態で回収すること。液晶を廃棄,あるいは再利用でき
る無害な低分子化合物に分解すること。偏光板,シール
樹脂,スペーサー,透明電極等の樹脂成分を廃棄,ある
いは再利用できる無害な低分子化合物に分解すること。
カラーフィルタ基盤板ガラス,TFT基盤板ガラス等の
ガラスを再利用できる板ガラスの状態あるいはガラスカ
レットの状態で回収することが要求されるが,下記する
従来の液晶パネルの処理法ではこれらの事項が十分満た
されているとはいえない。
In the recycling of liquid crystal panels,
To recover rare metal and precious metal contained in transparent electrodes and TFTs, especially high value-added useful metal components such as indium, in a reusable state. Decomposition of liquid crystals into harmless low-molecular compounds that can be discarded or reused. Decomposition of resin components such as polarizing plates, seal resins, spacers, and transparent electrodes into harmless low-molecular compounds that can be discarded or reused.
It is necessary to recover glass such as color filter base glass and TFT base glass in the form of reusable glass or glass cullet. However, the following conventional liquid crystal panel processing methods satisfy these requirements sufficiently. I can't say that.

【0007】液晶パネルは,これまで埋め立て,あるい
は焼却により処理されてきた。液晶パネルを埋め立てに
より処理する方法では,液晶パネル内に存在する有用成
分,すなわちレアメタル,貴金属や樹脂成分を回収する
ことなく廃棄するため,資源再利用,有効利用の観点か
ら問題となる。埋め立てられた液晶パネルから流出する
液晶や重金属化合物による土壌汚染も大きな問題であ
る。液晶パネルを耐腐食性の容器に入れ,鉱山の廃坑に
埋め立てる方法も採られているが,液晶パネルの根本的
な処理とはいえない。
[0007] Liquid crystal panels have been treated by landfill or incineration. In the method of treating the liquid crystal panel by landfill, useful components existing in the liquid crystal panel, that is, rare metals, noble metals, and resin components are discarded without being collected, which poses a problem from the viewpoint of resource reuse and effective utilization. Soil contamination by liquid crystal or heavy metal compounds flowing out of the landfilled liquid crystal panel is also a major problem. A method has been adopted in which liquid crystal panels are placed in a corrosion-resistant container and buried in an abandoned mine, but this is not a fundamental treatment of liquid crystal panels.

【0008】液晶パネルを焼却し,処理する方法では,
液晶ディスプレー内に存在する有用成分を十分回収する
ことなく燃焼するため,資源再利用,有効利用の観点か
ら問題となる他,燃焼時にダイオキシンを含む有害物質
を発生することも問題である。
In a method of incinerating and treating a liquid crystal panel,
Since the combustion is carried out without sufficiently recovering the useful components present in the liquid crystal display, there is a problem from the viewpoint of resource recycling and effective utilization, and there is also a problem that harmful substances including dioxin are generated during combustion.

【0009】液晶パネルを1000℃以上の高温条件の
炉内で製鋼煙灰,石炭等と混合して燃焼することで,ダ
イオキシン等の有害物質の生成を抑え,酸化亜鉛,金属
溶融塊,スラグを回収する方法も提案されているが,処
理装置が極めて大掛かりとなることや石炭を燃焼燃料に
用いるため省エネルギーの観点や,空気中の二酸化炭素
濃度を増大させる点が問題となる。
The liquid crystal panel is mixed with steelmaking fumes, coal and the like in a furnace at a high temperature condition of 1000 ° C. or more to burn, thereby suppressing generation of harmful substances such as dioxin and recovering zinc oxide, molten metal lump and slag. However, there are problems in that the processing equipment becomes extremely large-scale, and that coal is used as a combustion fuel to save energy and increase the concentration of carbon dioxide in the air.

【0010】液晶パネルを粉砕して粘土と特殊な配合で
混合し,900℃程度の温度で焼成することによりタイ
ルや建設骨材を製造する方法もあるが,同法では液晶パ
ネルを粉砕する前に,予め液晶パネルのカラーフィルタ
基盤板ガラスとTFT基盤板ガラスを剥離し分離させ,
さらに各々の基盤板ガラス上の偏光板を剥離することが
必要であり,そのための特殊な装置が要求され,液晶パ
ネルを大量に処理する方法としては問題がある。また,
剥離した偏光板や液晶の処理は考慮されていない点も問
題である。
[0010] There is also a method of manufacturing tiles and construction aggregates by crushing a liquid crystal panel, mixing it with clay with a special composition, and firing at a temperature of about 900 ° C. First, the color filter substrate glass and the TFT substrate glass of the liquid crystal panel were separated and separated.
Furthermore, it is necessary to peel off the polarizing plate on each base plate glass, a special device is required for that purpose, and there is a problem as a method for processing a large amount of liquid crystal panels. Also,
There is also a problem in that treatment of the peeled polarizing plate or liquid crystal is not taken into consideration.

【0011】[0011]

【発明が解決しようとする課題】本発明の解決課題は液
晶パネルを有害物質の排出を低減した状態で処理し,液
晶パネル内の有用金属,ガラスを回収するとともに,液
晶および樹脂を無害な低分子化合物に分解し,回収でき
るようにした液晶パネルのリサイクル処理方法およびリ
サイクル処理システムを提供することにある。
The object of the present invention is to treat a liquid crystal panel with reduced emission of harmful substances, to recover useful metals and glass in the liquid crystal panel, and to make the liquid crystal and resin harmless. An object of the present invention is to provide a method and a system for recycling a liquid crystal panel which can be decomposed into a molecular compound and recovered.

【0012】[0012]

【課題を解決するための手段】本発明によれば,金属や
金属酸化物に対する溶解度が大きく,液晶や樹脂等の有
機物の分解反応に対して極めて反応性に富み,有機物に
対する溶解度も大きく,かつ圧力や温度を変化させるこ
とにより,その反応性や溶解度を連続的に速やかに変え
ることができる超臨界流体の性質を利用して液晶パネル
を処理する方法及びシステムが提供される。すなわち,
超臨界状態を作成できる超臨界反応器において液晶パネ
ル内の有用金属成分等を溶解,回収し,また液晶パネル
内の液晶を無害な低分子化合物に分解し,さらには液晶
パネル内の樹脂成分を各々の樹脂を構成する低分子有機
化合物等に分解,回収することを特徴とする超臨界流体
を用いた液晶パネルのリサイクル処理方法およびリサイ
クル処理システムが提供され,上記課題が解決される。
According to the present invention, the solubility in metals and metal oxides is large, the reactivity to organic substances such as liquid crystals and resins is extremely high, and the solubility in organic substances is large. A method and system for processing a liquid crystal panel using the property of a supercritical fluid capable of continuously and rapidly changing its reactivity and solubility by changing pressure and temperature are provided. That is,
In a supercritical reactor capable of creating a supercritical state, the useful metal components and the like in the liquid crystal panel are dissolved and recovered, and the liquid crystal in the liquid crystal panel is decomposed into harmless low-molecular compounds. A method and system for recycling a liquid crystal panel using a supercritical fluid characterized by decomposing and recovering into low molecular organic compounds constituting each resin are provided, and the above-mentioned problems are solved.

【0013】なお,本発明において,超臨界溶媒とは超
臨界状態を作るための溶媒を意味し,また,超臨界状
態,超臨界流体とは図6に示すように温度−圧力相図上
で臨界温度,臨界圧力を越えたいわゆる超臨界状態,超
臨界流体の他,そのような臨界温度,臨界圧力をわずか
に下回るような状態であっても反応性および物質に対す
る溶解度のうえで超臨界状態,超臨界流体と同様の能力
を有する亜臨界状態,亜臨界流体を含むものとする。
In the present invention, a supercritical solvent means a solvent for forming a supercritical state, and a supercritical state and a supercritical fluid are shown in a temperature-pressure phase diagram as shown in FIG. In addition to the critical temperature and the supercritical state exceeding the critical pressure, so-called supercritical fluid, the supercritical state in terms of reactivity and solubility in substances even in the state where the critical temperature and the critical pressure are slightly lower. , A subcritical state having the same capacity as a supercritical fluid, and a subcritical fluid.

【0014】超臨界流体の性質について水を例に説明す
る。一般に物質の溶媒への溶解速度や溶解度は温度に対
して増加する。そのため室温の溶媒に比較して,高温の
状態にある超臨界状態においては,物質の溶媒への溶解
速度や溶解度は常温の溶媒に比較して大きくなる。図7
は,圧力と水の誘電率の関係をいくつかの温度について
示している。ここで誘電率とは,物質のもつ極性を示す
指標であり,圧力を大きくし超臨界状態とすることで水
の極性が大きくなることが判る。このように誘電率が大
きく,すなわち極性が大きい超臨界流体中では,金属や
金属酸化物と有機化合物の両者について物質の溶解速度
や溶解度が大きくなる。
The properties of the supercritical fluid will be described using water as an example. Generally, the dissolution rate and solubility of a substance in a solvent increase with temperature. Therefore, in a supercritical state at a high temperature as compared with a solvent at room temperature, the dissolution rate and solubility of the substance in the solvent are larger than those at room temperature. FIG.
Shows the relationship between the pressure and the dielectric constant of water at several temperatures. Here, the dielectric constant is an index indicating the polarity of a substance, and it can be seen that the polarity of water is increased by increasing the pressure to a supercritical state. As described above, in a supercritical fluid having a large dielectric constant, that is, a large polarity, the dissolution rate and solubility of a substance for both a metal, a metal oxide, and an organic compound are increased.

【0015】図8は,圧力と水のイオン積の関係をいく
つかの温度について示している。ここで水のイオン積と
は,水中の水素イオン濃度と水酸化物イオン濃度の積で
あり,圧力を大きくし超臨界状態とすることで,水のイ
オン積は大きくなる。このようにイオン積が大きい超臨
界流体中では,水素イオンが酸として働き,水酸化物イ
オンがアルカリとして働くため金属や金属酸化物の溶解
速度,溶解度が大きくなる。
FIG. 8 shows the relationship between pressure and ion product of water at several temperatures. Here, the ionic product of water is the product of the hydrogen ion concentration and the hydroxide ion concentration in water, and the ion product of water is increased by increasing the pressure to a supercritical state. In such a supercritical fluid having a large ion product, hydrogen ions act as acids and hydroxide ions act as alkalis, so that the dissolution rate and solubility of metals and metal oxides increase.

【0016】また,一般に各種の反応速度は温度に対し
て指数的に増加する。そのため室温の溶媒に比較して高
温の状態にある超臨界状態においては,各種の反応が常
温の場合に比較して高速で起こる。さらに図7に示した
ように圧力を大きくし超臨界状態とすることで水の極性
が大きくなり,このような超臨界流体中では樹脂や有機
物の加水分解反応等,イオン的反応の反応速度が大きく
なる。また図8のように圧力を大きくし超臨界状態とす
ることで,水のイオン積は大きくなり,このような超臨
界流体中においては,イオン的反応の反応速度が大きく
なる他,水素イオンが酸として働き,水酸化物イオンが
アルカリとして働くため酸触媒反応とアルカリ触媒反応
の両者の反応速度が大きくなる。
Generally, various reaction rates increase exponentially with temperature. Therefore, in a supercritical state where the temperature is higher than that of a solvent at room temperature, various reactions occur at a higher speed than when the temperature is normal. Further, as shown in FIG. 7, by increasing the pressure to a supercritical state, the polarity of water is increased, and in such a supercritical fluid, the reaction rate of an ionic reaction such as a hydrolysis reaction of a resin or an organic substance is reduced. growing. By increasing the pressure to a supercritical state as shown in FIG. 8, the ionic product of water increases, and in such a supercritical fluid, the reaction rate of the ionic reaction increases, and hydrogen ions are removed. Since it acts as an acid and the hydroxide ion acts as an alkali, the reaction rates of both the acid-catalyzed reaction and the alkali-catalyzed reaction increase.

【0017】上記したような特徴を有する超臨界流体中
に液晶パネルが存在した場合には,透明電極やTFTに
含まれるインジウム等の高付加価値有用金属を含む金属
成分の大半は超臨界流体に溶解することになる。また液
晶パネル内の液晶は,その分子内の−COO−,−CH
=CH−,−CHCH−等の結合やベンゼン環,シ
クロヘキサン環を修飾する直鎖アルキル基やシアノ基が
加水分解,および熱分解等の反応により開裂し,ベンゼ
ン環あるいはシクロヘキサン環を骨格とする低分子有機
化合物に,さらにはベンゼン環あるいはシクロヘキサン
環自体も迅速に分解され,超臨界流体に溶解される。液
晶パネル内の偏光板,樹脂シール,スペーサーおよび透
明電極等のアクリル系およびエポキシ系樹脂は,超臨界
流体中で全て樹脂を構成する低分子化合物に迅速に分解
し,超臨界流体中に溶解することとなる。カラーフィル
タ基盤板ガラス,TFT基盤板ガラス,カラーフィルタ
に含まれる色材等の無機物など超臨界流体による分解,
溶解が困難成分は金属成分,樹脂成分と分離し固体とし
て超臨界流体中に残ることになる。さらに溶解した超臨
界流体に溶解した低分子有機化合物や金属は温度を下げ
るあるいは圧力を小さくすることで速やかに超臨界流体
から分離あるいは析出させることができる。
When a liquid crystal panel exists in a supercritical fluid having the above-described characteristics, most of the metal components including a high value-added useful metal such as indium contained in a transparent electrode or a TFT are converted to the supercritical fluid. Will dissolve. The liquid crystal in the liquid crystal panel has -COO- and -CH in its molecule.
= CH -, - CH 2 CH 2 - bond and a benzene ring, a straight-chain alkyl group or a cyano group modifying the cyclohexane ring or the like is cleaved by reaction of hydrolysis, and thermal decomposition, skeletal benzene ring or cyclohexane ring And the benzene ring or cyclohexane ring itself is rapidly decomposed and dissolved in a supercritical fluid. Acrylic and epoxy resins such as polarizers, resin seals, spacers and transparent electrodes in liquid crystal panels all rapidly decompose into low molecular compounds that make up the resin in a supercritical fluid and dissolve in the supercritical fluid It will be. Decomposition by supercritical fluids such as color filter base plate glass, TFT base plate glass, and inorganic substances such as color materials contained in color filters,
The component that is difficult to dissolve is separated from the metal component and the resin component and remains as a solid in the supercritical fluid. Further, the low molecular organic compound or metal dissolved in the dissolved supercritical fluid can be separated or precipitated from the supercritical fluid quickly by lowering the temperature or reducing the pressure.

【0018】[0018]

【発明の実施の形態】図1は,本発明の液晶パネルのリ
サイクル処理システムの一実施例を示す説明図である。
同図において,処理すべき液晶パネルを収納する被処理
物貯槽(1) は,液晶パネルを粉砕する粉砕機(2) に連結
されている。該粉砕機(2) は粉砕された液晶パネルと超
臨界溶媒および処理に必要となる触媒, 酸化剤等の薬剤
を混合しスラリーとして収納するためのスラリー貯槽
(3) に連結されている。なお該粉砕機(2) としては破断
機に相当する粗粉砕機や予め液晶パネルを液体窒素等で
冷却・凍結させて粉砕を高効率で行う粉砕機等,既存の
装置を用いることができる。
FIG. 1 is an explanatory view showing one embodiment of a liquid crystal panel recycling system according to the present invention.
In the figure, an object storage tank (1) for storing a liquid crystal panel to be processed is connected to a crusher (2) for crushing the liquid crystal panel. The pulverizer (2) is a slurry storage tank for mixing the pulverized liquid crystal panel with a supercritical solvent and chemicals required for processing, such as a catalyst and an oxidizing agent, and storing as a slurry.
Connected to (3). As the pulverizer (2), an existing apparatus such as a coarse pulverizer corresponding to a breaker or a pulverizer that cools and freezes a liquid crystal panel in advance with liquid nitrogen or the like to perform pulverization with high efficiency can be used.

【0019】上記スラリー貯槽(3) には,超臨界溶媒を
収納する超臨界溶媒貯槽(5) がバルブ(v6)を介して連結
され,処理に必要となる触媒, 酸化剤等の薬剤を収納す
る触媒,薬剤等貯槽(6) がバルブ(v7)を介して連結され
ている。また,該スラリー貯槽(3) には,処理すべき液
晶パネルと超臨界溶媒,処理に必要となる触媒,酸化剤
等の薬剤を混合,分散しスラリーに調製するためのスラ
リー貯槽撹拌翼(4) が設置されている。上記スラリー貯
槽(3) は,超臨界状態を作成し超臨界流体による処理を
行う超臨界反応器(8) に連絡する高圧スラリーポンプ
(7) に連結されている。
A supercritical solvent storage tank (5) for storing a supercritical solvent is connected to the slurry storage tank (3) via a valve (v6) to store chemicals such as a catalyst and an oxidizing agent required for the processing. The storage tank (6) for the catalyst, chemicals, etc. is connected via a valve (v7). The slurry storage tank (3) contains a slurry storage tank stirring blade (4) for mixing and dispersing a liquid crystal panel to be processed, a supercritical solvent, a catalyst required for the processing, and an agent such as an oxidizing agent to prepare a slurry. ) Is installed. The above-mentioned slurry storage tank (3) is a high-pressure slurry pump connected to a supercritical reactor (8) that creates a supercritical state and performs processing with a supercritical fluid.
Connected to (7).

【0020】上記超臨界反応器(8) には,超臨界溶媒や
処理に必要となる触媒,酸化剤等の薬剤を収納する溶
媒,触媒,薬剤等貯槽(9) に連絡する高圧ポンプ(10)が
高圧バルブ(v5)を介して連結されている。また,該超臨
界反応器(8) の吐出口には,生成物および超臨界流体の
温度を下げるための冷却器(18)を介して固体捕集槽(19)
が連結されている。なお該超臨界反応器(8) の入口部,
出口部には該超臨界反応器(8) 内の圧力を観測するため
の圧力計(P1),(P2),(P3)が設置されている。
In the supercritical reactor (8), a high-pressure pump (10) is connected to a storage tank (9) for storing a supercritical solvent, a catalyst required for processing, a chemical such as an oxidizing agent, and a catalyst. ) Are connected via a high-pressure valve (v5). The outlet of the supercritical reactor (8) is connected to a solid collecting tank (19) via a cooler (18) for lowering the temperature of the product and the supercritical fluid.
Are connected. The inlet of the supercritical reactor (8)
At the outlet, pressure gauges (P1), (P2) and (P3) for observing the pressure in the supercritical reactor (8) are installed.

【0021】上記超臨界反応器(8) としては,図1に示
した構成の他,後記するように図2(a) ,(b) および図
3(a) ,(b) ,(c) に示す構成を用いることができる。
図1に示した超臨界反応器(8) には,該超臨界反応器
(8) 内を臨界温度以上に加熱するための加熱ヒータ(14)
が設置されている。また,該超臨界反応器(8) 内には超
臨界流体による処理を行う超臨界反応室(13),該超臨界
反応室(13)と上記高圧スラリーポンプ(7) を高圧バルブ
(v4)を介して連絡し,液晶パネルを含むスラリーを臨界
温度以上に加熱するスラリー予備加熱器(11),該超臨界
反応室(13)と上記高圧ポンプ(10)を連絡し溶媒や液晶パ
ネルの処理に必要となる触媒,酸化剤等の薬剤を臨界温
度以上に加熱する溶媒,触媒,薬剤等予備加熱器(12),
処理により生成する生成物中の固体成分1を捕集する固
体捕集室(15)が設置されている。
As the supercritical reactor (8), in addition to the configuration shown in FIG. 1, as will be described later, FIGS. 2 (a) and (b) and FIGS. 3 (a), (b) and (c) Can be used.
The supercritical reactor (8) shown in FIG.
(8) Heater (14) for heating the inside to above the critical temperature
Is installed. In the supercritical reactor (8), a supercritical reaction chamber (13) for processing with a supercritical fluid, the supercritical reaction chamber (13) and the high-pressure slurry pump (7) are connected by a high-pressure valve.
(v4), and the slurry preheater (11), which heats the slurry containing the liquid crystal panel above the critical temperature, and the supercritical reaction chamber (13) and the high-pressure pump (10) to connect the solvent and liquid crystal. Solvent, catalyst, chemical preheater (12), which heats chemicals such as catalysts and oxidizers necessary for panel processing to above the critical temperature
A solid collecting chamber (15) for collecting the solid component 1 in the product generated by the treatment is provided.

【0022】上記超臨界反応室(13)には,高温高圧撹拌
軸シール(16)を介して駆動される超臨界反応室撹拌掻出
翼(17)等の生成物を的確に掻き出す機構を設置すること
もできる。また該超臨界反応室(13)の入口部,出口部に
は該超臨界反応室(13)内の温度を観測する温度計(T1),
(T2)が設置されている。なお上記高温高圧用撹拌軸シー
ル(16)としては,メカニカルシールの他,交流外部磁界
を用いたもの,あるいは永久磁石によってモータの駆動
力を撹拌翼に伝達するもの等,ノンシール型のものを用
いてもよい。
The supercritical reaction chamber (13) is provided with a mechanism for accurately scraping products such as a supercritical reaction chamber stirring blade (17) driven through a high-temperature and high-pressure stirring shaft seal (16). You can also. In addition, a thermometer (T1) for observing the temperature in the supercritical reaction chamber (13) is provided at an inlet and an outlet of the supercritical reaction chamber (13).
(T2) is installed. As the high-temperature and high-pressure stirring shaft seal (16), a non-sealing type seal such as a mechanical seal, a seal using an AC external magnetic field, or a motor transmitting the driving force of a motor to a stirring blade by a permanent magnet is used. You may.

【0023】また,上記固体捕集室(15)は,上記超臨界
反応器(8) の外に設置した上記冷却器(18)に連結してお
り,該固体捕集室(15)の排出口には固体回収用高温高圧
バルブ(v2)が設置されている。該固体捕集室(15)として
は図1に示した実施例では粒子沈降槽形式のものを用い
ているが遠心力場を利用し、固体のみを上記固体捕集室
(15)の底部に捕集するサイクロン形式のもの等を使用す
ることもできる。
The solid collecting chamber (15) is connected to the cooler (18) installed outside the supercritical reactor (8), and the solid collecting chamber (15) is exhausted. A high-temperature and high-pressure valve (v2) for solid recovery is installed at the outlet. In the embodiment shown in FIG. 1, the solid collecting chamber (15) uses a particle sedimentation tank in the embodiment shown in FIG.
A cyclone type trapping at the bottom of (15) may be used.

【0024】図2(a) に示す超臨界反応器(8) は,図1
に示した超臨界反応器(8) を縦長の槽型あるいは塔型の
形態に構成し,設置面積を小さくしたものである。該超
臨界反応器(8) には,スラリー予備加熱器(11),溶媒,
触媒,薬剤等予備加熱器(12), 超臨界反応室(13),加熱
ヒータ(14)および固体捕集室(15)等が具備されており,
上記スラリ−は超臨界臨界反応器(8) の上方より該超臨
界反応器(8) に入り,下方より冷却器(18)に連絡する固
体捕集室(15)に送液されるように構成されている。な
お,上記超臨界反応器(8) は必ずしも垂直に構成,設置
される必要はなく,任意の角度で設置してもよい。
The supercritical reactor (8) shown in FIG.
The supercritical reactor (8) shown in (1) is configured in a vertically long tank type or tower type to reduce the installation area. The supercritical reactor (8) has a slurry preheater (11), a solvent,
It is equipped with a preheater (12) for catalysts and chemicals, a supercritical reaction chamber (13), a heater (14), and a solid collection chamber (15).
The slurry enters the supercritical reactor (8) from above the supercritical reactor (8), and is sent from below to the solid collecting chamber (15) connected to the cooler (18). It is configured. The supercritical reactor (8) does not necessarily have to be vertically configured and installed, but may be installed at any angle.

【0025】また,図2(b) に示す超臨界反応器(8)
は,超臨界反応室(13)の底部に仕切メッシュ(23)を設け
て内部に固体捕集室(15)を区画形成し,一体型の構造と
したものである。該超臨界反応器(8) にはスラリー予備
加熱器(11),溶媒,触媒,薬剤等予備加熱器(12), 超臨
界反応室(13)および加熱ヒータ(14)等が具備されてお
り,上記スラリ−は超臨界反応室(13)と固体捕集室(15)
を区切る上記仕切メッシュ(23)の上方より該超臨界反応
室(13)に入り,超臨界反応室(13)の上方から冷却器(18)
に送液されるように構成されている。なお,上記超臨界
反応器(8) は必ずしも垂直に構成,設置される必要はな
く,任意の角度で設置してもよい。
The supercritical reactor (8) shown in FIG.
Is a unitary structure in which a partition mesh (23) is provided at the bottom of the supercritical reaction chamber (13), and a solid collecting chamber (15) is formed therein. The supercritical reactor (8) is provided with a slurry preheater (11), a preheater (12) for solvents, catalysts, chemicals, etc., a supercritical reaction chamber (13), a heater (14), and the like. The above slurry consists of a supercritical reaction chamber (13) and a solid collection chamber (15).
Into the supercritical reaction chamber (13) from above the partition mesh (23), and from above the supercritical reaction chamber (13) to a cooler (18).
It is configured to be supplied to the liquid. The supercritical reactor (8) does not necessarily have to be vertically configured and installed, but may be installed at any angle.

【0026】さらにまた,超臨界反応器(8) としては図
3(a) ,(b) ,(c) に示すように,図1および図2(a)
,(b) に示した上記超臨界反応器(8) の加熱ヒータ(1
4)の一部および超臨界反応室(13)の一部に,処理すべき
液晶パネルを直接仕込むため開閉可能な加熱ヒータ蓋部
(24)および超臨界反応室蓋部(25)を形成したものを使用
することもできる。
As shown in FIGS. 3 (a), 3 (b) and 3 (c), the supercritical reactor (8) is shown in FIGS. 1 and 2 (a).
The heater (1) of the supercritical reactor (8) shown in (b)
Heater lid that can be opened and closed to directly charge the liquid crystal panel to be processed in part of 4) and part of the supercritical reaction chamber (13)
(24) and those formed with a supercritical reaction chamber lid (25) can also be used.

【0027】上記冷却器(18)に連結されている上記固体
捕集槽(19) には,該固体捕集槽(19)内の温度を観測す
るための温度計(T3),該固体捕集槽(19)内を調温するた
めの調温ジャケット(20)が設置されており,排出口には
冷却器(18)および調温ジャケット(20)により温度が低下
したことよって超臨界溶媒から析出した固体成分2を回
収するための固体回収用高圧バルブ(v3)が設置されてい
る。該固体捕集槽(19)は,処理によって生成した生成物
を分離,回収するための分離槽(21)に高圧調圧弁(v1)を
介して連結している。なお上記固体捕集槽(19)としては
図1に示した粒子沈降槽形式のものや遠心力場を利用
し、固体のみを上記固体捕集槽(19)の底部に捕集するサ
イクロン形式のもの,あるいはさらにサイクロン形式の
ものに撹拌翼を設置し,遠心力による固体と液体の分離
性能の向上させた形式のもの等が使用できる。
The solid collecting tank (19) connected to the cooler (18) has a thermometer (T3) for observing the temperature in the solid collecting tank (19) and the solid collecting tank (19). A temperature control jacket (20) is installed to control the temperature inside the collection tank (19), and the outlet is equipped with a cooler (18) and a temperature control jacket (20). A high-pressure valve (v3) for collecting solid components for collecting the solid components 2 precipitated from the water is provided. The solid collecting tank (19) is connected to a separation tank (21) for separating and recovering a product generated by the treatment via a high-pressure regulator (v1). As the solid collecting tank (19), a particle sedimentation tank type shown in FIG. 1 or a centrifugal force field is used, and only a solid is collected at the bottom of the solid collecting tank (19). It is possible to use a cyclone type or a type in which a stirring blade is installed in a cyclone type and the separation performance of a solid and a liquid by centrifugal force is improved.

【0028】上記分離槽(21)には,該分離槽(21)内の温
度を観測する温度計(T4),該分離槽(21)内を調温する調
温ジャケット(22)が設置されている。また,高圧調圧弁
(v1)により圧力が低下することによって分離した固体成
分3,溶媒および溶媒可溶液体成分,溶媒不溶液体成
分,気体成分を各々回収するための固体成分回収ライン
(L1),溶媒および溶媒可溶液体成分回収ライン(L2),溶
媒不溶液体成分回収ライン(L3),気体成分回収ライン(L
4)が連結している。
The separation tank (21) is provided with a thermometer (T4) for monitoring the temperature in the separation tank (21) and a temperature control jacket (22) for controlling the temperature in the separation tank (21). ing. In addition, high pressure regulating valve
Solid component recovery line for recovering each of solid component 3, solvent and solvent soluble component, solvent insoluble component, and gas component separated by pressure decrease due to (v1)
(L1), solvent and solvent soluble component recovery line (L2), solvent insoluble component recovery line (L3), gas component recovery line (L
4) are connected.

【0029】而して上記システムを用いて液晶パネルを
処理するには,処理すべき液晶パネルを被処理物貯槽
(1) に仕込み,粉砕機(2) で粉砕しスラリー貯槽(3) に
おいてスラリーに調整した後, 超臨界反応器(8) に供給
する第1の方法と, 処理すべき液晶パネルを直接,超臨
界反応器(8) 内の超臨界反応室(13)に仕込む第2の方法
を採ることができる。
In order to process a liquid crystal panel using the above-described system, the liquid crystal panel to be processed is stored in an object storage tank.
(1), pulverize in a pulverizer (2), adjust to slurry in a slurry storage tank (3), and supply it to a supercritical reactor (8). A second method can be employed in which the supercritical reactor (13) in the supercritical reactor (8) is charged.

【0030】ここで処理すべき液晶パネルとは,図4に
示した液晶パネル(35),あるいは該液晶パネルからの分
離が困難な回路基盤(42)を含んだもの,あるいは別途手
法で液晶パネル(35)から分離された液晶(46)であっても
よい。
The liquid crystal panel to be processed here includes the liquid crystal panel (35) shown in FIG. 4, the circuit board (42) which is difficult to separate from the liquid crystal panel, or the liquid crystal panel by another method. It may be a liquid crystal (46) separated from (35).

【0031】以下に第1の方法について示す。 処理すべ
き液晶パネルは被処理物貯槽(1) から粉砕機(2) に送ら
れ, 該粉砕機(2) により所定の大きさすなわち,後記す
る超臨界流体により容易に分解,溶解する程度の粒径ま
で粉砕される。
The first method will be described below. The liquid crystal panel to be processed is sent from the storage tank (1) to the pulverizer (2), and the pulverizer (2) has a predetermined size, that is, a liquid that can be easily decomposed and dissolved by a supercritical fluid described later. Milled to particle size.

【0032】粉砕された液晶パネルは,スラリー貯槽
(3) に送られる。 該スラリー貯槽(3)では該スラリー貯
槽(3) に設置されたスラリー貯槽撹拌翼(4) により,超
臨界溶媒貯槽(5) から供給される超臨界溶媒と液晶パネ
ルを混合,分散しスラリーに調製される。この場合,特
に望まれるときには,処理に必要となる触媒, 酸化剤等
の薬剤を触媒,薬剤等貯槽(6) よりラリー貯槽(3) に供
給し,スラリーを調製してもよい。また,液晶パネルか
ら分離された液晶そのものを処理する場合には,液晶を
直接,上記スラリー貯槽(3) に仕込み,超臨界溶媒に混
合,分散させる。
The crushed liquid crystal panel is placed in a slurry storage tank.
Sent to (3). In the slurry storage tank (3), the supercritical solvent supplied from the supercritical solvent storage tank (5) and the liquid crystal panel are mixed and dispersed by a slurry storage stirring blade (4) installed in the slurry storage tank (3) to form a slurry. Prepared. In this case, when particularly desired, a catalyst such as a catalyst and an oxidizing agent necessary for the treatment may be supplied from the catalyst / chemical storage tank (6) to the rally storage tank (3) to prepare a slurry. When processing the liquid crystal itself separated from the liquid crystal panel, the liquid crystal is directly charged into the slurry storage tank (3), mixed and dispersed in a supercritical solvent.

【0033】なお,本発明で使用する超臨界溶媒として
は,臨界温度が常温すなわちおおよそ25°C以上にあ
り,常温,大気圧の条件において液体で存在する溶媒を
用いるのが好ましい。具体的には安価であり、毒性も無
く、加水分解反応が極めて高速で進行する水が特に好ま
しいが,その他メタノール,エタノール等のアルコール
類,ベンゼン,トルエン等の芳香族化合物類,アセトン
等のケトン類,酢酸エチル等のエステル類などの溶媒が
挙げられるが,これに限定されるものではない。また,
複数の超臨界溶媒を混合して用いてもよい。
As the supercritical solvent used in the present invention, it is preferable to use a solvent which has a critical temperature at normal temperature, that is, about 25 ° C. or higher, and exists as a liquid at normal temperature and atmospheric pressure. Specifically, water which is inexpensive, has no toxicity and the hydrolysis reaction proceeds at a very high speed is particularly preferable, but other alcohols such as methanol and ethanol, aromatic compounds such as benzene and toluene, and ketones such as acetone. , And solvents such as esters such as ethyl acetate, but are not limited thereto. Also,
A plurality of supercritical solvents may be used as a mixture.

【0034】上記スラリーは, 高圧スラリーポンプ(7)
により超臨界状態を形成する圧力まで加圧され,超臨界
反応器(8) に送液される。必要な場合には,上記スラリ
ーの送液と同時に溶媒,触媒,薬剤等貯槽(9) 内の流体
を高圧液体ポンプ(10)により,超臨界状態を形成する圧
力まで加圧し,超臨界反応器(8) に送液してもよい。
The slurry is supplied to a high-pressure slurry pump (7)
The liquid is pressurized to a pressure at which a supercritical state is formed, and sent to the supercritical reactor (8). If necessary, simultaneously with sending the slurry, pressurize the fluid in the solvent, catalyst, chemicals, etc. storage tank (9) with a high-pressure liquid pump (10) to a pressure at which a supercritical state is formed. The liquid may be sent to (8).

【0035】上記超臨界反応器(8) 内は加熱ヒータ(14)
により超臨界反応室(13)内が超臨界状態となる温度に加
熱,調温され,また高圧調圧弁(v1)により超臨界状態と
なる圧力に保持されるようにしてある。なお,加熱ヒー
タ(14)の出力は,分解反応熱,酸化反応熱等による超臨
界反応器(8) 内の温度上昇,あるいは温度低下の状況に
応じて調節される。
The inside of the supercritical reactor (8) is a heater (14).
Thus, the temperature inside the supercritical reaction chamber (13) is heated and adjusted to a temperature at which the supercritical reaction chamber (13) is brought into a supercritical state, and is maintained at a pressure at which the inside of the supercritical reaction chamber (13) is brought into a supercritical state by a high-pressure regulating valve (v1). The output of the heater (14) is adjusted according to the temperature rise or temperature drop in the supercritical reactor (8) due to the heat of decomposition reaction, heat of oxidation reaction, etc.

【0036】高圧スラリーポンプ(7) によって超臨界反
応器(8) に送液されたスラリーは,スラリー予備加熱器
(11)により超臨界状態を形成する所定の温度まで加熱さ
れ超臨界反応室(13)に入る。また,高圧液体ポンプ(10)
により超臨界反応器(8) に送液された流体は溶媒,触
媒,薬剤等予備加熱器(12)により超臨界状態を形成する
所定の温度まで加熱され超臨界反応室(13)に入る。
The slurry sent to the supercritical reactor (8) by the high-pressure slurry pump (7) is supplied to the slurry pre-heater.
It is heated to a predetermined temperature for forming a supercritical state by (11) and enters the supercritical reaction chamber (13). In addition, high pressure liquid pump (10)
The fluid sent to the supercritical reactor (8) is heated to a predetermined temperature at which a supercritical state is formed by the preheater (12) for the solvent, catalyst, chemicals, etc., and enters the supercritical reaction chamber (13).

【0037】超臨界反応室(13)においては,超臨界流体
による処理が行われる。すなわち,液晶パネル中のTF
Tや透明電極に含まれる金属成分のうち,超臨界反応室
(13)内の温度,圧力条件において溶解可能な物質は超臨
界流体に溶解する。また液晶パネル中の液晶や偏光板,
シール樹脂,スペーサーなどの樹脂成分は,低分子化合
物への分解が起こり,生成した低分子化合物は超臨界流
体に溶解する。超臨界流体による分解や溶解が起こらな
い,あるいは溶解しきれないガラスや金属等の成分は固
体の状態を保つ。なお,上述の超臨界流体による分解,
溶解においては,処理が超臨界流体中で行われるため,
ダイオキシンを含む各種の有害副生成物はほとんど発生
しない。
In the supercritical reaction chamber (13), processing with a supercritical fluid is performed. That is, the TF in the liquid crystal panel
Supercritical reaction chamber among metal components contained in T and transparent electrode
Substances that can be dissolved under the temperature and pressure conditions in (13) dissolve in the supercritical fluid. In addition, liquid crystal in liquid crystal panel and polarizing plate,
The resin components such as the sealing resin and the spacer are decomposed into low molecular compounds, and the generated low molecular compounds are dissolved in the supercritical fluid. Components such as glass and metal that are not decomposed or dissolved by the supercritical fluid or cannot be completely dissolved remain in a solid state. In addition, the decomposition by the above-mentioned supercritical fluid,
In the dissolution process is performed in a supercritical fluid,
Almost no harmful by-products including dioxin are generated.

【0038】上記超臨界反応室(13)で処理された生成物
は,固体捕集室(15)に送られる。図1に示した超臨界反
応器(8) を用い,該超臨界反応室(13)内に超臨界反応室
撹拌掻出翼(17)等の生成物を固体捕集室(15)側に掻き出
す機構を設置した場合には,該超臨界反応室撹拌掻出翼
(17)を駆動することにより超臨界反応室(13)の出口方向
に生成物を掻き出すことができる。また,超臨界反応器
(8) として図2(b) に示したものを用いた場合には,上
記固体のみが固体捕集室(15)に沈降し,超臨界流体と該
超臨界流体に溶解した成分は,冷却器(18)に送液され
る。
The product processed in the supercritical reaction chamber (13) is sent to a solid collecting chamber (15). Using the supercritical reactor (8) shown in FIG. 1, the products such as the supercritical reaction chamber agitating and scraping blades (17) are introduced into the supercritical reaction chamber (13) to the solid collecting chamber (15) side. If a scraping mechanism is installed, the supercritical reaction chamber stirring blade
By driving (17), the product can be scraped out in the exit direction of the supercritical reaction chamber (13). Also, supercritical reactor
When the material shown in Fig. 2 (b) is used as (8), only the solid settles in the solid collecting chamber (15), and the supercritical fluid and the components dissolved in the supercritical fluid are cooled. The liquid is sent to the vessel (18).

【0039】固体捕集室(15)では,分解生成物および超
臨界流体に溶解する成分を含んだ超臨界流体と固体の分
離が行われ,上記分解生成物と溶解成分を含んだ超臨界
流体は冷却器(18)に送られ,固体は捕集され,固体回収
用高温高圧バルブ(v2)を介して固体成分1として回収さ
れる。
In the solid collecting chamber (15), the supercritical fluid containing the decomposition product and the component dissolved in the supercritical fluid is separated from the solid, and the supercritical fluid containing the decomposition product and the dissolved component is separated. Is sent to a cooler (18), and the solid is collected and collected as a solid component 1 through a high-temperature and high-pressure valve (v2) for solid recovery.

【0040】超臨界反応器(8) を出た生成物は,冷却器
(18)により冷却され,固体捕集槽(19)に送られる。 該固
体捕集槽(19)内は固体捕集槽調温ジャケット(20)により
所定の温度に調整するが,この場合,生成物の温度は超
臨界流体の臨界温度以下となるようにする。該固体捕集
槽(19)では超臨界流体の温度が下がることによって溶解
度が小さくなり,そのため固体として析出した成分が固
体成分2として捕集され,固体回収用高圧バルブ(v3)を
介して回収される。固体捕集槽(19)内で析出しない成分
については,超臨界溶媒と共に該固体捕集槽(19)から輸
送される。
The product exiting the supercritical reactor (8) is
It is cooled by (18) and sent to the solid collecting tank (19). The inside of the solid collecting tank (19) is adjusted to a predetermined temperature by a solid collecting tank temperature control jacket (20). In this case, the temperature of the product is set to be lower than the critical temperature of the supercritical fluid. In the solid collecting tank (19), the solubility of the supercritical fluid decreases as the temperature of the supercritical fluid decreases, so that the component precipitated as a solid is collected as a solid component 2 and collected through a high-pressure valve (v3) for solid recovery. Is done. Components that do not precipitate in the solid collecting tank (19) are transported from the solid collecting tank (19) together with the supercritical solvent.

【0041】上記固体捕集槽(19)を出た生成物は,高圧
調圧弁(v1)により大気圧まで減圧された後,分離槽(21)
に送られる。該分離槽(21)内は調温ジャケット(22)によ
り所定の温度に調整されている。該分離槽(21)内におい
ては,調温された温度,大気圧条件となることで析出し
た固体成分3,溶媒および溶媒可溶液体成分,溶媒不溶
液体成分および気体成分が相分離し,それぞれ回収され
る。
The product exiting the solid collecting tank (19) is depressurized to atmospheric pressure by a high-pressure regulating valve (v1), and then separated into a separation tank (21).
Sent to The inside of the separation tank (21) is adjusted to a predetermined temperature by a temperature control jacket (22). In the separation tank (21), the solid component 3, the solvent and the solvent-soluble component, the solvent-insoluble component and the gas component which are separated by the temperature and atmospheric pressure conditions are separated into phases. Collected.

【0042】なお,本発明においては,所望により,該
超臨界反応器(8) を複数並列に設置し, 同時に処理を行
い処理量の増大を図ってもよい。また,超臨界反応器
(8) を複数直列に設置し, それぞれの該超臨界反応器
(8) の温度を異なる温度に設定し,処理を段階的に行っ
てもよい。
In the present invention, if necessary, a plurality of the supercritical reactors (8) may be installed in parallel, and the processing may be performed simultaneously to increase the throughput. Also, supercritical reactor
(8) are installed in series, and each supercritical reactor
(8) The temperature may be set to a different temperature, and the processing may be performed in stages.

【0043】以下に粉砕した液晶パネルを,超臨界溶媒
として水を用いて処理した場合を例に,目的の各種の回
収物を得るための上記超臨界反応器(8) における温度,
圧力条件について説明する。先ず,例えば液晶パネル中
の金属成分を高収率で回収し,液晶および樹脂成分を容
易に廃棄することができる極めて低分子の化合物に分解
する処理のための条件について示す。この場合,超臨界
反応器(8) の条件を比較的温度,圧力の高い条件,例え
ば臨界温度,臨界圧力より十分高温,高圧条件である温
度773K,圧力35MPa程度の状態に設定する。超
臨界反応器(8)内では透明電極やTFTに含まれるイン
ジウム等の金属やその酸化物等の金属成分の大半は超臨
界流体に溶解する。また,液晶は,分子内のベンゼン
環,シクロヘキサン環を結ぶ−COO−,−CH=CH
−,−CHCH−の結合が開裂し,さらにはベンゼ
ン環,シクロヘキサン環自体の分解反応が起こり二酸化
炭素,メタン,エタン,エチレン,メタノール,エタノ
ール,エチレングリコール等の極めて低分子の化合物に
分解され,超臨界流体中に溶解する。また,液晶パネル
中の偏光板,シール樹脂,スペーサー,透明電極中の樹
脂等の樹脂成分も上記液晶の場合と同様に極めて低分子
の化合物に分解され,超臨界流体中へ溶解する。ガラス
や超臨界流体より完全に溶解することができなかった一
部の金属成分は固体の状態を保つ。
In the following, for example, a case where a crushed liquid crystal panel is treated with water as a supercritical solvent, the temperature, the temperature,
The pressure condition will be described. First, conditions for a process of recovering a metal component in a liquid crystal panel in a high yield and decomposing the liquid crystal and resin components into an extremely low-molecular compound that can be easily disposed will be described. In this case, the condition of the supercritical reactor (8) is set to a condition of relatively high temperature and pressure, for example, a critical temperature, a temperature sufficiently higher than the critical pressure, a high pressure condition of 773K, and a pressure of about 35 MPa. In the supercritical reactor (8), most of metal components such as indium and oxides thereof contained in the transparent electrode and the TFT are dissolved in the supercritical fluid. In addition, the liquid crystal has -COO-, -CH = CH connecting the benzene ring and cyclohexane ring in the molecule.
The bond of-, -CH 2 CH 2- is cleaved, and the decomposition reaction of the benzene ring and the cyclohexane ring itself occurs, resulting in extremely low molecular compounds such as carbon dioxide, methane, ethane, ethylene, methanol, ethanol, and ethylene glycol. Decomposes and dissolves in supercritical fluid. Resin components such as a polarizing plate, a sealing resin, a spacer, and a resin in a transparent electrode in a liquid crystal panel are also decomposed into extremely low-molecular compounds as in the case of the liquid crystal, and dissolved in a supercritical fluid. Some metal components that could not be completely dissolved than glass or supercritical fluid remain in a solid state.

【0044】上記の条件において,固体捕集室(15)から
は液晶パネル内のガラスや超臨界流体に完全に溶解する
ことができなかった一部の金属成分が固体成分1として
回収される。該固体成分1は,酸洗いによるガラスと金
属成分の分離工程,金属成分の製錬工程等の既存の所定
のプロセスにより処理され,ガラスカレットおよび各々
の金属として再利用、すなわちマテリアルリサイクルに
供される。この場合,クロム,ヒ素,鉛等の有害と考え
られる金属も全て回収し,既存の所定のプロセスにより
処理する。また,回収された上記固体成分1や上記酸洗
いによりガラスから分離した金属成分を本発明のスラリ
ー貯槽(3)に供給し,さらに高温,高圧の条件で再度
超臨界流体による処理を行うこともできる。固体捕集槽
(19)には該固体捕集槽(19)の温度,圧力条件で超臨界溶
媒に溶解できなくなった金属成分の固体が固体成分2と
して回収され,有害と考えられる金属も含め全て金属製
錬工程等の既存の所定のプロセスにより処理され,各々
の金属としてマテリアルリサイクルに供される。また,
分離槽(21)からは該分離槽(21)の温度,大気圧の条件に
おいて超臨界溶媒に溶解できなくなった低分子化合物の
固体,液体,気体がそれぞれ固体成分3,溶媒不溶液体
成分,気体成分として,また溶媒に可溶な低分子化合物
は溶媒および溶媒可溶液体成分として回収される。これ
らの化合物は極めて低分子の化合物であり,廃ガス処理
工程,廃液処理工程等,既存の所定のプロセスにより処
理される。また超臨界溶媒は,溶媒可溶液体成分と分離
し,廃液処理工程により処理するか,あるいはシステム
の超臨界溶媒としてリサイクルされる。
Under the above conditions, some metal components that could not be completely dissolved in the glass or supercritical fluid in the liquid crystal panel were recovered as solid components 1 from the solid collection chamber (15). The solid component 1 is treated by an existing predetermined process such as a step of separating glass and metal components by pickling, a smelting process of metal components, and the like, and reused as glass cullet and respective metals, that is, subjected to material recycling. You. In this case, all harmful metals such as chromium, arsenic, and lead are also recovered and treated by an existing predetermined process. Further, the recovered solid component 1 and the metal component separated from the glass by the pickling may be supplied to the slurry storage tank (3) of the present invention, and the supercritical fluid may be treated again under high temperature and high pressure conditions. it can. Solid collection tank
In (19), the solid of the metal component which cannot be dissolved in the supercritical solvent under the temperature and pressure conditions of the solid collecting tank (19) is recovered as a solid component 2, and all the metal smelting including the harmful metal is performed. It is processed by an existing predetermined process such as a process, and is subjected to material recycling as each metal. Also,
From the separation tank (21), solids, liquids and gases of low molecular weight compounds which cannot be dissolved in the supercritical solvent under the conditions of temperature and atmospheric pressure of the separation tank (21) are solid component 3, solvent insoluble component, gas, respectively. The low molecular weight compounds soluble in the solvent and in the solvent are recovered as the solvent and the solvent soluble component. These compounds are extremely low molecular compounds, and are treated by existing predetermined processes such as a waste gas treatment step and a waste liquid treatment step. Also, the supercritical solvent is separated from the solvent-soluble component and treated in a waste liquid treatment step, or recycled as a supercritical solvent in the system.

【0045】上記条件で処理を行った場合には,金属成
分が超臨界流体に溶解するものと溶解しないものに分離
され,上記条件それぞれ固体成分1と固体成分2に得ら
れるため,特に固体成分2の金属成分についてはガラス
との分離工程が必要ないこと,また,液晶および樹脂成
分をダイオキシン等の有害物質を含まない極めて低分子
の化合物に分解するため,有害物質を処理するための特
殊な廃ガス処理工程,廃水処理工程を必要としない点が
有効となる。
When the treatment is carried out under the above conditions, the metal components are separated into those which are dissolved in the supercritical fluid and those which are not dissolved, and are obtained as the solid components 1 and 2 respectively under the above conditions. The metal component (2) does not require a separation process from glass, and decomposes liquid crystal and resin components into extremely low-molecular compounds that do not contain harmful substances such as dioxin. The point that the waste gas treatment process and the waste water treatment process are not required is effective.

【0046】次に,例えば液晶パネル中の液晶や偏光
板,シール樹脂,スペーサー,透明電極中の樹脂等の樹
脂成分を化成品原材料として,あるいは燃料としてリサ
イクルできる形態で高収率に回収するための処理の条件
について示す。この場合,超臨界反応器(8) の条件を比
較的温度,圧力の低い条件,例えば温度593K,圧力
20MPa程度の亜臨界状態に設定する。超臨界反応器
(8) 内で液晶は分子内の弱い結合,例えば−COO−の
結合が開裂し,ベンゼン環やシクロヘキサン環を骨格と
する比較的高分子の分解生成物となり超臨界流体に溶解
する。また,液晶パネル内の樹脂成分の分解反応も起こ
り,上記液晶の場合と同様に比較的高分子の化合物に分
解される。また液晶パネル内の金属成分やガラスについ
ては超臨界流体に溶解せず,固体の状態を保つ。
Next, in order to recover a resin component such as a liquid crystal in a liquid crystal panel, a polarizing plate, a sealing resin, a spacer, a resin in a transparent electrode, etc. as a raw material for a chemical product or as a fuel in a high yield. The conditions for the processing described above will be described. In this case, the condition of the supercritical reactor (8) is set to a condition of relatively low temperature and pressure, for example, a subcritical state of a temperature of 593K and a pressure of about 20 MPa. Supercritical reactor
In (8), the liquid crystal breaks a weak bond in the molecule, for example, a bond of -COO-, and becomes a relatively high-molecular decomposition product having a benzene ring or a cyclohexane ring as a skeleton, and is dissolved in a supercritical fluid. In addition, a decomposition reaction of a resin component in the liquid crystal panel also occurs, and is decomposed into a relatively high molecular compound as in the case of the liquid crystal. The metal components and glass in the liquid crystal panel do not dissolve in the supercritical fluid and remain in a solid state.

【0047】上記の条件において,固体捕集室(15)から
は液晶パネル内のガラスや金属成分が固体成分1として
回収される。該固体成分1は,酸洗いによるガラスと金
属成分の分離工程,金属成分の製錬工程等の既存の所定
のプロセスにより処理され,ガラスカレットおよび各々
の金属としてマテリアルリサイクルに供される。この場
合,有害と考えられる金属も全て回収し,既存の所定の
プロセスにより処理する。また,回収された上記固体成
分1や上記酸洗いによりガラスから分離した金属成分を
本発明のスラリー貯槽(3)に供給し,さらに高温,高
圧の条件で再度超臨界流体による処理を行うこともでき
る。固体捕集槽(19)には該固体捕集槽(19)の温度,圧力
において,超臨界溶媒に溶解できなくなった液晶や樹脂
成分の分解生成物の固体が固体成分2として回収され
る。また,分離槽(21)からは該分離槽(21)の温度,大気
圧の条件において超臨界溶媒に溶解できなくなった分解
生成物が固体,液体,気体がそれぞれ固体成分3,溶媒
不溶液体成分,ごく少量の気体成分として,また溶媒に
可溶な分解生成物は溶媒および溶媒可溶液体成分として
回収される。上記固体成分2,固体成分3,溶媒不溶液
体成分および溶媒可溶液体成分は,液晶あるい樹脂に由
来する比較的高分子量の化合物であり,各々あるいは一
括して既存の所定のプロセスにより分離,精製し化成品
の原材料としてマテリアルリサイクルするか,あるいは
燃料として再利用する、すなわちサーマルリサイクルに
供せられる。気体成分については既存の廃ガス処理工程
にて処理される,また超臨界溶媒は,溶媒可溶液体成分
と分離し,廃液処理工程により処理するか,あるいはシ
ステムの超臨界溶媒としてリサイクルされる。
Under the above conditions, the glass and metal components in the liquid crystal panel are recovered as the solid component 1 from the solid collecting chamber (15). The solid component 1 is processed by an existing predetermined process such as a process of separating glass and metal components by pickling, a smelting process of metal components, and the like, and is subjected to material recycling as glass cullet and each metal. In this case, all the metals considered to be harmful are also recovered and treated by the existing predetermined process. Further, the recovered solid component 1 and the metal component separated from the glass by the pickling may be supplied to the slurry storage tank (3) of the present invention, and the supercritical fluid may be treated again under high temperature and high pressure conditions. it can. At the temperature and pressure of the solid collecting tank (19), solids of liquid crystals and decomposition products of resin components that have become insoluble in the supercritical solvent are collected in the solid collecting tank (19). Decomposition products that cannot be dissolved in the supercritical solvent under the conditions of the separation tank (21) at the temperature and atmospheric pressure of the separation tank (21) are converted into a solid component, a liquid component, and a gas component, respectively. Only a small amount of gaseous components and the decomposition products soluble in the solvent are recovered as a solvent and a solvent-soluble component. The solid component 2, the solid component 3, the solvent-insoluble component and the solvent-soluble component are relatively high molecular weight compounds derived from liquid crystals or resins, and are separated or collectively by an existing predetermined process. Purified and recycled as raw materials for chemical products, or reused as fuel, that is, subjected to thermal recycling. The gaseous components are treated in the existing waste gas treatment process, and the supercritical solvent is separated from the solvent soluble component and treated in the waste liquid treatment process or recycled as the system's supercritical solvent.

【0048】上記条件で処理を行った場合には,気体成
分の発生が小さいため,事実上,液晶パネルの全ての成
分を回収できること,液晶や樹脂の分解生成物をマテリ
アルリサイクルあるいはサーマルリサイクルできる形態
で高収率にて回収できる点,比較的温度,圧力の小さい
条件で処理を行うため,システムの運転コストが小さい
点が有効となる。
When the treatment is carried out under the above conditions, the generation of gaseous components is small, so that virtually all components of the liquid crystal panel can be recovered, and the decomposition products of liquid crystal and resin can be recycled by material or thermal. The advantage is that the system can be recovered at a high yield, and the process is performed under relatively low temperature and pressure conditions, so that the system operating cost is low.

【0049】なお,本発明において超臨界反応器(8) の
温度,圧力の設定条件は上記の条件に限るものではな
く,目的とする回収物を得るために適宜な温度圧力条件
を設定して操作してよい。また,超臨界反応器(8) の温
度,圧力を段階的,あるいは連続的に変化させて,操作
してもよい。
In the present invention, the conditions for setting the temperature and pressure of the supercritical reactor (8) are not limited to the above-mentioned conditions, but appropriate temperature and pressure conditions are set in order to obtain the target recovered product. May be operated. The operation may be performed by changing the temperature and pressure of the supercritical reactor (8) stepwise or continuously.

【0050】以下に液晶パネルを直接超臨界反応器(8)
内の超臨界反応室(13)に仕込む第2の方法について示
す。この場合,図1に示した被処理物貯槽(1) ,粉砕機
(2) ,スラリー貯槽(3),スラリー貯槽撹拌翼(4) ,超臨
界溶媒貯槽(5) ,触媒,薬剤等貯槽(6) および高圧スラ
リーポンプ(7) は使用せず,高圧バルブ(v4)は閉じた状
態で操作する。また,この場合,超臨界反応器(8) とし
ては,図3(a) ,(b) ,(c) に示すように,超臨界反応
器(8) の加熱ヒータ(14)の一部および超臨界反応室(13)
の一部に開閉可能な加熱ヒータ蓋部(24)および超臨界反
応室蓋部(25)を設けたものを用いる。
The liquid crystal panel is directly connected to a supercritical reactor (8)
A second method for charging the supercritical reaction chamber (13) in the inside will be described. In this case, the object storage tank (1) shown in FIG.
(2), slurry storage tank (3), slurry storage tank impeller (4), supercritical solvent storage tank (5), storage tank for catalysts and chemicals (6), and high-pressure slurry pump (7) ) Is operated in the closed state. In this case, as shown in FIGS. 3 (a), (b) and (c), the supercritical reactor (8) includes a part of the heater (14) of the supercritical reactor (8) and Supercritical reaction chamber (13)
A part provided with an openable / closable heater lid part (24) and a supercritical reaction chamber lid part (25) is used.

【0051】処理すべき液晶パネルは,上記加熱ヒータ
蓋部(24)および超臨界反応室蓋部(25)を開け, 直接該超
臨界反応器(8) 内の超臨界反応室(13)に仕込まれ,該加
熱ヒータ蓋部(24)および超臨界反応室蓋部(25)を閉める
ことで超臨界反応器(8) 及び超臨界反応室(13)はそれぞ
れ密閉される。なお,この際図3(a) ,(b) ,(c) に示
すように複数枚の液晶パネル(27)をホルダー(26)に装
填,保持して超臨界反応室に仕込むようにしてもよい。
また図3に示すように液晶パネル(27)は,流体の流れ方
向に沿って配列するとよく,かつ多層に仕込むようにし
てもよい。
The liquid crystal panel to be processed is opened directly to the supercritical reaction chamber (13) in the supercritical reactor (8) by opening the heater lid (24) and the supercritical reaction chamber lid (25). The supercritical reactor (8) and the supercritical reaction chamber (13) are sealed by closing the heater lid (24) and the supercritical reaction chamber lid (25). At this time, as shown in FIGS. 3 (a), 3 (b) and 3 (c), a plurality of liquid crystal panels (27) may be loaded and held in the holder (26) and charged into the supercritical reaction chamber.
Further, as shown in FIG. 3, the liquid crystal panels (27) may be arranged along the flow direction of the fluid, or may be arranged in multiple layers.

【0052】超臨界溶媒は,溶媒,触媒,薬剤等貯槽
(9) から高圧液体ポンプ(10)により超臨界状態を形成す
る圧力まで加圧されて超臨界反応器(8) に供給される。
この場合,所望により処理に必要となる触媒, 酸化剤等
の薬剤を超臨界溶媒と共に溶媒,触媒,薬剤等貯槽(9)
から超臨界反応器(8) に供給してもよい。
The supercritical solvent is a storage tank for a solvent, a catalyst, a drug, etc.
The pressure is increased from (9) to a pressure at which a supercritical state is formed by a high-pressure liquid pump (10) and supplied to a supercritical reactor (8).
In this case, if necessary, a catalyst such as a catalyst and an oxidizing agent necessary for the treatment are stored together with the supercritical solvent in a storage tank for the solvent, catalyst, drug, etc.
To the supercritical reactor (8).

【0053】超臨界反応器(8) 内は加熱ヒータ(14)によ
り超臨界反応室(13)内が超臨界状態となる温度に加熱,
調温され,また高圧調圧弁(v1)により超臨界状態となる
圧力に保持されるようにしてある。なお加熱ヒータの出
力は,分解反応熱,酸化反応熱等による超臨界反応器
(8) 内の温度上昇,あるいは温度低下の状況に応じて調
節される。
The inside of the supercritical reactor (8) is heated by a heater (14) to a temperature at which the inside of the supercritical reaction chamber (13) becomes a supercritical state.
The temperature is controlled, and the pressure is controlled to a supercritical state by a high-pressure regulator (v1). The output of the heater is a supercritical reactor using heat of decomposition reaction, heat of oxidation reaction, etc.
(8) It is adjusted according to the situation of temperature rise or temperature fall.

【0054】超臨界溶媒は,溶媒,触媒,薬剤等予備加
熱器(12)により超臨界状態を形成する所定の温度まで加
熱され超臨界流体となって超臨界反応室(13)に入り,処
理が行われる。すなわち,液晶パネル中のTFTや透明
電極に含まれる金属成分のうち,超臨界反応室(13)内の
温度,圧力条件において溶解可能な物質は超臨界流体に
溶解する。また液晶パネル中の液晶や偏光板,シール樹
脂,スペーサーなどの樹脂成分は,低分子化合物への分
解が起こり,生成した低分子化合物は超臨界流体に溶解
する。超臨界流体による分解や溶解が起こらない,ある
いは溶解しきれないガラスや金属等の成分は固体の状態
を保つ。なお,上記の超臨界流体による分解,溶解にお
いては,超臨界流体中で処理を行うため,ダイオキシン
を含む各種の有害副生成物はほとんど発生しない。
The supercritical solvent is heated to a predetermined temperature at which a supercritical state is formed by a preheater (12) for the solvent, catalyst, chemicals, etc., becomes a supercritical fluid, enters the supercritical reaction chamber (13), and is treated. Is performed. That is, of the metal components contained in the TFTs and the transparent electrodes in the liquid crystal panel, substances that can be dissolved under the temperature and pressure conditions in the supercritical reaction chamber (13) dissolve in the supercritical fluid. In addition, resin components such as liquid crystal, a polarizing plate, a sealing resin, and a spacer in a liquid crystal panel are decomposed into low molecular compounds, and the generated low molecular compounds are dissolved in a supercritical fluid. Components such as glass and metal that are not decomposed or dissolved by the supercritical fluid or cannot be completely dissolved remain in a solid state. In the above-described decomposition and dissolution by the supercritical fluid, since the treatment is performed in the supercritical fluid, various harmful by-products including dioxin are hardly generated.

【0055】液晶パネルの処理段階を詳述すると,超臨
界反応室(13)内では,まず液晶パネル表面の偏光板が超
臨界流体により分解,溶解処理される。同時に液晶パネ
ルのカラーフィルタ基盤板ガラスとTFT基盤板ガラス
を接着しているシール樹脂の分解,溶解が起こり,基盤
板ガラスは剥離し,内側に封入されていた液晶,および
内側面に存在している透明電極,TFT,カラーフィル
タ等が超臨界流体にさらされ分解,溶解処理されること
となる。また,この場合,ガラスは板ガラスとして超臨
界反応器(8) 内に残り回収されることとなる。
The processing steps of the liquid crystal panel will be described in detail. In the supercritical reaction chamber (13), first, a polarizing plate on the surface of the liquid crystal panel is decomposed and dissolved by a supercritical fluid. At the same time, the sealing resin that bonds the color filter base plate glass and the TFT base plate glass of the liquid crystal panel is decomposed and dissolved, and the base plate glass is peeled off, the liquid crystal sealed inside, and the transparent electrode present on the inner surface. , TFTs, color filters, etc., are exposed to a supercritical fluid and decomposed and dissolved. In this case, the glass remains in the supercritical reactor [8] as sheet glass and is collected.

【0056】上記超臨界反応室(13)で処理された流体
は,固体捕集室(15)に送られ,以下上述した第1の仕込
み方法の場合とほば同様の処理を受ける。すなわち,図
1に示すように,超臨界反応室(13)に超臨界反応室撹拌
掻出翼(17)等の掻き出し機構を設置した場合には,該超
臨界反応室撹拌掻出翼(17)を駆動することにより超臨界
反応室(13)の出口方向に生成物を掻き出すこともでき
る。また,超臨界反応器(8) として図2(b) に示したも
のを用いた場合には,上記固体のみが固体捕集室(15)に
沈降し,超臨界流体と該超臨界流体に溶解した成分は,
冷却器(18)に送液される。
The fluid processed in the supercritical reaction chamber (13) is sent to the solid collecting chamber (15) and undergoes substantially the same processing as in the first charging method described above. In other words, as shown in FIG. 1, when a scraping mechanism such as a supercritical reaction chamber stirring scraping blade (17) is installed in the supercritical reaction chamber (13), the supercritical reaction chamber stirring scraping blade (17) is installed. By driving), the product can be scraped out toward the outlet of the supercritical reaction chamber (13). When the supercritical reactor (8) shown in Fig. 2 (b) is used, only the solids settle in the solid collecting chamber (15), and the supercritical fluid and the supercritical fluid are mixed. The dissolved components are
The liquid is sent to the cooler (18).

【0057】固体捕集室(15)では,分解生成物および超
臨界流体に溶解する成分を含んだ超臨界流体と固体の分
離が行われ,上記分解生成物と溶解成分を含んだ超臨界
流体は冷却器(18)に送られ,固体は捕集され,固体回収
用高温高圧バルブ(v2)を介して固体成分1として回収さ
れる。
In the solid collecting chamber (15), a supercritical fluid containing a decomposition product and a component soluble in the supercritical fluid is separated from a solid, and the supercritical fluid containing the decomposition product and the dissolved component is separated. Is sent to a cooler (18), and the solid is collected and collected as a solid component 1 through a high-temperature and high-pressure valve (v2) for solid recovery.

【0058】超臨界反応器(8) を出た生成物は,冷却器
(18)により冷却され,固体捕集槽(19)に送られる。 該固
体捕集槽(19)内は固体捕集槽調温ジャケット(20)により
所定の温度に調整するが,この場合,生成物の温度は超
臨界流体の臨界温度以下となるようにする。該固体捕集
槽(19)においては超臨界流体の温度が下がることによっ
て溶解度が小さくなり,そのため固体として析出した成
分が固体成分2として捕集され,固体回収用高圧バルブ
(v3)を介して回収される。固体捕集槽(19)内で析出しな
い成分については,超臨界溶媒と共に該固体捕集槽(19)
から輸送される。
The product exiting the supercritical reactor (8) is
It is cooled by (18) and sent to the solid collecting tank (19). The inside of the solid collecting tank (19) is adjusted to a predetermined temperature by a solid collecting tank temperature control jacket (20). In this case, the temperature of the product is set to be lower than the critical temperature of the supercritical fluid. In the solid collecting tank (19), the solubility of the supercritical fluid decreases as the temperature of the supercritical fluid decreases, so that the component precipitated as a solid is collected as a solid component 2 and a high pressure valve for collecting the solid is collected.
Recovered via (v3). For components that do not precipitate in the solid collecting tank (19), the solid collecting tank (19)
Transported from.

【0059】上記固体捕集槽(19)を出た生成物は,高圧
調圧弁(v1)により大気圧まで減圧された後,分離槽(21)
に送られる。該分離槽(21)内は調温ジャケット(22)によ
り所定の温度に調整されている。該分離槽(21)内におい
ては,調温された温度,大気圧条件となることで析出し
た固体成分3,溶媒および溶媒可溶液体成分,溶媒不溶
液体成分および気体成分が相分離し,それぞれ回収され
る。
The product exiting the solid collecting tank (19) is depressurized to atmospheric pressure by a high-pressure regulating valve (v1), and then separated.
Sent to The inside of the separation tank (21) is adjusted to a predetermined temperature by a temperature control jacket (22). In the separation tank (21), the solid component 3, the solvent and the solvent-soluble component, the solvent-insoluble component and the gas component which are separated by the temperature and atmospheric pressure conditions are separated into phases. Collected.

【0060】所定の時間超臨界流体による処理を行った
後,高圧液体ポンプ(10)による溶媒等の送液を停止し,
調圧弁(v1)を解放し超臨界反応器(8) 内を大気圧条件に
戻した後,加熱ヒータ蓋部(24),超臨界反応器蓋部(25)
を開け, 反応器内の固体成分を回収する。この際,上記
液晶パネルは,直接超臨界反応器(8) 内に仕込まれてい
るので,板ガラスをそのまま回収することができる。ま
た複数枚の液晶パネルをホルダー(26)を用いて仕込んだ
場合には,該ホルダー(26)と液晶パネル(27)を一括して
回収することができる。得られた板ガラスは,既存の所
定の処理法により,それぞれ分離され,マテリアルリサ
イクルに供される。
After performing the treatment with the supercritical fluid for a predetermined time, the supply of the solvent and the like by the high-pressure liquid pump (10) is stopped,
After opening the pressure regulating valve (v1) and returning the inside of the supercritical reactor (8) to atmospheric pressure, the heater lid (24) and the supercritical reactor lid (25)
Open and collect the solid components in the reactor. At this time, since the liquid crystal panel is directly charged in the supercritical reactor (8), the glass sheet can be recovered as it is. When a plurality of liquid crystal panels are charged using the holder (26), the holder (26) and the liquid crystal panel (27) can be collectively collected. The obtained sheet glass is separated by an existing predetermined treatment method and is subjected to material recycling.

【0061】なお,本発明において,超臨界反応器(8)
を複数並列に設置し, 同時に処理を行い処理量の増大を
図ってもよい。また, 超臨界反応器(8) を複数準備し,
所定の数の反応器においては超臨界流体による処理を行
い, その間に残りの反応器では仕込みを行っておく。前
者の反応器における処理が完了した場合には,仕込みを
行っておいた反応器での処理を開始し,処理が完了した
反応器については,板ガラスの取り出し回収,仕込みを
行うという操作を繰り返し,連続的な処理を行ってもよ
い。
In the present invention, the supercritical reactor (8)
May be installed in parallel, and processing may be performed simultaneously to increase the processing amount. In addition, multiple supercritical reactors (8) were prepared,
A predetermined number of reactors are treated with a supercritical fluid, while the remaining reactors are charged. When the processing in the former reactor is completed, the processing in the reactor that has been charged is started, and for the reactor in which the processing is completed, the operations of taking out, collecting, and charging the plate glass are repeated. Continuous processing may be performed.

【0062】以下に液晶パネルを,超臨界反応室(13)に
直接仕込み,超臨界溶媒として水を用いて処理した場合
を例に,目的の各種の回収物を得るための上記超臨界反
応器(8)における温度,圧力条件について説明する。先
ず,超臨界反応器(8) の条件を比較的温度,圧力の高い
条件,例えば臨界温度,臨界圧力より十分高温,高圧条
件に設定した場合について示す。この場合,透明電極や
TFTに含まれるインジウム等の金属やその酸化物等の
金属成分の大半は超臨界流体に溶解する。また,液晶や
液晶パネル中の偏光板,シール樹脂,スペーサー,透明
電極中の樹脂等の樹脂成分も二酸化炭素,メタン,エタ
ン,エチレン,メタノール,エタノール,エチレングリ
コール等の極めて低分子の化合物に分解され,超臨界流
体中に溶解すため,カラーフィルタ基盤板ガラスとTF
T基盤板ガラスは透明な板ガラスとなる。超臨界流体よ
り完全に溶解することができなかった一部の金属成分は
固体の状態を保つ。
In the following, a liquid crystal panel is directly charged into a supercritical reaction chamber (13) and treated with water as a supercritical solvent. The temperature and pressure conditions in (8) will be described. First, the conditions of the supercritical reactor (8) will be described when the conditions are set at relatively high temperature and pressure, for example, at a critical temperature, a temperature sufficiently higher than the critical pressure, and a high pressure. In this case, most of metal components such as indium and oxides thereof contained in the transparent electrode and the TFT are dissolved in the supercritical fluid. In addition, resin components such as polarizers in liquid crystals and liquid crystal panels, seal resins, spacers, and resins in transparent electrodes are decomposed into extremely low-molecular compounds such as carbon dioxide, methane, ethane, ethylene, methanol, ethanol, and ethylene glycol. To be dissolved in the supercritical fluid, the color filter base plate glass and TF
The T base plate glass is a transparent plate glass. Some metal components that could not be completely dissolved than the supercritical fluid remain in a solid state.

【0063】上記の条件において,超臨界反応室(13)か
らは透明な板ガラスが回収され,マテリアルリサイクル
に供せられる。固体捕集室(15)からは,超臨界流体に完
全に溶解することができなかった一部の金属成分が固体
成分1として回収され,既存の金属成分の製錬工程によ
り処理され,各々の金属としてマテリアルリサイクルに
供される。この場合,クロム,ヒ素,鉛等の有害と考え
られる金属も全て回収し,既存の所定のプロセスにより
処理する。また,回収された上記固体成分1や上記酸洗
いによりガラスから分離した金属成分を本発明のスラリ
ー貯槽(3)に供給し,さらに高温,高圧の条件で再度
超臨界流体による処理を行うこともできる。固体捕集槽
(19)には該固体捕集槽(19)の温度,圧力条件で超臨界溶
媒に溶解できなくなった金属成分の固体が固体成分2と
して回収され,有害と考えられる金属も含め全て金属製
錬工程等の既存の所定のプロセスにより処理され,各々
の金属としてマテリアルリサイクルに供される。また,
分離槽(21)からは該分離槽(21)の温度,大気圧の条件に
おいて超臨界溶媒に溶解できなくなった低分子化合物の
固体,液体,気体がそれぞれ固体成分3,溶媒不溶液体
成分,気体成分として,また溶媒に可溶な低分子化合物
は溶媒および溶媒可溶液体成分として回収される。これ
らの化合物は極めて低分子の化合物であり,廃ガス処理
工程,廃液処理工程等,既存の所定のプロセスにより処
理される。また超臨界溶媒は,溶媒可溶液体成分と分離
し,廃液処理工程により処理する。また上記超臨界溶媒
はシステムの超臨界溶媒としてリサイクルしてもよい。
Under the above conditions, a transparent plate glass is recovered from the supercritical reaction chamber (13) and is subjected to material recycling. From the solid collection chamber (15), some metal components that could not be completely dissolved in the supercritical fluid are recovered as solid components 1 and processed by the existing metal component smelting process. Provided for material recycling as metal. In this case, all harmful metals such as chromium, arsenic, and lead are also recovered and treated by an existing predetermined process. Further, the recovered solid component 1 and the metal component separated from the glass by the pickling may be supplied to the slurry storage tank (3) of the present invention, and the supercritical fluid may be treated again under high temperature and high pressure conditions. it can. Solid collection tank
In (19), the solid of the metal component which cannot be dissolved in the supercritical solvent under the temperature and pressure conditions of the solid collecting tank (19) is recovered as a solid component 2, and all the metal smelting including the harmful metal is performed. It is processed by an existing predetermined process such as a process, and is subjected to material recycling as each metal. Also,
From the separation tank (21), solids, liquids and gases of low molecular weight compounds which cannot be dissolved in the supercritical solvent under the conditions of temperature and atmospheric pressure of the separation tank (21) are solid component 3, solvent insoluble component, gas, respectively. The low molecular weight compounds soluble in the solvent and in the solvent are recovered as the solvent and the solvent soluble component. These compounds are extremely low molecular compounds, and are treated by existing predetermined processes such as a waste gas treatment step and a waste liquid treatment step. The supercritical solvent is separated from the solvent-soluble component and is treated in a waste liquid treatment step. The supercritical solvent may be recycled as a supercritical solvent for the system.

【0064】上記条件で処理を行った場合には,ガラ
ス,超臨界流体に溶解しない金属成分,超臨界流体に溶
解する金属成分,低分子化合物等が分離され回収できる
こと,また,液晶および樹脂成分をダイオキシン等の有
害物質を含まない極めて低分子の化合物に分解するた
め,有害物質を処理するための特殊な廃ガス処理工程,
廃水処理工程を必要としない点が有効となる。
When the treatment is carried out under the above conditions, glass, metal components that do not dissolve in the supercritical fluid, metal components that dissolve in the supercritical fluid, low molecular compounds, etc. can be separated and recovered. A special waste gas treatment process to treat harmful substances,
The point that the wastewater treatment process is not required is effective.

【0065】次に,超臨界反応器(8) の条件を比較的温
度,圧力の低い条件,例えば亜臨界状態に設定した場合
について示す。この場合,液晶や液晶パネル内の樹脂成
分は比較的高分子の分解生成物となり,超臨界流体に溶
解する。また液晶パネル内の金属成分は,透明電極中の
樹脂成分が分解,溶解したためTFT基盤板ガラスから
剥離した状態で固体の状態を保つ。またTFT基盤板ガ
ラスは透明な板ガラスとして,カラーフィルタ基盤板ガ
ラスはカラーフィルタが表面に保存された板ガラスとな
る。
Next, the case where the condition of the supercritical reactor (8) is set to a relatively low temperature and pressure condition, for example, a subcritical state will be described. In this case, the liquid crystal or the resin component in the liquid crystal panel becomes a relatively high-molecular decomposition product and is dissolved in the supercritical fluid. Further, the metal component in the liquid crystal panel keeps a solid state in a state where it is separated from the TFT base plate glass because the resin component in the transparent electrode is decomposed and dissolved. The TFT base glass is a transparent glass, and the color filter base glass is a glass having a color filter stored on the surface.

【0066】上記の条件において,超臨界反応室(13)か
らは液晶パネル内の透明な板ガラスとカラーフィルター
付きの板ガラスが回収されそれぞれマテリアルリサイク
ルに供せられる。固体捕集室(15)からは金属成分のみが
固体成分1として回収され,金属成分の製錬工程等の既
存の所定のプロセスにより処理されマテリアルリサイク
ルに供される。この場合,有害と考えられる金属も全て
回収し,既存の所定のプロセスにより処理する。また,
回収された上記固体成分1や上記酸洗いによりガラスか
ら分離した金属成分を本発明のスラリー貯槽(3)に供
給し,さらに高温,高圧の条件で再度超臨界流体による
処理を行うこともできる。固体捕集槽(19)には該固体捕
集槽(19)の温度,圧力において,超臨界溶媒に溶解でき
なくなった分解生成物の固体が固体成分2として回収さ
れる。また,分離槽(21)からは該分離槽(21)の温度,大
気圧の条件において超臨界溶媒に溶解できなくなった分
解生成物が固体,液体,気体がそれぞれ固体成分3,溶
媒不溶液体成分,ごく少量の気体成分として,また溶媒
に可溶な分解生成物は溶媒および溶媒可溶液体成分とし
て回収される。上記固体成分2,固体成分3,溶媒不溶
液体成分および溶媒可溶液体成分は,液晶あるい樹脂に
由来する比較的高分子量の化合物であり,各々あるいは
一括して既存の所定のプロセスにより分離,精製し化成
品の原材料としてマテリアルリサイクルするか,あるい
は燃料としてサーマルリサイクルに供せられる。気体成
分については既存の廃ガス処理工程にて処理される,ま
た超臨界溶媒は,溶媒可溶液体成分と分離し,廃液処理
工程により処理する。また上記超臨界溶媒は、システム
の超臨界溶媒としてリサイクルされる。
Under the above conditions, the transparent plate glass in the liquid crystal panel and the plate glass with the color filter are recovered from the supercritical reaction chamber (13) and are subjected to material recycling. From the solid collecting chamber (15), only the metal component is recovered as the solid component 1, processed by an existing predetermined process such as a smelting process of the metal component, and provided for material recycling. In this case, all the metals considered to be harmful are also recovered and treated by the existing predetermined process. Also,
The recovered solid component 1 and the metal component separated from the glass by the pickling can be supplied to the slurry storage tank (3) of the present invention, and the treatment with a supercritical fluid can be performed again at high temperature and high pressure. At the temperature and pressure of the solid collecting tank (19), a solid of a decomposition product that cannot be dissolved in the supercritical solvent is recovered as the solid component 2 in the solid collecting tank (19). Decomposition products that cannot be dissolved in the supercritical solvent under the conditions of the separation tank (21) at the temperature and atmospheric pressure of the separation tank (21) are converted into a solid component, a liquid component, and a gas component, respectively. Only a small amount of gaseous components and the decomposition products soluble in the solvent are recovered as a solvent and a solvent-soluble component. The solid component 2, the solid component 3, the solvent-insoluble component and the solvent-soluble component are relatively high molecular weight compounds derived from liquid crystals or resins, and are separated or collectively by an existing predetermined process. It can be refined and recycled as a raw material for chemical products, or it can be subjected to thermal recycling as a fuel. The gas component is treated in the existing waste gas treatment process, and the supercritical solvent is separated from the solvent soluble component and treated in the waste liquid treatment process. The supercritical solvent is recycled as a supercritical solvent in the system.

【0067】上記条件で処理を行った場合には,気体成
分の発生が小さいため,事実上,液晶パネルの全ての成
分を回収できること,液晶や樹脂の分解生成物をマテリ
アルリサイクルあるいはサーマルリサイクルできる形態
で高収率にて回収できる点,比較的温度,圧力の小さい
条件で処理を行うため,システムの運転コストが小さい
点が有効となる。
When the treatment is carried out under the above conditions, since the generation of gaseous components is small, practically all components of the liquid crystal panel can be recovered, and the decomposition products of liquid crystal and resin can be recycled by material or thermal. The advantage is that the system can be recovered at a high yield, and the process is performed under relatively low temperature and pressure conditions, so that the system operating cost is low.

【0068】なお,本発明において超臨界反応器(8) の
温度,圧力の設定条件は上記の条件に限るものではな
く,目的とする回収物を得るために適宜な温度圧力条件
を設定して操作してよい。また,超臨界反応器(8) の温
度,圧力を段階的,あるいは連続的に変化させて,操作
してもよい。
In the present invention, the conditions for setting the temperature and pressure of the supercritical reactor (8) are not limited to the above-mentioned conditions, and appropriate temperature and pressure conditions are set in order to obtain the target recovered material. May be operated. The operation may be performed by changing the temperature and pressure of the supercritical reactor (8) stepwise or continuously.

【0069】[0069]

【実施例】本発明の実施例として,図3(a)の超臨界
反応器を用い,上述した第2の方法,すなわち液晶パネ
ルを直接超臨界反応器に仕込む方法で液晶パネルの処理
を行った。上記処理においては超臨界流体として水を用
い,触媒,酸化剤等の薬剤は加えず,超臨界反応器内の
温度593K,圧力25MPaおよび温度693K,圧
力35MPaで処理を行った。なお,処理する液晶パネ
ルにはノートパソコン用TFTカラー液晶パネルを用い
た。
EXAMPLE As an example of the present invention, a liquid crystal panel was processed by the above-described second method, that is, a method of directly charging a liquid crystal panel into a supercritical reactor, using the supercritical reactor of FIG. Was. In the above treatment, water was used as the supercritical fluid, and the treatment was performed at a temperature of 593K, a pressure of 25MPa, a temperature of 693K, and a pressure of 35MPa in the supercritical reactor without adding a catalyst, an oxidizing agent or the like. Note that a TFT color liquid crystal panel for a notebook computer was used as a liquid crystal panel to be processed.

【0070】温度593K,圧力25M Paで行った処
理では,処理後,超臨界反応室内より透明な板ガラスと
カラーフィルタが残った板ガラスがそれぞれ回収され
た。回収された板ガラス表面には,液晶,偏光板,樹脂
シール,透明電極等は全く観測されなかった。固体捕集
室中には液晶パネルから剥離あるいは溶解したインジウ
ム,酸化チタン等の金属成分が観測され,固体捕集槽に
はビフェニル,メチルフェニルベンゼン等の芳香族化合
物の結晶が比較的少量は観測された。また分離槽内の流
体を分析したところ,メタノール,エタノール,ベンジ
ルアルコール,アニソール,シクロヘキサノール等の液
晶や樹脂が分解し,生成したと考えられる有機化合物が
観測され,処理が良好に行えることが確認された。な
お,この場合,気体成分の発生は非常に少ないが,二酸
化炭素,およびメタンが少量観測された。
In the treatment performed at a temperature of 593 K and a pressure of 25 MPa, after the treatment, a transparent plate glass and a plate glass with a color filter remaining were collected from the supercritical reaction chamber. No liquid crystal, polarizing plate, resin seal, transparent electrode, etc. were observed on the surface of the recovered plate glass. Metal components such as indium and titanium oxide separated or dissolved from the liquid crystal panel are observed in the solid collection chamber, and relatively small amounts of crystals of aromatic compounds such as biphenyl and methylphenylbenzene are observed in the solid collection tank. Was done. When the fluid in the separation tank was analyzed, the liquid crystal and resin such as methanol, ethanol, benzyl alcohol, anisole, and cyclohexanol were decomposed and organic compounds considered to have been generated were observed. Was done. In this case, generation of gaseous components was very small, but small amounts of carbon dioxide and methane were observed.

【0071】温度693K,圧力35MPaで行った処
理では,処理後,超臨界反応室内より2枚の透明な板ガ
ラスが回収された。回収された板ガラス表面には,液
晶,偏光板,樹脂シール,カラーフィルタ,透明電極等
は全く観測されなかった。固体捕集室には酸化チタンが
少量観測され,固体捕集槽からはTFT等から溶解した
インジウム等の金属成分が観測された。また,分離槽内
の流体を分析したところ,ジメチルエーテル,メタノー
ル,エタノール,エチレングリコール,アセトアルデヒ
ド等,液晶や樹脂が分解し,生成したと考えられる極低
分子の有機化合物が観測され,処理が良好に行えること
が確認された。この場合,気体成分としては二酸化炭
素,メタン,エタン,水素等が得られた。
In the treatment performed at a temperature of 693 K and a pressure of 35 MPa, two transparent plate glasses were recovered from the supercritical reaction chamber after the treatment. No liquid crystal, polarizing plate, resin seal, color filter, transparent electrode, etc. were observed on the surface of the recovered plate glass. A small amount of titanium oxide was observed in the solid collection chamber, and metal components such as indium dissolved from TFTs and the like were observed from the solid collection tank. In addition, when the fluid in the separation tank was analyzed, dimethyl ether, methanol, ethanol, ethylene glycol, acetaldehyde, and other very low molecular weight organic compounds that were thought to have been generated by the decomposition of liquid crystals and resins were observed. It was confirmed that it could be done. In this case, carbon dioxide, methane, ethane, hydrogen and the like were obtained as gas components.

【0072】[0072]

【発明の効果】本発明は上記のように構成され,液晶パ
ネルを超臨界反応器内において超臨界流体により分解,
溶解し,その生成物を完全に回収し,リサイクルに供す
ることができる金属成分,ガラス,溶媒可溶液体成分,
溶媒不溶液体成分,気体成分として回収することができ
る。本発明は,従来の処理方法を用いた場合に比較し
て,効率のよいリサイクル処理が行え,超臨界流体を用
いて液晶パネルを分解,溶解し処理するため,有用成分
を極めて高収率で回収することができ,特にインジウム
を回収することができる。また,超臨界流体中で分解を
行うため有害物質の発生を低減するため有害物を処理す
るための特別な工程を必要としないし,処理に際して液
晶パネルのカラ−フィルタ基盤板ガラスやTFT基盤板
ガラスから偏光板を剥離するという工程や,カラ−フィ
ルタ基盤板ガラスとTFT基盤板ガラスを2枚に剥離す
るという工程を必要としないことなどから、処理が簡単
で経済的に行うことができる。
According to the present invention, the liquid crystal panel is decomposed by a supercritical fluid in a supercritical reactor.
Metal components, glass, solvent-soluble components, which can be dissolved and the product completely recovered and recycled
It can be recovered as a solvent insoluble component or a gas component. In the present invention, compared to the case where the conventional processing method is used, the recycling process can be performed more efficiently, and the liquid crystal panel is decomposed, dissolved and processed using a supercritical fluid, so that the useful components can be obtained in an extremely high yield. It can be recovered, especially indium. In addition, since it decomposes in a supercritical fluid, there is no need for a special process for treating harmful substances to reduce the generation of harmful substances. Since there is no need for a step of peeling the polarizing plate or a step of peeling the color filter base plate glass and the TFT base plate glass into two sheets, the processing can be performed simply and economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のリサイクル処理システムの一実施例を
示す説明図。
FIG. 1 is an explanatory view showing one embodiment of a recycling system according to the present invention.

【図2】本発明の構成の他の一実施例を示す説明図。FIG. 2 is an explanatory view showing another embodiment of the configuration of the present invention.

【図3】本発明の構成の他の一実施例を示す説明図。FIG. 3 is an explanatory view showing another embodiment of the configuration of the present invention.

【図4】液晶ディスプレーの構造の説明図。FIG. 4 is an explanatory diagram of a structure of a liquid crystal display.

【図5】液晶パネルの構造の説明図。FIG. 5 is an explanatory diagram of a structure of a liquid crystal panel.

【図6】本発明で使用する超臨界流体を説明する超臨界
状態の説明図。
FIG. 6 is an explanatory diagram of a supercritical state illustrating a supercritical fluid used in the present invention.

【図7】水の超臨界流体の誘電率の説明図。FIG. 7 is an explanatory diagram of a dielectric constant of a supercritical fluid of water.

【図8】水の超臨界流体のイオン積の説明図。FIG. 8 is an explanatory diagram of an ionic product of a supercritical fluid of water.

【符号の説明】[Explanation of symbols]

1 被処理物貯槽 2 粉砕機 3 スラリー貯槽 4 スラリー貯槽撹拌翼 5 超臨界溶媒貯槽 6 触媒,薬剤等貯槽 7 高圧スラリーポンプ 8 超臨界反応器 9 溶媒,触媒,薬剤等貯槽 10 高圧液体ポンプ 11 スラリー予備加熱器 12 溶媒,触媒,薬剤等予備加熱器 13 超臨界反応室 14 加熱ヒータ 15 固体捕集室 16 高温高圧用撹拌軸シール 17 超臨界反応室撹拌掻出翼 18 冷却器 19 固体捕集槽 20 調温ジャケット 21 分離槽 22 調温ジャケット P1,P2,P3 圧力計 T1,T2,T3,T4 温度計 v1 高圧調圧弁 v2 固体回収用高温高圧バルブ v3 固体回収用高圧バルブ v4,v5 高圧バルブ v6,v7 バルブ L1 固体成分回収ライン L2 溶媒および溶媒可溶液体成分回収ライン L3 溶媒不溶液体成分回収ライン L4 気体成分回収ライン 23 仕切メッシュ 24 加熱ヒータ蓋部 25 超臨界反応室蓋部 26 パネルホルダー 27 液晶パネル DESCRIPTION OF SYMBOLS 1 Processing object storage tank 2 Crusher 3 Slurry storage tank 4 Slurry storage tank stirring blade 5 Supercritical solvent storage tank 6 Catalyst, medicine etc. storage tank 7 High pressure slurry pump 8 Supercritical reactor 9 Solvent, catalyst, medicine etc. storage tank 10 High pressure liquid pump 11 Slurry Preheater 12 Preheater for solvents, catalysts, chemicals, etc. 13 Supercritical reaction chamber 14 Heater 15 Solid collection chamber 16 Stirring shaft seal for high temperature and high pressure 17 Supercritical reaction chamber stirring ejection blade 18 Cooler 19 Solid collection tank 20 Temperature control jacket 21 Separation tank 22 Temperature control jacket P1, P2, P3 Pressure gauge T1, T2, T3, T4 Thermometer v1 High pressure regulator v2 Solid recovery high temperature high pressure valve v3 Solid recovery high pressure valve v4, v5 High pressure valve v6 , V7 Valve L1 Solid component recovery line L2 Solvent and solvent soluble component recovery line L3 Solvent insoluble component recovery line L4 Gas component recovery line 23 Partition mesh 4 heater lid 25 supercritical reaction chamber lid 26 panel holder 27 LCD panel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09F 9/00 351 B09B 3/00 304Z Fターム(参考) 2H088 FA18 FA19 FA22 FA23 FA30 2H090 JC20 LA01 4D004 AA06 AA07 AA21 AA24 AB03 AB05 BA05 BA06 BA10 CA04 CA12 CA15 CA32 CA39 CB13 CB27 CB31 CB32 CB42 CB43 CC03 CC09 CC20 DA01 DA02 DA06 DA07 4F301 CA07 CA26 CA34 CA41 CA51 CA62 CA63 CA72 CA73 5G435 AA00 AA17 BB12 HH01 HH11 KK10 LL00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G09F 9/00 351 B09B 3/00 304Z F term (Reference) 2H088 FA18 FA19 FA22 FA23 FA30 2H090 JC20 LA01 4D004 AA06 AA07 AA21 AA24 AB03 AB05 BA05 BA06 BA10 CA04 CA12 CA15 CA32 CA39 CB13 CB27 CB31 CB32 CB42 CB43 CC03 CC09 CC20 DA01 DA02 DA06 DA07 4F301 CA07 CA26 CA34 CA41 CA51 CA62 CA63 CA72 CA73 5G435 AA00 AA17 BB12 HH01 H11 001

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 液晶パネルのリサイクル処理方法であっ
て,超臨界場を作成できる超臨界反応器内に処理すべき
液晶パネルと超臨界溶媒を供給し,該超臨界反応器内を
加熱加圧して上記超臨界溶媒を超臨界流体とし,該超臨
界流体により上記液晶パネルを分解,溶解し,その生成
物を冷却,減圧することにより液晶パネル中の金属成分
等を析出し,かつ該液晶パネル中の液晶及び合成樹脂材
料を低分子化合物等として分離し,リサイクルが可能な
物質を得ることを特徴とする液晶パネルのリサイクル処
理方法。
1. A method for recycling a liquid crystal panel, comprising supplying a liquid crystal panel to be processed and a supercritical solvent into a supercritical reactor capable of creating a supercritical field, and heating and pressurizing the inside of the supercritical reactor. The supercritical solvent is used as a supercritical fluid, the liquid crystal panel is decomposed and dissolved by the supercritical fluid, and the product is cooled and depressurized to precipitate metal components and the like in the liquid crystal panel. A method for recycling a liquid crystal panel, comprising separating a liquid crystal and a synthetic resin material therein as a low molecular compound to obtain a recyclable substance.
【請求項2】 上記液晶パネルは粉砕され,超臨界溶媒
に混合,分散され,臨界圧力に加圧されて上記超臨界反
応器内に供給される請求項1に記載の液晶パネルのリサ
イクル処理方法。
2. The method according to claim 1, wherein the liquid crystal panel is crushed, mixed and dispersed in a supercritical solvent, pressurized to a critical pressure, and supplied into the supercritical reactor. .
【請求項3】 上記液晶パネルは,超臨界反応器内に直
接供給され,上記超臨界溶媒は臨界圧力に加圧されて上
記超臨界反応器に供給される請求項1に記載の液晶パネ
ルのリサイクル処理方法。
3. The liquid crystal panel according to claim 1, wherein the liquid crystal panel is directly supplied into a supercritical reactor, and the supercritical solvent is supplied to the supercritical reactor after being pressurized to a critical pressure. Recycling treatment method.
【請求項4】 上記処理すべき液晶パネルは,回路基盤
を含み,若しくは液晶パネルから分離した液晶であり,
上記超臨界溶媒は臨界圧力に加圧されて上記超臨界反応
器に供給される請求項1に記載の液晶パネルのリサイク
ル処理方法。
4. The liquid crystal panel to be processed is a liquid crystal including a circuit board or separated from the liquid crystal panel.
The method according to claim 1, wherein the supercritical solvent is pressurized to a critical pressure and supplied to the supercritical reactor.
【請求項5】 超臨界溶媒は水である請求項1ないし請
求項4のいずれかに記載の液晶パネルのリサイクル処理
方法。
5. The method for recycling a liquid crystal panel according to claim 1, wherein the supercritical solvent is water.
【請求項6】 上記液晶パネルから回収される物質は,
インジウムである請求項1に記載の液晶パネルのリサイ
クル処理方法。
6. The substance recovered from the liquid crystal panel,
2. The method according to claim 1, wherein the liquid crystal panel is indium.
【請求項7】 上記超臨界流体に分解,溶解しない成分
を超臨界反応器内で回収し,上記生成物を臨界温度以下
に冷却して金属成分等を回収し,その後大気圧に減圧し
て気体成分,溶媒不溶液体成分,溶媒および溶媒可溶液
体成分,固体成分を分離回収するようにした請求項1な
いし6のいずれかに記載の液晶パネルのリサイクル処理
方法。
7. A component that does not decompose and dissolve in the supercritical fluid is recovered in a supercritical reactor, and the product is cooled to a temperature below the critical temperature to recover metal components and the like. 7. The liquid crystal panel recycling method according to claim 1, wherein a gas component, a solvent insoluble component, a solvent and a solvent soluble component, and a solid component are separated and recovered.
【請求項8】 液晶パネルのリサイクル処理システムで
あって,超臨界場を作成できる超臨界反応器内に設けら
れ処理すべき液晶パネルと超臨界溶媒を収納する超臨界
反応室と,該超臨界溶媒を超臨界流体にするよう該超臨
界溶媒を臨界圧力に加圧する高圧ポンプ及び臨界温度に
加温するヒータと,上記超臨界反応室で超臨界流体によ
り液晶パネルは分解,溶解され,その生成物を冷却する
冷却器と,臨界温度以下で析出した液晶パネル中の金属
成分等を回収する固体捕集槽と,臨界圧力以下に生成物
を減圧して液晶パネル中の液晶及び合成樹脂材料を低分
子化合物等として回収する分離槽を具備することを特徴
とする液晶パネルのリサイクル処理システム。
8. A system for recycling a liquid crystal panel, comprising: a supercritical reaction chamber provided in a supercritical reactor capable of creating a supercritical field, containing a liquid crystal panel to be processed and a supercritical solvent; A liquid crystal panel is decomposed and dissolved by the supercritical fluid in the supercritical reaction chamber, and a high-pressure pump for pressurizing the supercritical solvent to a critical pressure and a heater for heating to a critical temperature so that the solvent becomes a supercritical fluid. A cooler that cools the material, a solid collection tank that collects metal components etc. in the liquid crystal panel that has precipitated below the critical temperature, and a product that decompresses the product below the critical pressure to reduce the liquid crystal and synthetic resin material in the liquid crystal panel. A recycling system for a liquid crystal panel, comprising a separation tank for recovering a low-molecular compound or the like.
【請求項9】 上記液晶パネルを粉砕する粉砕機と,超
臨界溶媒を粉砕された液晶パネルに混合,分散してスラ
リーとするスラリー貯槽と,このスラリーを臨界圧力に
加圧して上記超臨界反応器に供給する高圧スラリーポン
プを有する請求項8に記載の液晶パネルのリサイクル処
理システム。
9. A crusher for crushing the liquid crystal panel, a slurry storage tank for mixing and dispersing a supercritical solvent in the crushed liquid crystal panel to form a slurry, and pressing the slurry to a critical pressure to perform the supercritical reaction. 9. The liquid crystal panel recycling system according to claim 8, further comprising a high-pressure slurry pump for supplying to the vessel.
【請求項10】 上記超臨界反応器と超臨界反応室は上
記液晶パネルを直接供給できるよう開閉可能に形成さ
れ,超臨界溶媒を臨界圧力に加圧して上記超臨界反応器
に供給する高圧流体ポンプを有する請求項8に記載の液
晶パネルのリサイクル処理システム。
10. The supercritical reactor and the supercritical reaction chamber are formed to be openable and closable so as to directly supply the liquid crystal panel, and a high-pressure fluid is supplied to the supercritical reactor by pressurizing a supercritical solvent to a critical pressure. The liquid crystal panel recycling system according to claim 8, further comprising a pump.
【請求項11】 超臨界溶媒を臨界圧力に加圧して上記
超臨界反応器に供給する高圧流体ポンプをさらに有する
請求項9に記載の液晶パネルのリサイクル処理システ
ム。
11. The liquid crystal panel recycling system according to claim 9, further comprising a high-pressure fluid pump that pressurizes a supercritical solvent to a critical pressure and supplies the supercritical solvent to the supercritical reactor.
【請求項12】上記超臨界反応器内には,上記超臨界流
体に分解,溶解しない金属成分,無機物質等を回収する
固体捕集室が設けられている請求項8ないし11のいず
れかに記載の液晶パネルのリサイクル処理システム。
12. The supercritical reactor according to claim 8, wherein a solid collecting chamber is provided for collecting metal components, inorganic substances, and the like that are not decomposed and dissolved in the supercritical fluid. The liquid crystal panel recycling system described in the above.
【請求項13】上記超臨界反応器内には生成物を撹拌掻
出するための撹拌掻出翼が設けられている請求項8に記
載の液晶パネルのリサイクル処理システム。
13. The liquid crystal panel recycling system according to claim 8, wherein a stirring scraping blade for stirring and scraping a product is provided in the supercritical reactor.
JP2000046156A 2000-02-23 2000-02-23 Method for recycling treatment of liquid crystal panel and system for recycling treatment Pending JP2001235718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046156A JP2001235718A (en) 2000-02-23 2000-02-23 Method for recycling treatment of liquid crystal panel and system for recycling treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046156A JP2001235718A (en) 2000-02-23 2000-02-23 Method for recycling treatment of liquid crystal panel and system for recycling treatment

Publications (1)

Publication Number Publication Date
JP2001235718A true JP2001235718A (en) 2001-08-31

Family

ID=18568629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046156A Pending JP2001235718A (en) 2000-02-23 2000-02-23 Method for recycling treatment of liquid crystal panel and system for recycling treatment

Country Status (1)

Country Link
JP (1) JP2001235718A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531964A (en) * 2000-04-28 2003-10-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Recovery of precious metals from organic substances-precious metal compositions by supercritical water reactants
WO2004092292A1 (en) 2003-04-14 2004-10-28 Sekisui Chemical Co., Ltd. Method for releasing adhered article
JP2006122784A (en) * 2004-10-27 2006-05-18 Sharp Corp Substrate washing method and substrate washing apparatus
WO2010090218A1 (en) * 2009-02-04 2010-08-12 公立大学法人大阪府立大学 Method for separating/recovering glass and transparent electrode material from liquid crystal panel
KR101131091B1 (en) * 2008-08-11 2012-03-30 인더스트리얼 테크놀로지 리서치 인스티튜트 Method and device for recovering liquid crystal of lcd waste panels
JP2012215406A (en) * 2011-03-31 2012-11-08 Mitsubishi Materials Corp Sample preparation method
CN101733268B (en) * 2009-11-20 2013-04-24 郭玉文 Liquid crystal display (LCD) harmless disassembly method
WO2014070193A1 (en) * 2012-11-02 2014-05-08 Empire Technology Development Llc Processing of electronic waste with supercritical noble gases
CN107159681A (en) * 2017-05-20 2017-09-15 合肥市惠科精密模具有限公司 A kind of method that liquid crystal is reclaimed from TFT LCD liquid crystal displays

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531964A (en) * 2000-04-28 2003-10-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Recovery of precious metals from organic substances-precious metal compositions by supercritical water reactants
JP4599294B2 (en) * 2003-04-14 2010-12-15 積水化学工業株式会社 Laminated glass peeling method
JPWO2004092292A1 (en) * 2003-04-14 2006-07-06 積水化学工業株式会社 Method of peeling adherend
CN100368497C (en) * 2003-04-14 2008-02-13 积水化学工业株式会社 Method for releasing adhered article,and method for recovering electronic part from a laminate and laminated glass releasing method
WO2004092292A1 (en) 2003-04-14 2004-10-28 Sekisui Chemical Co., Ltd. Method for releasing adhered article
US7909959B2 (en) 2003-04-14 2011-03-22 Sekisui Chemical Co., Ltd. Method for releasing adhered article
KR101085346B1 (en) * 2003-04-14 2011-11-23 세키스이가가쿠 고교가부시키가이샤 Separation method of adherend, method for recovering electronic part from electronic part laminate, and separation method of laminate glass
JP2006122784A (en) * 2004-10-27 2006-05-18 Sharp Corp Substrate washing method and substrate washing apparatus
KR101131091B1 (en) * 2008-08-11 2012-03-30 인더스트리얼 테크놀로지 리서치 인스티튜트 Method and device for recovering liquid crystal of lcd waste panels
WO2010090218A1 (en) * 2009-02-04 2010-08-12 公立大学法人大阪府立大学 Method for separating/recovering glass and transparent electrode material from liquid crystal panel
JP5385924B2 (en) * 2009-02-04 2014-01-08 公立大学法人大阪府立大学 Separation and recovery method of glass and transparent electrode material from liquid crystal panel
CN101733268B (en) * 2009-11-20 2013-04-24 郭玉文 Liquid crystal display (LCD) harmless disassembly method
JP2012215406A (en) * 2011-03-31 2012-11-08 Mitsubishi Materials Corp Sample preparation method
WO2014070193A1 (en) * 2012-11-02 2014-05-08 Empire Technology Development Llc Processing of electronic waste with supercritical noble gases
CN107159681A (en) * 2017-05-20 2017-09-15 合肥市惠科精密模具有限公司 A kind of method that liquid crystal is reclaimed from TFT LCD liquid crystal displays

Similar Documents

Publication Publication Date Title
Liu et al. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water
Ma et al. Technological process and optimum design of organic materials vacuum pyrolysis and indium chlorinated separation from waste liquid crystal display panels
JP2001235718A (en) Method for recycling treatment of liquid crystal panel and system for recycling treatment
Fontana et al. Recent developments on recycling end-of-life flat panel displays: A comprehensive review focused on indium
Zhang et al. Energy and valuable resource recovery from waste liquid crystal display panels by an environment-friendly technological process: Pyrolysis of liquid crystals and preparation of indium product
Götze et al. Challenges for the recovery of critical metals from waste electronic equipment-A case study of indium in LCD panels
CN102671921A (en) Waste liquid crystal display panel treatment and resource recycling method
JP4651506B2 (en) Liquid crystal panel processing method and processing apparatus
Zhang et al. Efficient indium leaching and recovery from waste liquid crystal displays panels using microwave and ultrasound-assisted heating system
TW200537169A (en) Use of liquid-crystal displays, and processes for the recycling thereof
CN104498721A (en) Innocent treatment method and system for liquid crystal panel
Savvilotidou et al. Evaluation and comparison of pre-treatment techniques for recovering indium from discarded liquid crystal displays
JP5385924B2 (en) Separation and recovery method of glass and transparent electrode material from liquid crystal panel
CN112645358A (en) Method for recovering valuable metal in lithium cobaltate battery
JP4374772B2 (en) Liquid crystal recovery method
Zhuang et al. Thermal treatment of liquid crystal display panel scraps: the metals migration and potential environmental risk in solid residue
CN114262806B (en) Method for recycling scandium and zirconium from waste solid oxide fuel cell
CN113005307A (en) Method for recycling indium in waste liquid crystal panel by taking self-pyrolysis residue as reducing agent
JP2008240139A (en) Method for recovering indium from display panel
CN104646395B (en) Asia/overcritical water law reclaims the device and method of acetic acid from discarded liquid crystal panel
Yoshida et al. Application of sub-critical water for recovery of tin and glass substrates from LCD panel E-waste
JP2008073619A (en) Method of treating liquid crystal panel
CN216550633U (en) Device for extracting and recycling indium from liquid crystal display panel
JP2012240001A (en) Method for recycling liquid crystal panel
CN113716777A (en) Process for separating organic matters in waste salt by utilizing concentration steam stripping method