JP2001233806A - Perfluoroalkyl group-containing compound and method for producing the same - Google Patents

Perfluoroalkyl group-containing compound and method for producing the same

Info

Publication number
JP2001233806A
JP2001233806A JP2000051128A JP2000051128A JP2001233806A JP 2001233806 A JP2001233806 A JP 2001233806A JP 2000051128 A JP2000051128 A JP 2000051128A JP 2000051128 A JP2000051128 A JP 2000051128A JP 2001233806 A JP2001233806 A JP 2001233806A
Authority
JP
Japan
Prior art keywords
formula
group
compound
isomer
perfluoroalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000051128A
Other languages
Japanese (ja)
Inventor
Shunichi Hirao
俊一 平尾
Akiya Ogawa
昭弥 小川
Hiroichi Aoyama
博一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000051128A priority Critical patent/JP2001233806A/en
Publication of JP2001233806A publication Critical patent/JP2001233806A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/275Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of hydrocarbons and halogenated hydrocarbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of a more efficient additional reaction of a perfluoroalkyl iodide to a carbon-carbon double bond without requiring an additive such as a radical initiator and capable of being carried out under irradiation with light. SOLUTION: The perfluoro iodide is added to an unsaturated group of an unsaturated compound under the irradiation of the light by a xenon lamp to produce the objective perfluoroalkyl group-containing compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パーフルオロアル
キル基含有化合物およびその製造方法に関し、より詳し
くは、特定の波長の光の照射下に、パーフルオロアルキ
ルヨージドを不飽和基に付加させることからなるパーフ
ルオロアルキル基含有化合物の製造方法、およびそのよ
うな製造方法により製造される新規パーフルオロアルキ
ル基含有化合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound containing a perfluoroalkyl group and a method for producing the same, and more particularly, to the addition of a perfluoroalkyl iodide to an unsaturated group under irradiation with light of a specific wavelength. And a novel perfluoroalkyl group-containing compound produced by such a production method.

【0002】[0002]

【従来の技術】パーフルオロアルキルヨージドは、紫外
から近紫外の波長の光を照射すると、ホモリティックに
開裂して、パーフルオロアルキルラジカルを発生する。
この開裂反応を、アセチレンやオレフィンなどの不飽和
結合を有する化合物の共存下に行なうと、パーフルオロ
アルキル基とヨウ素原子とが不飽和結合に1,2−付加
することが知られている。しかし、このような付加反応
は、長時間の光照射を必要とする場合が多く、目的化合
物の収率も低い、などの理由から、合成化学的にはあま
り有用な方法でない。そこで、通常はラジカル開始剤の
共存下に、パーフルオロアルキルヨージドを炭素−炭素
不飽和結合に付加させる反応が採用されている。
2. Description of the Related Art When irradiated with light having a wavelength from ultraviolet to near ultraviolet, perfluoroalkyl iodide is homolytically cleaved to generate a perfluoroalkyl radical.
It is known that when this cleavage reaction is carried out in the presence of a compound having an unsaturated bond such as acetylene or olefin, a perfluoroalkyl group and an iodine atom are added to the unsaturated bond by 1,2-addition. However, such an addition reaction is not a very useful method in terms of synthetic chemistry because it often requires long-time light irradiation and the yield of the target compound is low. Therefore, a reaction of adding a perfluoroalkyl iodide to a carbon-carbon unsaturated bond is usually employed in the presence of a radical initiator.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、ラジ
カル開始剤のような添加剤を必要としない光照射下で行
なえる、より効率的なパーフルオロアルキルヨージドの
炭素−炭素および炭素−窒素不飽和結合への付加反応方
法を提供しようとするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a more efficient perfluoroalkyl iodide carbon-carbon and carbon-nitrogen process which can be performed under light irradiation without the need for additives such as radical initiators. It is an object of the present invention to provide a method for adding an unsaturated bond.

【0004】[0004]

【課題を解決するための手段】上記課題は、キセノンラ
ンプによる光照射下、パーフルオロアルキルヨージドを
不飽和化合物の不飽和基に付加させることを特徴とする
パーフルオロアルキル基含有化合物の製造方法に解決さ
れる。また、この反応により得られる式:
The object of the present invention is to provide a method for producing a compound containing a perfluoroalkyl group, which comprises adding a perfluoroalkyl iodide to an unsaturated group of an unsaturated compound under light irradiation by a xenon lamp. Will be resolved. Also, the formula obtained by this reaction:

【化4】 (式中、RおよびR1は、同一または異なって、水素原
子、炭素数1〜8のアルキル基または炭素数6〜24の
アリール基を表し、Rfは炭素数1〜20のパーフルオ
ロアルキル基を表す。)で示されるパーフルオロアルキ
ル基含有化合物、式:
Embedded image (Wherein, R and R 1 are the same or different and represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 24 carbon atoms, and Rf is a perfluoroalkyl group having 1 to 20 carbon atoms) Represents a perfluoroalkyl group-containing compound represented by the formula:

【化5】 (式中、Rfは炭素数1〜20のパーフルオロアルキル
基を表す。)で示されるパーフルオロアルキル基含有化
合物、および式:
Embedded image (In the formula, Rf represents a perfluoroalkyl group having 1 to 20 carbon atoms.) A compound having a perfluoroalkyl group represented by the formula:

【化6】 (式中、Rfは炭素数1〜20のパーフルオロアルキル
基を表す。)で示されるパーフルオロアルキル基含有化
合物は、新規化合物であり、医農薬の合成中間体として
有用である。
Embedded image (In the formula, Rf represents a perfluoroalkyl group having 1 to 20 carbon atoms.) The perfluoroalkyl group-containing compound represented by the formula: is a novel compound, and is useful as a synthetic intermediate for medicinal and agricultural chemicals.

【0005】[0005]

【発明の実施の形態】本発明の製造方法において、不飽
和化合物の不飽和基へのパーフルオロアルキルヨージド
の付加反応は、キセノンランプにより光照射下、溶媒の
存在下または不存在下で行なわれる。反応温度は、−3
0〜60℃、好ましくは+20〜30℃である。キセノ
ンランプとしては、市販のものが使用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, the addition reaction of a perfluoroalkyl iodide to an unsaturated group of an unsaturated compound is carried out under light irradiation with a xenon lamp in the presence or absence of a solvent. It is. The reaction temperature is -3
It is 0-60 degreeC, Preferably it is + 20-30 degreeC. A commercially available xenon lamp can be used.

【0006】所望により用いる溶媒としては、ヘキサン
などの脂肪族炭化水素系溶媒、トリクロロメタンなどの
ハロゲン化脂肪族炭化水素、ベンゼン、トルエンなどの
芳香族炭化水素、ベンゾトリフルオリドなどのハロゲン
化芳香族炭化水素系溶媒などを例示することができる。
所望により用いる溶媒の量は、出発物質を溶解または分
散できる程度の量でよく、具体的には、出発物質に対し
て10〜500重量%である。
[0006] Solvents to be used as desired include aliphatic hydrocarbon solvents such as hexane, halogenated aliphatic hydrocarbons such as trichloromethane, aromatic hydrocarbons such as benzene and toluene, and halogenated aromatics such as benzotrifluoride. Examples thereof include hydrocarbon solvents.
The amount of the solvent optionally used may be an amount capable of dissolving or dispersing the starting material, and specifically, is 10 to 500% by weight based on the starting material.

【0007】本発明の製造方法において、不飽和化合物
としては、不飽和基、例えば炭素−炭素2重結合、炭素
−炭素3重結合または炭素−窒素2重結合を有する化合
物ならいずれも使用できる。具体的には、アセチレン系
化合物、例えば、式:
In the production method of the present invention, as the unsaturated compound, any compound having an unsaturated group such as a carbon-carbon double bond, a carbon-carbon triple bond or a carbon-nitrogen double bond can be used. Specifically, an acetylene-based compound such as a compound represented by the formula:

【化7】R1−C≡CH (式中、R1は、水素原子、炭素数1〜15のアルキル
基または炭素数6〜24のアリール基を表す。)で示さ
れる化合物;オレフィン化合物、例えば、式:
A compound represented by the formula: R 1 -C≡CH (wherein, R 1 represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms or an aryl group having 6 to 24 carbon atoms); For example, the formula:

【化8】R2−CH=CH2 (式中、R2は、水素原子または炭素数1〜15のアル
キル基を表す。)で示される化合物、式:
A compound represented by the formula: R 2 —CH = CH 2 (wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 15 carbon atoms);

【化9】CH2=C(CH3)−C(CH3)=CH2 で示される化合物、式:A compound represented by the formula CH 2 CC (CH 3 ) —C (CH 3 ) = CH 2 , a compound represented by the formula:

【化10】 (式中、RおよびR'は、同一または異なって、水素原
子、炭素数1〜20のアルキル基または炭素数6〜24
のアリール基を表す。)で示される化合物、
Embedded image (Wherein, R and R ′ are the same or different and are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a C 6 to C 24
Represents an aryl group. ),

【0008】式:Formula:

【化11】R3−CH=C=CH2 (式中、R3は、水素原子、炭素数1〜20のアルキル
基または炭素数3〜8のシクロアルキル基を表す。)で
示される化合物、式:
A compound represented by the formula: R 3 —CH = C = CH 2 (wherein R 3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms). ,formula:

【化12】 で示される化合物、式:Embedded image A compound represented by the formula:

【化13】 で示される化合物などが挙げられる。Embedded image And the like.

【0009】パーフルオロアルキルヨージドとしては、
パーフルオロアルキル基に1〜20個の炭素原子、好ま
しくは1〜15個の炭素原子を有する化合物が使用でき
る。
As the perfluoroalkyl iodide,
Compounds having from 1 to 20 carbon atoms, preferably from 1 to 15 carbon atoms, in the perfluoroalkyl group can be used.

【0010】[0010]

【実施例】以下、実施例を示し、本発明を具体的に説明
する。 実施例1 パイレックス製試験管にn−C1021I(0.3mmol)
を入れ、アルゴン置換した後、ベンゾトリフルオリド
(0.2ml)および基質としてR1−C≡CH(式中、
1は、フェニル基またはn−ヘキシル基である。)
(0.9mmol)を加えた。試験管中の溶液をキセノンラ
ンプ(500W)(ウシオ電機株式会社製)により、距
離30cmのところから室温で10時間照射した。反応
後、溶媒を留去し、生成物であるR1−CI=CH−n−
1021をGPCにより単離した。結果を表1に示す。
The present invention will be described below in detail with reference to examples. Example 1 pyrex tube n-C 10 F 21 I ( 0.3mmol)
And after purging with argon, benzotrifluoride (0.2 ml) and R 1 -C≡CH as a substrate (wherein,
R 1 is a phenyl group or an n-hexyl group. )
(0.9 mmol) was added. The solution in the test tube was irradiated with a xenon lamp (500 W) (manufactured by Ushio Inc.) from a distance of 30 cm at room temperature for 10 hours. After the reaction, the solvent was distilled off, and the product R 1 -CI = CH-n-
C 10 F 21 was isolated by GPC. Table 1 shows the results.

【表1】 [Table 1]

【0011】実施例2 基質として、R2−CH=CH2(式中、R2は、n−ヘ
キシル基、シアノ基または−COOC25を表す。)を
用いた以外は、実施例1と同様にして付加反応を行なっ
て、R2−CHI−CH2−n−C1021を得た。結果を
表2に示す。
Example 2 Example 1 was repeated except that R 2 —CH = CH 2 (wherein R 2 represents an n-hexyl group, a cyano group or —COOC 2 H 5 ) was used as a substrate. by performing an addition reaction in the same manner as to obtain a R 2 -CHI-CH 2 -n- C 10 F 21. Table 2 shows the results.

【表2】 [Table 2]

【0012】実施例3 基質としてCH2=C(CH3)−C(CH3)=CH2を用い
た以外は、実施例1と同様にして付加反応を行なって、
CH2I−C(CH3)=C(CH3)−CH2−n−C 1021
びCH2=C(CH3)−C(CH2−n-C1021)=CH2
モル比75:25 で得た。収率は合計で23%であっ
た。
Example 3 CH as a substrateTwo= C (CHThree) -C (CHThree) = CHTwoUsing
The addition reaction was carried out in the same manner as in Example 1 except for
CHTwoIC (CHThree) = C (CHThree) -CHTwo-N-C TenFtwenty onePassing
And CHTwo= C (CHThree) -C (CHTwo-N-CTenFtwenty one) = CHTwoTo
Obtained at a molar ratio of 75:25. The yield was 23% in total.
Was.

【0013】実施例4 基質として式:Example 4 As a substrate, the formula:

【化14】 (式中のRおよびR'は表3に記載した通りである。)
で示される化合物を用いる以外は、実施例1と同様にし
て付加反応を行なって、式:
Embedded image (R and R ′ in the formula are as described in Table 3.)
An addition reaction was carried out in the same manner as in Example 1 except for using the compound represented by the formula:

【化15】 で示される化合物を得た。結果を表3に示す。Embedded image Was obtained. Table 3 shows the results.

【表3】 [Table 3]

【0014】化合物(1):1 H−NMR(300MHz,CDCl3) (E−アイソマー) δ:3.26(t,J=6.8Hz,2H),2.84
(dt,J=6.9,7.0Hz,2H),5.98
(t,J=7.1Hz,1H),7.2−7.4(m,5
H),3.33(t,JHF=18.6Hz,2H) (Z−アイソマー) δ:3.11(t,J=6.9Hz,2H),2.60
(dt,J=6.9,7.2Hz,2H),5.73
(t,J=7.2Hz,1H),7.2−7.4(m,5
H),3.21(t,JHF=18.6Hz,2H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−81.4(3F),−111.9(2F),−12
2.0−122.3(10F),−123.3(2F),
−123.7(2F),−126.7(2F) (Z−アイソマー) δ:−81.4(3F),−112.8(2F),−12
2.0−122.3(10F),−123.3(2F),
−123.7(2F),−126.7(2F)
Compound (1): 1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 3.26 (t, J = 6.8 Hz, 2H), 2.84
(Dt, J = 6.9, 7.0 Hz, 2H), 5.98
(T, J = 7.1 Hz, 1H), 7.2-7.4 (m, 5
H), 3.33 (t, J HF = 18.6 Hz, 2H) (Z-isomer) δ: 3.11 (t, J = 6.9 Hz, 2H), 2.60
(Dt, J = 6.9, 7.2 Hz, 2H), 5.73
(T, J = 7.2 Hz, 1H), 7.2-7.4 (m, 5
H), 3.21 (t, J HF = 18.6 Hz, 2H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: -81.4 (3F), -111.9 (2F) , -12
2.0-122.3 (10F), -123.3 (2F),
-123.7 (2F), -126.7 (2F) (Z-isomer) δ: -81.4 (3F), -112.8 (2F), -12
2.0-122.3 (10F), -123.3 (2F),
-123.7 (2F), -126.7 (2F)

【0015】化合物(2):1 H−NMR(300MHz,CDCl3) (E−アイソマー) δ:1.31(d,J=7.2Hz,3H),3.11
(t,J=6.9Hz,2H),2.60(dt,J=
6.9,7.2Hz,2H),5.58(t,J=7.2H
z,1H),7.22−7.40(m,3H),7.15
−7.17(m,2H),3.65−3.85(m,2
H) (Z−アイソマー) δ:1.38(d,J=6.8Hz,3H),3.09
(t,J=6.9Hz,2H),2.48(dt,J=
6.9,7.2Hz,2H),5.75(t,J=7.2H
z,1H),7.22−7.40(m,3H),7.15
−7.17(m,2H),3.15−3.38(m,2
H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−81.4(3F),−109.0(d,Jgem=2
79Hz,1F),−115.2(d,Jgem=279H
z,1F),−121.0(d,Jgem=273Hz,1
F),−121.3(d,Jgem=273Hz,1F),
−122.3(10F),−123.3(2F),−12
6.7(2F) (Z−アイソマー) δ:−81.4(3F),−112.3(d,Jgem=2
76Hz,1F),−116.6(d,Jgem=276H
z,1F),−119.8(d,Jgem=293Hz,1
F),−121.0(d,Jgem=293Hz,1F),
−122.3(10F),−123.3(2F),−12
6.7(2F)
Compound (2): 1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 1.31 (d, J = 7.2 Hz, 3H), 3.11
(T, J = 6.9 Hz, 2H), 2.60 (dt, J =
6.9, 7.2 Hz, 2H), 5.58 (t, J = 7.2H)
z, 1H), 7.22-7.40 (m, 3H), 7.15
−7.17 (m, 2H), 3.65−3.85 (m, 2
H) (Z-isomer) δ: 1.38 (d, J = 6.8 Hz, 3H), 3.09
(T, J = 6.9 Hz, 2H), 2.48 (dt, J =
6.9, 7.2 Hz, 2H), 5.75 (t, J = 7.2H)
z, 1H), 7.22-7.40 (m, 3H), 7.15
−7.17 (m, 2H), 3.15−3.38 (m, 2
H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: −81.4 (3F), −109.0 (d, J gem = 2)
79 Hz, 1F),-115.2 (d, J gem = 279H
z, 1F), -121.0 (d, J gem = 273 Hz, 1
F), -121.3 (d, J gem = 273 Hz, 1F),
-122.3 (10F), -123.3 (2F), -12
6.7 (2F) (Z-isomer) δ: -81.4 (3F), -112.3 (d, J gem = 2
76Hz, 1F), -116.6 (d, J gem = 276H)
z, 1F), -119.8 (d, J gem = 293 Hz, 1
F), -121.0 (d, J gem = 293 Hz, 1F),
-122.3 (10F), -123.3 (2F), -12
6.7 (2F)

【0016】化合物(3):1 H−NMR(300MHz,CDCl3) (E−アイソマー) δ:0.86(t,J=6.8Hz,3H),1.20−
1.40(m,6H),1.62−1.88(m,2
H),2.83(m,2H),3.11(t,J=6.9
Hz,2H),3.45−3.62(m,1H),5.7
3(t,J=6.9Hz,1H),7.13−7.15
(m,2H),7.25−7.40(m,3H) 2.60(dt,J=6.9,7.2Hz,2H),5.5
8(t,J=7.2Hz (Z−アイソマー) δ:0.91(t,J=6.8Hz,3H),1.20−
1.40(m,6H),1.62−1.88(m,2
H),2.56(dt,J=7.0,6.9Hz,2H) ,3.11(t,J=6.9Hz,2H),3.05−3.
27(m,1H),5.73(t,J=6.9Hz,1
H),7.13−7.15(m,2H),7.25−7.4
0(m,3H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−81.4(3F),−107.8(d,Jgem=2
77Hz,1F),−113.0(d,Jgem=276H
z,1F),−120.4(d,Jgem=299Hz,1
F),−122.2(d,Jgem=299Hz,1F),
−122.4(10F),−123.4(2F),−12
6.8(2F) (Z−アイソマー) δ:−81.4(3F),−110.4(d,Jgem=2
77Hz,1F),−115.2(d,Jgem=278H
z,1F),−119.7(d,Jgem=293Hz,1
F),−120.9(d,Jgem=292Hz,1F),
−122.4(10F),−123.4(2F),−12
6.8(2F)
Compound (3): 1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 0.86 (t, J = 6.8 Hz, 3H), 1.20-
1.40 (m, 6H), 1.62-1.88 (m, 2
H), 2.83 (m, 2H), 3.11 (t, J = 6.9)
Hz, 2H), 3.45-3.62 (m, 1H), 5.7
3 (t, J = 6.9 Hz, 1H), 7.13-7.15
(M, 2H), 7.25-7.40 (m, 3H) 2.60 (dt, J = 6.9, 7.2 Hz, 2H), 5.5
8 (t, J = 7.2 Hz (Z-isomer) δ: 0.91 (t, J = 6.8 Hz, 3H), 1.20 −
1.40 (m, 6H), 1.62-1.88 (m, 2
H), 2.56 (dt, J = 7.0, 6.9 Hz, 2H), 3.11 (t, J = 6.9 Hz, 2H), 3.05-3.
27 (m, 1H), 5.73 (t, J = 6.9 Hz, 1
H), 7.13-7.15 (m, 2H), 7.25-7.4
0 (m, 3H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: -81.4 (3F), -107.8 (d, J gem = 2
77 Hz, 1F), -113.0 (d, J gem = 276H)
z, 1F), -120.4 (d, J gem = 299 Hz, 1
F), -122.2 (d, J gem = 299 Hz, 1F),
-122.4 (10F), -123.4 (2F), -12
6.8 (2F) (Z-isomer) δ: -81.4 (3F), -110.4 (d, J gem = 2
77 Hz, 1F), -115.2 (d, J gem = 278H)
z, 1F), -119.7 (d, J gem = 293 Hz, 1
F), -120.9 (d, J gem = 292 Hz, 1F),
-122.4 (10F), -123.4 (2F), -12
6.8 (2F)

【0017】化合物(4):1 H−NMR(300MHz,CDCl3) (E−アイソマー) δ:0.89(t,J=6.6Hz,3H),1.25−
1.45(m,8H),2.13(t,J=7.5Hz,
2H),2.68(dt,J=7.2,7.2Hz,2
H),2.75(t,JCF=18.9Hz,2H),3.
14(t,J=7.2Hz,2H),5.35(t,J=
7.2Hz,1H) (Z−アイソマー) δ:0.89(t,J=6.6Hz,3H),1.25−
1.45(m,8H),2.13(t,J=7.5Hz,
2H),2.61(dt,J=7.3,7.0Hz,2
H),2.81(t,JCF=18.9Hz,2H),3.
15(t,J=7.0Hz,2H),5.50(t,J=
7.5Hz,1H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−81.4(3F),−113.5(2F),−12
2.4(10F),−123.3(2F),−123.7
(2F),−126.7(2F) (Z−アイソマー) δ:−81.4(3F),−112.7(2F),−12
2.3(10F),−123.3(2F),−123.7
(2F),−126.7(2F)
Compound (4): 1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 0.89 (t, J = 6.6 Hz, 3H), 1.25-
1.45 (m, 8H), 2.13 (t, J = 7.5 Hz,
2H), 2.68 (dt, J = 7.2, 7.2 Hz, 2
H), 2.75 (t, J CF = 18.9 Hz, 2H), 3.
14 (t, J = 7.2 Hz, 2H), 5.35 (t, J =
7.2 Hz, 1H) (Z-isomer) δ: 0.89 (t, J = 6.6 Hz, 3H), 1.25-
1.45 (m, 8H), 2.13 (t, J = 7.5 Hz,
2H), 2.61 (dt, J = 7.3, 7.0 Hz, 2
H), 2.81 (t, J CF = 18.9 Hz, 2H), 3.
15 (t, J = 7.0 Hz, 2H), 5.50 (t, J =
7.5 Hz, 1 H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: -81.4 (3F), -113.5 (2F), -12
2.4 (10F),-123.3 (2F),-123.7
(2F), -126.7 (2F) (Z-isomer) δ: -81.4 (3F), -112.7 (2F), -12
2.3 (10F), -123.3 (2F), -123.7
(2F),-126.7 (2F)

【0018】化合物(5)1 H−NMR(300MHz,CDCl3) (トランスアイソマー) δ:0.89(t,J=6.9Hz,3H),1.15−
1.35(m,6H),1.38−1.48(m,1
H),1.70−1.82(m,1H),3.10−3.2
3(m,2H),5.30(dd,J=9.6,15.4
Hz,1H),5.56(dt,J=6.8,15.4H
z,1H)19 F−NMR(282MHz,CDCl3) (トランスアイソマー) δ:−81.4(3F),−114.9(d,Jgem=2
81Hz,1F),−118.4(d,Jgem=277H
z,1F),−119.8(d,Jgem=295Hz,1
F),−121.3(d,Jgem=298Hz,1F),
−122.5(10F),−123.4(2F),−12
3.7(2F),−126.8(2F)
Compound (5) 1 H-NMR (300 MHz, CDCl 3 ) (trans isomer) δ: 0.89 (t, J = 6.9 Hz, 3H), 1.15-
1.35 (m, 6H), 1.38-1.48 (m, 1
H), 1.70-1.82 (m, 1H), 3.10-3.2
3 (m, 2H), 5.30 (dd, J = 9.6, 15.4)
Hz, 1H), 5.56 (dt, J = 6.8, 15.4H)
z, 1H) 19 F-NMR (282 MHz, CDCl 3 ) (trans isomer) δ: −81.4 (3F), −114.9 (d, J gem = 2)
81 Hz, 1F), -118.4 (d, J gem = 277H)
z, 1F), -119.8 (d, J gem = 295 Hz, 1
F), -121.3 (d, J gem = 298 Hz, 1F),
-122.5 (10F), -123.4 (2F), -12
3.7 (2F),-126.8 (2F)

【0019】実施例5 基質としてR3−CH=C=CH2(式中、R3は、t−
ブチル基、n−ブチル基またはシクロヘキシル基を表
す。)で示される化合物を用いた以外は、実施例1と同
様にして付加反応を行なって、R3−CH=CI−CH2
−n−C1021を得た。結果を表4に示す。
Example 5 As a substrate, R 3 —CH = C 基質 CH 2 (where R 3 is t-
Represents a butyl group, an n-butyl group or a cyclohexyl group. )), The addition reaction was carried out in the same manner as in Example 1 except that the compound represented by R 3 —CH = CI—CH 2 was used.
To obtain a -n-C 10 F 21. Table 4 shows the results.

【表4】 [Table 4]

【0020】実施例6 基質として式:Example 6 As a substrate, the formula:

【化16】 で示される化合物を用いる以外は、実施例1と同様にし
て付加反応を行なって、式:
Embedded image An addition reaction was carried out in the same manner as in Example 1 except for using the compound represented by the formula:

【化17】 で示される化合物を得た。収率は92%であった。Embedded image Was obtained. The yield was 92%.

【0021】実施例7 パイレックス製2口反応管に、基質としての式:Example 7 In a Pyrex two-necked reaction tube, the following formula was used as a substrate:

【化18】 で示される化合物(1mmol)およびベンゾトリフルオリ
ド(0.2ml)を加え、大過剰のCF3Iガスを反応管に
吹き込み、ドライアイスクーラーによって、CF3Iを
還流させた。実施例1と同じ条件でキセノンランプによ
り5時間照射した。反応後、溶媒を留去して、式:
Embedded image (1 mmol) and benzotrifluoride (0.2 ml) were added, and a large excess of CF 3 I gas was blown into the reaction tube, and CF 3 I was refluxed with a dry ice cooler. Irradiation was performed for 5 hours with a xenon lamp under the same conditions as in Example 1. After the reaction, the solvent is distilled off and the formula:

【化19】 で示される化合物を得た。収率84%。Embedded image Was obtained. Yield 84%.

【0022】1H−NMR(300MHz,CDCl3) (E−アイソマー) δ:2.87(dt,J=7.2,7.0Hz,2H),
3.26(t,J=7.0Hz,2H),3.34(q,
HF=10.7Hz,2H),5.94(t,J=7.2
Hz,1H),7.27−7.40(m,5H) (Z−アイソマー) δ:2.59(dt,J=7.2,7.0Hz,2H),
3.12(t,J=7.0Hz,2H),3.17(q,
HF=9.4Hz,2H),5.72(t,J=6.9H
z,1H),7.30−7.54(m,5H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−64.2(t,JCF=10.3Hz,3F) (Z−アイソマー) δ:−65.0(t,JCF=10.3Hz,3F)
1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 2.87 (dt, J = 7.2, 7.0 Hz, 2H),
3.26 (t, J = 7.0 Hz, 2H), 3.34 (q,
J HF = 10.7 Hz, 2H), 5.94 (t, J = 7.2
Hz, 1H), 7.27-7.40 (m, 5H) (Z-isomer) δ: 2.59 (dt, J = 7.2, 7.0 Hz, 2H),
3.12 (t, J = 7.0 Hz, 2H), 3.17 (q,
J HF = 9.4 Hz, 2H), 5.72 (t, J = 6.9 H)
z, 1H), 7.30-7.54 (m, 5H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: -64.2 (t, J CF = 10.3 Hz, 3F) (Z-isomer) δ: -65.0 (t, J CF = 10.3 Hz, 3F)

【0023】実施例8 基質として式:Example 8 As a substrate, the formula:

【化20】 で示される化合物を用い、キセノンランプによる照射時
間を10時間とした以外は、実施例7と同様にして付加
反応を行なって、式:
Embedded image The addition reaction was carried out in the same manner as in Example 7, except that the irradiation time with a xenon lamp was changed to 10 hours using the compound represented by the formula:

【化21】 で示される化合物を得た。収率は84%であった。Embedded image Was obtained. The yield was 84%.

【0024】実施例9 パイレックス製反応管に、式:Example 9 In a Pyrex reaction tube, the formula:

【化22】 で示される化合物(0.9mmol)、C1021I(0.3mm
ol)およびベンゾトリフルオリド(0.2ml)を加え、
実施例1と同じ条件でキセノンランプにより10時間照
射した。反応後、溶媒を留去して、式:
Embedded image (0.9 mmol), C 10 F 21 I (0.3 mm)
ol) and benzotrifluoride (0.2 ml)
Irradiation was performed for 10 hours with a xenon lamp under the same conditions as in Example 1. After the reaction, the solvent is distilled off and the formula:

【化23】 で示される化合物を得た。収率72%。Embedded image Was obtained. Yield 72%.

【0025】1H−NMR(300MHz,CDCl3) (E−アイソマー) δ:3.02(m,2H),3.18(m,2H),7.
14(s,1H),7.30−7.49(m,5H) (Z−アイソマー) δ:6.95(s,1H),7.33−7.47(m,5
H)19 F−NMR(282MHz,CDCl3) (E−アイソマー) δ:−81.4(3F),−111.4(2F),−12
2.1(2F),−122.4(10F),−123.3
(2F),−126.8(2F) (Z−アイソマー) δδ:−81.4(3F),−114.0(2F),−1
22.1(2F),−122.4(10F),−123.
3(2F),−126.8(2F)
1 H-NMR (300 MHz, CDCl 3 ) (E-isomer) δ: 3.02 (m, 2H), 3.18 (m, 2H), 7.
14 (s, 1H), 7.30-7.49 (m, 5H) (Z-isomer) δ: 6.95 (s, 1H), 7.33-7.47 (m, 5
H) 19 F-NMR (282 MHz, CDCl 3 ) (E-isomer) δ: -81.4 (3F), -111.4 (2F), -12
2.1 (2F), -122.4 (10F), -123.3
(2F), -126.8 (2F) (Z-isomer) δδ: -81.4 (3F), -114.0 (2F), -1
22.1 (2F), -122.4 (10F), -123.
3 (2F),-126.8 (2F)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 251/08 C07C 251/08 // C07B 37/02 C07B 37/02 61/00 61/00 D (72)発明者 小川 昭弥 大阪府吹田市山田丘2番1号 大阪大学大 学院工学研究科物質化学専攻材料合成化学 講座 (72)発明者 青山 博一 大阪府摂津市西一津屋1番1号 ダイキン 工業株式会社淀川製作所内 Fターム(参考) 4H006 AA01 AA02 AB01 AB20 AB84 AC21 AC30 AC59 AD17 BA95 BB11 BB12 BB61 BC10 BC35 EA02 EA03 EA12 EA21 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int. Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 251/08 C07C 251/08 // C07B 37/02 C07B 37/02 61/00 61/00 D (72 ) Inventor Shoya Ogawa 2-1 Yamadaoka, Suita-shi, Osaka Department of Materials Chemistry, Department of Materials Chemistry, Graduate School of Engineering, Osaka University (72) Inventor Hirokazu Aoyama 1-1-1, Nishi-Itsuya, Settsu-shi, Osaka Daikin Industrial Co. 4H006 AA01 AA02 AB01 AB20 AB84 AC21 AC30 AC59 AD17 BA95 BB11 BB12 BB61 BC10 BC35 EA02 EA03 EA12 EA21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 キセノンランプによる光照射下、パーフ
ルオロアルキルヨージドを不飽和化合物の不飽和基に付
加させることを特徴とするパーフルオロアルキル基含有
化合物の製造方法。
1. A method for producing a perfluoroalkyl group-containing compound, wherein perfluoroalkyl iodide is added to an unsaturated group of an unsaturated compound under light irradiation by a xenon lamp.
【請求項2】 不飽和化合物が、炭素−炭素2重結合を
有する化合物である請求項1に記載の製造方法。
2. The method according to claim 1, wherein the unsaturated compound is a compound having a carbon-carbon double bond.
【請求項3】 不飽和化合物が、炭素−炭素3重結合を
有する化合物である請求項1に記載の製造方法。
3. The method according to claim 1, wherein the unsaturated compound is a compound having a carbon-carbon triple bond.
【請求項4】 式: 【化1】 (式中、RおよびR'は、同一または異なって、水素原
子、アルキル基またはアリール基を表し、Rfはパーフ
ルオロアルキル基を表す。)で示されるパーフルオロア
ルキル基含有化合物。
4. The formula: (Wherein, R and R ′ are the same or different and each represent a hydrogen atom, an alkyl group or an aryl group, and Rf represents a perfluoroalkyl group).
【請求項5】 式: 【化2】 (式中、Rfはパーフルオロアルキル基を表す。)で示
されるパーフルオロアルキル基含有化合物。
5. The formula: embedded image (In the formula, Rf represents a perfluoroalkyl group.)
【請求項6】 式: 【化3】 (式中、Rfはパーフルオロアルキル基を表す。)で示
されるパーフルオロアルキル基含有化合物
6. The formula: embedded image (In the formula, Rf represents a perfluoroalkyl group.)
JP2000051128A 2000-02-28 2000-02-28 Perfluoroalkyl group-containing compound and method for producing the same Pending JP2001233806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051128A JP2001233806A (en) 2000-02-28 2000-02-28 Perfluoroalkyl group-containing compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000051128A JP2001233806A (en) 2000-02-28 2000-02-28 Perfluoroalkyl group-containing compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001233806A true JP2001233806A (en) 2001-08-28

Family

ID=18572812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051128A Pending JP2001233806A (en) 2000-02-28 2000-02-28 Perfluoroalkyl group-containing compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001233806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077002A (en) * 2004-08-09 2006-03-23 Kanto Denka Kogyo Co Ltd Preparation method of (un)substituted saturated hydrocarbon
WO2019216289A1 (en) * 2018-05-07 2019-11-14 国立大学法人お茶の水女子大学 Iodine-containing compound
JP2020125268A (en) * 2019-02-05 2020-08-20 国立大学法人お茶の水女子大学 Method for producing fluorine-containing compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077002A (en) * 2004-08-09 2006-03-23 Kanto Denka Kogyo Co Ltd Preparation method of (un)substituted saturated hydrocarbon
WO2019216289A1 (en) * 2018-05-07 2019-11-14 国立大学法人お茶の水女子大学 Iodine-containing compound
JP2020125268A (en) * 2019-02-05 2020-08-20 国立大学法人お茶の水女子大学 Method for producing fluorine-containing compound
JP7211837B2 (en) 2019-02-05 2023-01-24 国立大学法人お茶の水女子大学 Method for producing fluorine-containing compound

Similar Documents

Publication Publication Date Title
JP6798468B2 (en) Method for producing hexafluorobutadiene
JP6782592B2 (en) Method for producing fluorine-containing compound
JP5371033B2 (en) Trifunctional nitrile oxide and method for producing the same
JP2005145966A (en) Synthesis of pentafluorosulfuranyl arylene
JP2001233806A (en) Perfluoroalkyl group-containing compound and method for producing the same
Billard et al. Synthetic uses of thioesters of trifluoromethylated acids. Part 2: Reactions with alkenes
Ogawa et al. Highly regioselective iodoperfluoroalkylation of allenes with perfluoroalkyl iodides upon irradiation with near-UV light
JP2001278874A (en) Fluorinated oxetane derivative and method for producing the same
JPWO2018066371A1 (en) Method for producing E-olefin compound
Brunel et al. New efficient and totally stereoselective copper allylic benzoyloxylation of sterol derivatives
JP2001192346A (en) Method for producing perfluoroalkadiene
JP2011140474A (en) Method for producing difluorocyclopropane compound
JP6014486B2 (en) Method for producing farnesal using bis (acetylacetonato) oxovanadium (IV)
JP2017036231A (en) Composition
RU2596195C2 (en) Method for fluorinating halogenated olefines
JP2005047856A (en) Method for producing fluoroether compound
JP6751514B2 (en) Tetrafluorosulfanylpyridine
EP3359513B1 (en) Process for the preparation of organic halides
JP5470756B2 (en) 1,4-Naphthalene diether derivative, process for producing the same, and photopolymerizable composition containing the 1,4-naphthalene diether derivative
JPH11302217A (en) Production of acid chloride
JP7086104B2 (en) Chlorinated bis (3,3,3-trifluoro-1-propenyl) ether, its production method and its use
JP2013151477A (en) Method for producing farnesal using bis(acetylacetonato)dioxomolybdenum(vi)
Legros et al. Trifluoromethylcyclohexane as a new solvent? Limits of use
JP3711388B2 (en) Method for producing fluorine-containing ether
Yang et al. Regioselective addition reactions of 3-phenylsulfonyl-2-trifluoromethyl-1, 3-butadiene with nucleophiles