JP2001232379A - Method of treating waste water - Google Patents

Method of treating waste water

Info

Publication number
JP2001232379A
JP2001232379A JP2000384128A JP2000384128A JP2001232379A JP 2001232379 A JP2001232379 A JP 2001232379A JP 2000384128 A JP2000384128 A JP 2000384128A JP 2000384128 A JP2000384128 A JP 2000384128A JP 2001232379 A JP2001232379 A JP 2001232379A
Authority
JP
Japan
Prior art keywords
wastewater
hydrogen peroxide
treatment
waste water
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000384128A
Other languages
Japanese (ja)
Other versions
JP3811614B2 (en
Inventor
Kazuyoshi Suzuki
和義 鈴木
Toyoichi Yokomaku
豊一 横幕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kankyo Engineering Co Ltd
Original Assignee
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kankyo Engineering Co Ltd filed Critical Kankyo Engineering Co Ltd
Priority to JP2000384128A priority Critical patent/JP3811614B2/en
Publication of JP2001232379A publication Critical patent/JP2001232379A/en
Application granted granted Critical
Publication of JP3811614B2 publication Critical patent/JP3811614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simple and economical waste water treating method nearly perfectly decomposing organic and inorganic substances by oxidation up to gaseous carbon dioxide, water and nitrogen, in the waste water treating method for decomposing the organic and inorganic substances in the waste water by a wet type oxidation. SOLUTION: In the waste water treating method for decomposing the organic and inorganic substances contained in the hardly decomposable substance containing waste water and/high concentration of the waste water under heated temperature and compression by oxidation, hydrogen peroxide is used as an oxidizer and the waste water is treated under a condition of pH <=6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境ホルモン等の
難分解性物質含有廃水や高濃度廃水を処理した場合に、
これらの廃水中に含有されている有機性及び無機性物質
を、炭酸ガス、水、窒素にまで酸化分解するのに有効な
湿式酸化方式を用いた廃水の処理方法に関する。
The present invention relates to a method for treating wastewater containing highly decomposable substances such as environmental hormones or high-concentration wastewater.
The present invention relates to a wastewater treatment method using a wet oxidation method effective for oxidatively decomposing organic and inorganic substances contained in these wastewaters into carbon dioxide, water and nitrogen.

【0002】[0002]

【従来の技術】水中の汚濁物質は、河川や湖沼等の自然
の中で、沈殿、凝集、酸化、還元等の物理化学的、生物
学的な作用を受けて分解除去されて浄化される。特に有
機物を含んだ汚濁は、微生物による生物学的な作用で浄
化され易い。これを利用した活性汚泥によって有機性廃
水を処理する活性汚泥法は、浄化能力が高く、比較的に
処理経費が少なくて済む等の利点があり、広く一般に行
なわれている。しかし、有機物の分解に長時間を要し、
しかも、微生物の成育に適した濃度に廃水を希釈する必
要があるので処理施設の設置面積が広大になり、更に、
処理によって生み出される生物難分解性物質等を含む余
剰汚泥の処理を必要とし、かかる余剰汚泥の処理に関し
て、莫大な処理コストの問題や廃棄による環境汚染発生
等の問題もある。
2. Description of the Related Art Pollutants in water are decomposed and purified in nature such as rivers and lakes by physicochemical and biological actions such as precipitation, aggregation, oxidation and reduction. In particular, pollutants containing organic matter are easily purified by the biological action of microorganisms. The activated sludge method of treating organic wastewater with activated sludge utilizing this method has advantages such as high purification ability and relatively low treatment cost, and is widely used in general. However, it takes a long time to decompose organic substances,
Moreover, the wastewater needs to be diluted to a concentration suitable for the growth of microorganisms, so the installation area of the treatment facility becomes large,
It is necessary to treat excess sludge containing biorefractory substances and the like generated by the treatment, and there are problems such as enormous treatment cost and generation of environmental pollution due to disposal of such excess sludge.

【0003】上記生物処理方法に対して、廃水を湿式酸
化によって化学的に酸化処理して浄化する方法がある。
この方法では、高濃度の有機物を含む水溶液に対し、例
えば、0.40〜20MPaの圧力下、150〜370
℃の温度で、有機物の酸化分解を行う。かかる方法によ
れば、有機性及び無機性物質を多く含む高濃度廃水を、
無害な炭酸ガス、水、窒素にまで分解することが可能で
ある。しかし、この方法では、反応速度が遅く、完全に
酸化分解するには長時間を要し、又、環境ホルモン等の
難分解性物質に対しては分解率が低いという問題もあ
る。近年、これを解消すべく、各種酸化触媒の使用や、
触媒を特定の担体に担持させる方法等が検討されている
が、未だ充分とは言えない。又、酸化剤としてオゾン又
は過酸化水素を用い、常温、常圧で有機物を酸化分解す
る方法等が提案されているが、常温、常圧下で処理を行
なっているため、高価なオゾンを多く必要とし、経済的
でない上に反応速度が遅く、有機物の分解率が低いとい
った問題があり、これも充分なものとは言えなかった。
In contrast to the biological treatment method, there is a method of purifying wastewater by chemically oxidizing wastewater by wet oxidation.
In this method, an aqueous solution containing a high-concentration organic substance is subjected to, for example, 150 to 370 under a pressure of 0.40 to 20 MPa.
At a temperature of ° C., oxidative decomposition of organic substances is carried out. According to such a method, high-concentration wastewater containing a large amount of organic and inorganic substances,
It can be decomposed into harmless carbon dioxide, water and nitrogen. However, this method has the problems that the reaction rate is slow, it takes a long time to completely oxidatively decompose, and the decomposition rate is low for hardly decomposable substances such as environmental hormones. In recent years, in order to solve this, use of various oxidation catalysts,
A method of supporting a catalyst on a specific carrier has been studied, but it is not yet sufficient. Further, a method of oxidizing and decomposing organic substances at normal temperature and normal pressure using ozone or hydrogen peroxide as an oxidizing agent has been proposed. However, since treatment is performed at normal temperature and normal pressure, a large amount of expensive ozone is required. However, there is a problem that it is not economical, the reaction rate is low, and the decomposition rate of organic substances is low, and this cannot be said to be sufficient.

【0004】これに対し、特公平3−34996号公報
に、廃水を固体触媒の存在下に、370℃以下の温度
で、該廃水が液相を保持する圧力下に処理するに際し
て、該廃水中の有機性及び無機物質を窒素、炭素ガス及
び水にまで分解するに必要な理論酸素量の1.0〜1.
5倍量の酸素を含有するガスと、オゾン及び/又は過酸
化水素の共存下に該廃水を湿式酸化する廃水の処理方法
が提案されている。かかる方法によれば、従来、酸化剤
として使用していた分子状酸素に、オゾン及び/又は過
酸化水素を併用させることで、比較的、低温、低圧で反
応が遂行し、有機物を高い効率で分解処理できるとされ
ている。
On the other hand, Japanese Patent Publication No. 3-34996 discloses that when treating wastewater in the presence of a solid catalyst at a temperature of 370.degree. Of the theoretical oxygen amount required to decompose the organic and inorganic substances into nitrogen, carbon gas and water.
There has been proposed a method for treating wastewater in which a wastewater is wet-oxidized in the presence of a gas containing five times the amount of oxygen and ozone and / or hydrogen peroxide. According to such a method, by using ozone and / or hydrogen peroxide in combination with molecular oxygen which has been conventionally used as an oxidizing agent, the reaction is performed at a relatively low temperature and a low pressure, and organic substances can be efficiently converted. It is said that it can be disassembled.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者らの検討によれば、確かに上記した廃水の処理方法で
は、酸素を含有するガスのみで酸化処理する場合より
も、その処理効率を向上することが確認されるものの、
未だ完全に有機性及び無機性物質を、炭酸ガス、水、窒
素にまで酸化分解するところ迄には至っていない。又、
酸化分解処理にオゾンを用いる場合には、オゾンが高価
であるので処理コストがかかり、しかも、未反応オゾン
の発生に対して、無害化処理が必要となるといった問題
があった。更に、酸素を含有するガスに、過酸化水素を
併用する処理にあっては処理が煩雑になるという問題が
ある。
However, according to the study of the present inventors, it is true that the above-mentioned wastewater treatment method improves the treatment efficiency more than the case where the oxidation treatment is performed only with the gas containing oxygen. Although it is confirmed that
The organic and inorganic substances have not yet been completely oxidized and decomposed into carbon dioxide, water and nitrogen. or,
In the case of using ozone for the oxidative decomposition treatment, there is a problem that the treatment cost is high because ozone is expensive, and that a detoxification treatment is required for the generation of unreacted ozone. Furthermore, there is a problem that the treatment becomes complicated when the treatment is carried out using hydrogen peroxide in combination with the gas containing oxygen.

【0006】従って、本発明の目的は、環境ホルモン等
の難分解性物質含有廃水や高濃度廃水を処理した場合に
おける、廃水中の有機性及び無機性物質を湿式酸化で酸
化分解して浄化する廃水の処理方法において、有機性及
び無機性物質をほぼ完全に、炭酸ガス、水、窒素にまで
酸化分解することができる簡易且つ経済的な廃水の処理
方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to purify organic and inorganic substances in wastewater by oxidative decomposition with wet oxidation when treating wastewater containing highly decomposable substances such as environmental hormones or high-concentration wastewater. It is an object of the present invention to provide a simple and economical wastewater treatment method capable of almost completely oxidatively decomposing organic and inorganic substances into carbon dioxide, water and nitrogen.

【0007】[0007]

【課題を解決するための手段】上記の目的は、下記の本
発明によって達成される。即ち、本発明は、加温加圧下
で、難分解性物質含有廃水及び/又は高濃度廃水に含有
されている有機性及び無機性物質を酸化分解する廃水の
処理方法において、酸化剤として過酸化水素を用い、p
H6以下の条件で処理することを特徴とする廃水の処理
方法である。
The above objects are achieved by the present invention described below. That is, the present invention provides a method for treating wastewater that oxidizes and decomposes organic and inorganic substances contained in hardly decomposable substance-containing wastewater and / or high-concentration wastewater under heating and pressure. Using hydrogen, p
A wastewater treatment method characterized by treating under the condition of H6 or less.

【0008】[0008]

【発明の実施の形態】本発明の好ましい実施の形態を挙
げて本発明を詳細に説明する。本発明者らは、上記した
従来技術の問題点を解決すべく鋭意研究の結果、難分解
性物質含有廃水及び/又は高濃度廃水を湿式酸化法によ
り処理する場合に、酸化剤として、酸素を含有するガス
やオゾンを用いることなく、加温加圧下、過酸化水素の
みを用いて(好ましくは、その使用量を炭酸ガス等への
酸化分解処理に必要な理論酸素量の0.1〜5倍とす
る)、pH6以下の酸性条件下で処理することで、廃水
中に含まれている有機性及び無機性物質を、ほぼ完全
に、無害な炭酸ガス、水、窒素にまで酸化分解すること
ができることを知見して本発明に至った。更に、本発明
者らの検討によれば、過酸化水素と共に金属触媒を用い
て処理すれば、比較的低温条件下でも、高効率の処理が
可能となることがわかった。以下、本発明の廃水の処理
方法で使用する各材料について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to preferred embodiments of the present invention. The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, when treating wastewater containing a hardly decomposable substance and / or high-concentration wastewater by a wet oxidation method, oxygen was used as an oxidizing agent. Without using the contained gas or ozone, using only hydrogen peroxide under heating and pressurization (preferably, the usage amount is 0.1 to 5 times the theoretical oxygen amount required for the oxidative decomposition treatment to carbon dioxide gas or the like). And oxidatively decompose organic and inorganic substances contained in the wastewater almost completely to harmless carbon dioxide, water and nitrogen. The inventors have found that the present invention can be performed, and have reached the present invention. Further, according to the study of the present inventors, it has been found that, when the treatment is performed using a metal catalyst together with hydrogen peroxide, a highly efficient treatment can be performed even under a relatively low temperature condition. Hereinafter, each material used in the wastewater treatment method of the present invention will be described.

【0009】先ず、本発明の廃水の処理方法では、酸化
剤として液体状の過酸化水素のみを使用する。従って、
未反応オゾンの後処理の問題や、オゾンにかかる高コス
トの問題、使用するガス量についての煩雑な制御といっ
た問題を生じることがない。更に、過酸化水素の使用量
としては、廃水中の有機性及び無機性物質を、炭酸ガ
ス、水、窒素にまで酸化分解するのに必要な理論酸素量
の0.1〜5倍の範囲で使用することが好ましい。過酸
化水素の量が、該理論酸素量の0.1倍よりも少ない
と、酸化状態が不充分となり、一方、過酸化水素の量を
上記理論酸素量の5倍よりも多くしても分解効率の更な
る向上は望めないため経済的でなく、いずれも好ましく
ない。
First, in the method for treating wastewater of the present invention, only liquid hydrogen peroxide is used as an oxidizing agent. Therefore,
There is no problem of post-treatment of unreacted ozone, high cost of ozone, and complicated control of the amount of gas used. Further, the amount of hydrogen peroxide used is in the range of 0.1 to 5 times the theoretical amount of oxygen required to oxidatively decompose organic and inorganic substances in wastewater to carbon dioxide, water and nitrogen. It is preferred to use. If the amount of hydrogen peroxide is less than 0.1 times the theoretical amount of oxygen, the oxidation state becomes insufficient. On the other hand, if the amount of hydrogen peroxide is more than 5 times the above theoretical amount of oxygen, decomposition occurs. Since further improvement in efficiency cannot be expected, it is not economical and neither is preferable.

【0010】本発明においては、酸化剤として、上記の
過酸化水素に加えて、従来公知の化学酸化方法において
使用されている酸化剤、例えば、過酸化カルシウム、過
硫酸アンモニウム、アルキルヒドロペルオキシド、過酸
エステル、過酸化ジアルキル又はジアシル等を添加し
て、過酸化水素と併用してもよい。
In the present invention, as the oxidizing agent, in addition to the above-mentioned hydrogen peroxide, oxidizing agents used in conventionally known chemical oxidation methods, for example, calcium peroxide, ammonium persulfate, alkyl hydroperoxide, peracid An ester, dialkyl peroxide, diacyl or the like may be added and used in combination with hydrogen peroxide.

【0011】更に、本発明の廃水の処理方法では、加温
加圧下、pH6以下の酸性条件下で、過酸化水素による
酸化分解処理を行うことを特徴とする。本発明者らの検
討によれば、従来知られていた廃水の湿式酸化処理方法
では、いずれもpH9以上のアルカリ性の条件下で酸化
処理が行なわれていたが、酸化剤として過酸化水素のみ
を用いる場合には、アルカリ性の条件下で酸化分解する
よりも、pH6以下、更には5以下、より好ましくは、
pH1.5〜3の酸性条件下で酸化分解を行なった方
が、廃水中の有機性及び無機性物質の分解効率を向上で
き、更には、これらの物質が、炭酸ガス、水、窒素にま
で酸化分解する完全分解率をも格段に向上させることが
できることがわかった。
Further, the wastewater treatment method of the present invention is characterized in that the oxidative decomposition treatment with hydrogen peroxide is performed under acidic conditions of pH 6 or less under heating and pressure. According to the study of the present inventors, in the conventionally known wet oxidation treatment method for wastewater, the oxidation treatment was performed under alkaline conditions of pH 9 or more, but only hydrogen peroxide was used as an oxidizing agent. When used, the pH is not more than 6, more preferably not more than 5, more preferably not more than oxidative decomposition under alkaline conditions.
Performing oxidative decomposition under acidic conditions of pH 1.5 to 3 can improve the efficiency of decomposition of organic and inorganic substances in wastewater, and furthermore, these substances can be converted to carbon dioxide, water and nitrogen. It was found that the complete decomposition rate of oxidative decomposition can be significantly improved.

【0012】更に、本発明者らの検討によれば、本発明
の廃水の処理方法においては、酸化剤として用いる過酸
化水素は、複数回に分けて添加する方が好ましいことが
わかった。即ち、過酸化水素を複数回に分けて添加する
と、有機性及び無機性物質を、炭酸ガス、水、窒素にま
で酸化分解する完全分解率が、一度に過酸化水素を添加
した場合に比べて格段に向上できることが確認できた。
本発明においては、処理量によっても異なるが、例え
ば、2〜5回に分割して過酸化水素を添加することが好
ましい。
Further, according to the study by the present inventors, it has been found that in the wastewater treatment method of the present invention, it is preferable to add hydrogen peroxide used as an oxidizing agent in a plurality of portions. That is, when hydrogen peroxide is added in a plurality of times, the complete decomposition rate of oxidatively decomposing organic and inorganic substances into carbon dioxide, water, and nitrogen is reduced as compared with the case where hydrogen peroxide is added at one time. It was confirmed that it could be significantly improved.
In the present invention, although it differs depending on the treatment amount, for example, it is preferable to add hydrogen peroxide in two to five portions.

【0013】本発明の廃水の処理方法では、上記で説明
したように、加温加圧下、酸化剤として過酸化水素を用
い、pH6以下の条件下で処理すれば、難分解性物質含
有廃水及び/又は高濃度廃水に含有されている有機性及
び無機性物質の酸化分解処理法として十分な効果が得ら
れるが、更に、下記に挙げるような金属触媒を添加し、
金属触媒の存在下で過酸化水素による酸化分解処理を行
えば、反応効率、反応速度を著しく向上させることが可
能となる。この結果、有機性及び無機性物質を、より効
率よく、ほぼ完全に酸化分解処理することができる。特
に、金属触媒を用いると、比較的に低温で処理した場合
にも、効率よく、ほぼ完全に無害な炭酸ガス、水、窒素
にまで酸化分解することができる。
In the method for treating wastewater of the present invention, as described above, if the treatment is carried out under a condition of pH 6 or less using hydrogen peroxide as an oxidizing agent under heating and pressurization, the wastewater containing a hardly decomposable substance and And / or a sufficient effect is obtained as an oxidative decomposition treatment method for organic and inorganic substances contained in high-concentration wastewater, and further, a metal catalyst as described below is added,
When the oxidative decomposition treatment with hydrogen peroxide is performed in the presence of a metal catalyst, the reaction efficiency and the reaction rate can be significantly improved. As a result, organic and inorganic substances can be more efficiently and almost completely oxidatively decomposed. In particular, when a metal catalyst is used, it can be efficiently and oxidatively decomposed to almost completely harmless carbon dioxide, water and nitrogen even when treated at a relatively low temperature.

【0014】この際に使用できる金属触媒としては、例
えば、アルミニウム、鉄、コバルト、ニッケル、銅、亜
鉛、ゲルマニウム、イットリウム、ニオブ、ルテニウ
ム、銀、インジウム、スズ、ハフニウム、ビスマス、サ
マリウム、ユウロピウム、ガドリニウム、テルビウム、
ジスプロシウム、白金、ホルミウム、イッテルビウム等
の金属、これらの金属酸化物、金属塩及び錯体からなる
群から選ばれるものが挙げられる。本発明者らの詳細な
検討によれば、これらの中でも特に、銅酸化物、鉄フェ
ライト及び銅フェライトを使用した場合に、より効率よ
く、ほぼ完全に酸化分解処理することができ、好ましい
ことがわかった。又、これらの金属触媒の使用量として
は、過酸化水素100mg/l当たり10〜100mg
/lの範囲で添加すればよく、処理効率の向上効果が十
分に得られる。
Examples of the metal catalyst which can be used at this time include aluminum, iron, cobalt, nickel, copper, zinc, germanium, yttrium, niobium, ruthenium, silver, indium, tin, hafnium, bismuth, samarium, europium and gadolinium. ,terbium,
Examples include metals selected from the group consisting of metals such as dysprosium, platinum, holmium, and ytterbium, and metal oxides, metal salts, and complexes thereof. According to the detailed study of the present inventors, among these, copper oxide, iron ferrite and copper ferrite, in particular, can be more efficiently and almost completely oxidatively decomposed, which is preferable. all right. The amount of the metal catalyst used is 10 to 100 mg per 100 mg / l of hydrogen peroxide.
/ L, the effect of improving the processing efficiency can be sufficiently obtained.

【0015】図1に、金属酸化物を触媒として利用する
態様の過酸化水素による酸化分解に使用することのでき
る反応装置の一例を図解的に示した。先ず、廃水を不図
示のpH調整槽に導入し、処理対象となる廃水のpHを
6以下にする。pH調整された廃水(被処理水)は、金
属触媒が予め添加されている反応層へと導かれ、ここで
過酸化水素を適宜な濃度となるように添加されて酸化処
理がなされる。
FIG. 1 schematically shows an example of a reaction apparatus which can be used for oxidative decomposition with hydrogen peroxide in an embodiment utilizing a metal oxide as a catalyst. First, wastewater is introduced into a pH adjusting tank (not shown), and the pH of wastewater to be treated is reduced to 6 or less. The wastewater (water to be treated) whose pH has been adjusted is led to a reaction layer to which a metal catalyst has been added in advance, where hydrogen peroxide is added so as to have an appropriate concentration and oxidation treatment is performed.

【0016】この際、従来の湿式酸化法と同様に、加温
加圧の状態で反応させる。具体的には、温度を100〜
370℃、好ましくは125〜250℃の範囲に加温し
て酸化処理を行なえばよい。又、圧力は0.40〜20
MPa、好ましくは0.4〜6MPaの範囲に加圧して
酸化処理を行なえばよい。金属酸化物を触媒として利用
する態様の本発明の廃水の処理方法では、従来の湿式酸
化法と比べて比較的、低温、低圧で処理できる。反応さ
せる廃水を加熱する手段としては、例えば、水蒸気等の
吹込み、工場における他の熱交換等、任意の手段を利用
することができる。しかし、酸化分解処理する廃水が適
宜の温度に加温加圧され、その状態を維持できれば、そ
の方法は特に限定されない。上記したような方法で過酸
化水素による酸化反応が行なわれた反応液は、更に中和
槽へと導入されて、ここで、水酸化ナトリウム等のアル
カリが加えられ、反応液のpH値を6.5〜7.5に中
和された後、放流される。
At this time, the reaction is carried out in a heated and pressurized state, similarly to the conventional wet oxidation method. Specifically, a temperature of 100 to
The oxidation treatment may be performed by heating to 370 ° C., preferably 125 to 250 ° C. The pressure is 0.40-20
The oxidation treatment may be performed by applying pressure to the pressure in the range of MPa, preferably 0.4 to 6 MPa. The wastewater treatment method of the present invention in which a metal oxide is used as a catalyst can be treated at a relatively low temperature and low pressure as compared with the conventional wet oxidation method. As a means for heating the wastewater to be reacted, for example, any means such as injection of steam or the like and other heat exchange in a factory can be used. However, the method is not particularly limited as long as the wastewater to be subjected to the oxidative decomposition treatment is heated and pressurized to an appropriate temperature and the state can be maintained. The reaction solution having undergone the oxidation reaction with hydrogen peroxide by the method described above is further introduced into a neutralization tank, where an alkali such as sodium hydroxide is added, and the pH value of the reaction solution is adjusted to 6 After being neutralized to 0.5 to 7.5, it is discharged.

【0017】本発明の廃水の処理方法の対象となる廃水
としては、環境ホルモン等の難分解性物質を含有する廃
水や、COD値で表される汚濁物質が5000ppm以
上含まれている高濃度廃水が挙げられる。
The wastewater to be treated by the wastewater treatment method of the present invention includes wastewater containing a persistent substance such as an environmental hormone, and high-concentration wastewater containing a pollutant represented by a COD value of 5000 ppm or more. Is mentioned.

【0018】[0018]

【実施例】次に、本発明の実施例及び比較例を挙げて本
発明を更に詳細に説明する。表1に、実施例及び比較例
における酸化分解条件、及び、その分解率をまとめて示
した。 <実施例1>図1に示した反応容積300mlの回分式
オートクレーブを使用して、ベンゾフェノンを80mg
/l含む有機性の模擬廃水を作製し、該廃水の湿式酸化
処理を行った。反応は、温度を150℃とし、初期反応
pHを2.0とし、圧力0.40MPaの条件下で行っ
た。過酸化水素を酸化剤として用い、その量は理論酸素
量の1.50倍量とし、触媒は反応pHによる処理結果
を明確にするために使用しなかった。上記の酸化分解処
理後に得られた処理水中のベンゾフェノンを測定した結
果、全く残留しておらず、その分解率は99.9%以上
であることがわかった。又、ベンゾフェノンの二酸化炭
素までの完全分解率を測定したところ、92.8%であ
り、良好な状態で酸化分解が行われたことが確認でき
た。
Next, the present invention will be described in more detail with reference to examples and comparative examples of the present invention. Table 1 summarizes the oxidative decomposition conditions and the decomposition rates in Examples and Comparative Examples. Example 1 Using a batch type autoclave having a reaction volume of 300 ml shown in FIG. 1, 80 mg of benzophenone was used.
/ L organic simulated wastewater was prepared, and the wastewater was subjected to wet oxidation treatment. The reaction was performed at a temperature of 150 ° C., an initial reaction pH of 2.0, and a pressure of 0.40 MPa. Hydrogen peroxide was used as an oxidizing agent, the amount of which was 1.50 times the theoretical amount of oxygen, and the catalyst was not used to clarify the treatment results depending on the reaction pH. As a result of measuring benzophenone in the treated water obtained after the oxidative decomposition treatment, no benzophenone remained, and it was found that the decomposition ratio was 99.9% or more. Further, when the complete decomposition ratio of benzophenone to carbon dioxide was measured, it was 92.8%, and it was confirmed that oxidative decomposition was performed in a good state.

【0019】<実施例2>初期反応pHを3.0とした
以外は実施例1と同様にして、実施例1と同様の模擬廃
水について酸化分解を行った。酸化分解処理後に得られ
た処理水中のベンゾフェノンを、実施例1で行ったと同
様の方法で測定した結果、全く残留しておらず、実施例
1と同様に、その分解率は99.9%以上であることが
わかった。更に、ベンゾフェノンの二酸化炭素までの完
全分解率を測定したところ67.8%であり、実施例1
の場合と比較すると劣っていた。以上の実施例1及び実
施例2とを比較した結果、完全に酸化分解させるには、
反応pH値を3.0とするよりも、2.0と、より酸性
側にする方が効率のよい完全な分解ができることが確認
できた。
Example 2 The same simulated wastewater as in Example 1 was oxidatively decomposed in the same manner as in Example 1 except that the initial reaction pH was 3.0. The benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1, and as a result, no benzophenone remained. As in Example 1, the decomposition rate was 99.9% or more. It turned out to be. Further, when the complete decomposition rate of benzophenone to carbon dioxide was measured, it was 67.8%.
It was inferior to the case. As a result of comparing Example 1 and Example 2 described above, in order to completely oxidatively decompose,
It was confirmed that more efficient decomposition can be achieved when the reaction pH value is set to 2.0, which is more acidic, than when the reaction pH value is set to 3.0.

【0020】<実施例3>反応温度を125℃、初期反
応pHを2.5とし、更に、触媒を添加した以外は実施
例1と同様の方法で、実施例1と同様の模擬廃水の過酸
化水素による酸化分解を行った。この際に、触媒として
銅触媒を用い、試験開始当初に銅として200mg/l
になるようにCuOを添加した。酸化分解処理後に得ら
れた処理水中のベンゾフェノンの分解率を、実施例1で
行ったと同様の方法で測定した結果、99.9%以上で
あった。更に、実施例1と同様にして、ベンゾフェノン
の二酸化炭素までの完全分解率を測定したところ、9
4.5%であった。実施例1と比べて低温条件で、しか
も反応pHは2.5であり、実施例1における反応pH
2.0よりも酸性が弱いpHで処理したにも関わらず、
実施例1と比べて更に完全分解率が向上したことから、
金属触媒の使用が酸化分解に有効であることが確認でき
た。
Example 3 The same method as in Example 1 was repeated except that the reaction temperature was 125 ° C., the initial reaction pH was 2.5, and a catalyst was added. Oxidative decomposition with hydrogen oxide was performed. At this time, a copper catalyst was used as a catalyst, and 200 mg / l of copper was used at the beginning of the test.
CuO was added to obtain. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1 and was found to be 99.9% or more. Further, when the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 1, it was found to be 9%.
It was 4.5%. The reaction pH was lower than that of Example 1, and the reaction pH was 2.5.
Despite treatment at a pH less acidic than 2.0,
Since the complete decomposition rate was further improved as compared with Example 1,
It was confirmed that the use of the metal catalyst was effective for oxidative decomposition.

【0021】<実施例4>初期反応pHを2.5とし、
更に触媒を添加した以外は実施例1と同様の条件下で、
実施例1と同様の模擬廃水について、過酸化水素による
酸化分解を行った。この際、触媒としては銅触媒を用
い、試験開始当初に銅として200mg/lになるよう
にCuOを添加した。酸化分解処理後に得られた処理水
中のベンゾフェノンの分解率を、実施例1で行ったと同
様の方法で測定した結果、99.9%以上であった。更
に、実施例1と同様にして、ベンゾフェノンの二酸化炭
素までの完全分解率を測定したところ98.5%であ
り、良好な結果が得られた。本実施例の条件は、触媒を
添加し、pHを2.5にしたこと以外は実施例1と同様
の条件であるのに対し、完全分解率が向上したことか
ら、触媒の添加が過酸化水素による酸化分解の効率向上
に有効であることが確認できた。
<Example 4> The initial reaction pH was set to 2.5,
Under the same conditions as in Example 1 except that a catalyst was further added,
The same simulated wastewater as in Example 1 was subjected to oxidative decomposition with hydrogen peroxide. At this time, a copper catalyst was used as the catalyst, and CuO was added at the beginning of the test so that the copper content was 200 mg / l. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1 and was found to be 99.9% or more. Furthermore, when the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 1, it was 98.5%, and good results were obtained. The conditions in this example were the same as those in Example 1 except that the catalyst was added and the pH was set to 2.5. However, since the complete decomposition rate was improved, the addition of the catalyst was It was confirmed that it was effective in improving the efficiency of oxidative decomposition by hydrogen.

【0022】<実施例5>初期反応pHを2.5とし、
酸化剤(過酸化水素)の量を理論酸素量の1.30倍量
とし、更に触媒を添加した以外は実施例1と同様の条件
下で、実施例1と同様の模擬廃水について、過酸化水素
による酸化分解を行った。この際、触媒としては銅フェ
ライト触媒を用い、試験開始当初にその含有量が300
mg/lになるように添加した。酸化分解処理後に得ら
れた処理水中のベンゾフェノンの分解率を、実施例1で
行ったと同様の方法で測定した結果、99.9%以上で
あった。更に、実施例1と同様にして、ベンゾフェノン
の二酸化炭素までの完全分解率を測定したところ91%
であり、良好な結果が得られた。本実施例の場合も、実
施例4と同様に、触媒の添加が過酸化水素による酸化分
解の効率向上に有効であることが確認できた。
Example 5 The initial reaction pH was set to 2.5,
Under the same conditions as in Example 1 except that the amount of the oxidizing agent (hydrogen peroxide) was 1.30 times the theoretical amount of oxygen and a catalyst was added, the same simulated wastewater as in Example 1 was subjected to peroxidation. Oxidative decomposition with hydrogen was performed. At this time, a copper ferrite catalyst was used as the catalyst, and its content was 300 at the beginning of the test.
mg / l. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1 and was found to be 99.9% or more. Further, the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 1, and the result was 91%.
And good results were obtained. Also in the case of this example, it was confirmed that the addition of the catalyst was effective in improving the efficiency of oxidative decomposition by hydrogen peroxide, as in Example 4.

【0023】<実施例6>初期反応pHを2.5とし、
酸化剤(過酸化水素)の量を理論酸素量の1.30倍量
とし、更に触媒を添加した以外は実施例1と同様の条件
下で、実施例1と同様の模擬廃水について、過酸化水素
による酸化分解を行った。この際、触媒としては鉄フェ
ライト触媒を用い、試験開始当初にその含有量が300
mg/lになるように添加した。酸化分解処理後に得ら
れた処理水中のベンゾフェノンの分解率を、実施例1で
行ったと同様の方法で測定した結果、99.9%以上で
あった。更に、実施例1と同様にして、ベンゾフェノン
の二酸化炭素までの完全分解率を測定したところ65%
であり、触媒の添加が有効であることが確認できた。特
に、本実施例の場合は、反応後の触媒の劣化がなく、こ
の点で、銅系の触媒を用いた場合と比べて好ましいこと
がわかった。
Example 6 The initial reaction pH was set to 2.5,
Under the same conditions as in Example 1 except that the amount of the oxidizing agent (hydrogen peroxide) was 1.30 times the theoretical amount of oxygen and a catalyst was added, the same simulated wastewater as in Example 1 was subjected to peroxidation. Oxidative decomposition with hydrogen was performed. At this time, an iron ferrite catalyst was used as the catalyst, and its content was 300 at the beginning of the test.
mg / l. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1 and was found to be 99.9% or more. Further, the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 1, and it was 65%.
It was confirmed that the addition of the catalyst was effective. In particular, in the case of the present example, there was no deterioration of the catalyst after the reaction, and it was found that this point was more preferable than the case where the copper-based catalyst was used.

【0024】<比較例1>反応pHを6.2とした以外
は実施例1と同様にして、模擬廃水の過酸化水素による
酸化分解を行った。酸化分解処理後に得られた処理水中
のベンゾフェノンの分解率を実施例1と同様に測定した
ところ、98.5%であり、本比較例の場合は、実施例
1に比べて分解率が若干劣ることがわかった。更に、実
施例1で行ったと同様の方法でベンゾフェノンの二酸化
炭素までの完全分解率を測定したところ42.3%であ
り、実施例の場合と比べて分解率が低下することがわか
った。上記の結果、酸化分解の効率向上には反応pHが
重要であり、反応pHを6以上とした場合と比べて、反
応pHを3以下で処理を行う実施例の場合の方が著しく
効果的であることが確認できた。
<Comparative Example 1> Simulated wastewater was oxidatively decomposed with hydrogen peroxide in the same manner as in Example 1 except that the reaction pH was changed to 6.2. When the decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured in the same manner as in Example 1, it was 98.5%. In the case of this comparative example, the decomposition rate was slightly inferior to that of Example 1. I understand. Further, when the complete decomposition rate of benzophenone to carbon dioxide was measured by the same method as in Example 1, it was 42.3%, and it was found that the decomposition rate was lower than that in Example. As a result of the above, the reaction pH is important for improving the efficiency of oxidative decomposition, and the embodiment in which the treatment is performed at a reaction pH of 3 or less is significantly more effective than the case where the reaction pH is 6 or more. It was confirmed that there was.

【0025】<比較例2>反応pHを9.3とアルカリ
条件下にした以外は実施例1と同様にして、模擬廃水の
過酸化水素による酸化分解を行った。酸化分解処理後に
得られた処理水中のベンゾフェノンの分解率を、実施例
1で行ったと同様の方法で測定した結果、67.5%で
あり、アルカリ条件下では、酸性条件下で処理を行う実
施例の場合に比べて分解率が劣ることが確認できた。
又、実施例1の場合と同様にして、ベンゾフェノンの二
酸化炭素までの完全分解率を測定したところ、本比較例
の場合は19.8%であり、実施例に比べて完全分解率
が格段に低下し、又、比較例1と比べた場合よりも低下
することがわかった。以上の結果、過酸化水素による酸
化分解の場合には反応pHが、分解効率向上、更には完
全分解率向上の重要な要件となっており、反応pHが、
アルカリ条件下の場合よりも酸性条件下の方が著しく効
果的であることが確認できた。又、比較例1と比べて本
比較例の場合は完全分解率が更に劣っていることから、
比較例1の場合と同様に、反応pHが6以上であると十
分な分解が行われないが、反応pH値がより酸性側であ
るほど過酸化水素による酸化分解効率が向上することが
わかった。
<Comparative Example 2> Simulated wastewater was oxidized and decomposed with hydrogen peroxide in the same manner as in Example 1 except that the reaction pH was changed to an alkaline condition of 9.3. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured by the same method as in Example 1 and was found to be 67.5%. Under alkaline conditions, the treatment was performed under acidic conditions. It was confirmed that the decomposition rate was inferior to the case of the example.
Further, when the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 1, it was 19.8% in the case of this comparative example. It was found that the temperature was lower than that in the case of Comparative Example 1. As a result, in the case of oxidative decomposition by hydrogen peroxide, the reaction pH is an important requirement for improving the decomposition efficiency and further improving the complete decomposition rate.
It was confirmed that the acidic condition was significantly more effective than the alkaline condition. Further, in the case of this comparative example, the complete decomposition rate was further inferior to that of comparative example 1,
Similar to the case of Comparative Example 1, sufficient decomposition was not performed when the reaction pH was 6 or more, but it was found that the oxidative decomposition efficiency with hydrogen peroxide was improved as the reaction pH value was more acidic. .

【0026】<比較例3>反応pHを11.0とアルカ
リ条件下にした以外は実施例1と同様にして、模擬廃水
の過酸化水素による酸化分解を行った。酸化分解処理後
に得られた処理水中のベンゾフェノンの分解率を、実施
例1で行ったと同様の方法で測定した結果、34.3%
であり、比較例2の場合よりも更に分解率が劣ってい
た。又、実施例1で行ったと同様の方法で、ベンゾフェ
ノンの二酸化炭素までの完全分解率を測定したところ
9.6%であり、こちらも比較例2の場合よりも更に分
解率が低下することがわかった。以上の結果、過酸化水
素による酸化分解の場合には反応pHが重要であり、分
解効率向上、更には完全分解率向上の重要な要件となっ
ており、反応pHが、同じアルカリ条件下である場合に
も、より酸性側の条件の方が過酸化水素による酸化分解
処理が効率的に行われることを確認できた。
Comparative Example 3 The simulated wastewater was oxidatively decomposed with hydrogen peroxide in the same manner as in Example 1 except that the reaction pH was changed to an alkaline condition of 11.0. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured in the same manner as in Example 1, and as a result, 34.3%
And the decomposition rate was further inferior to that of Comparative Example 2. Further, when the complete decomposition rate of benzophenone to carbon dioxide was measured by the same method as that of Example 1, it was 9.6%, and the decomposition rate was also lower than that of Comparative Example 2. all right. As a result, in the case of oxidative decomposition by hydrogen peroxide, the reaction pH is important, which is an important requirement for improving the decomposition efficiency and further improving the complete decomposition rate, and the reaction pH is under the same alkaline condition. Also in this case, it was confirmed that the oxidative decomposition treatment with hydrogen peroxide was more efficiently performed under more acidic conditions.

【0027】<比較例4>反応pHを11.0とした以
外は実施例4と同様の条件で、金属触媒を用いた状態で
過酸化水素による模擬廃水の酸化分解を行った。酸化分
解処理後に得られた処理水中のベンゾフェノンの分解率
を実施例4と同様に測定したところ42.6%であり、
実施例4の場合に比べて格段に分解率が劣っていた。更
に、実施例4と同様にして、ベンゾフェノンの二酸化炭
素までの完全分解率を測定したところ14.5%であ
り、こちらも格段に分解率が劣ることがわかった。上記
の結果、有機物の過酸化水素による酸化分解の条件が及
ぼす分解効率に与える影響としては、金属触媒の有無よ
りも、反応pHがによる変動が大きいことがわかった。
Comparative Example 4 The simulated wastewater was oxidatively decomposed with hydrogen peroxide under the same conditions as in Example 4 except that the reaction pH was changed to 11.0. When the decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured in the same manner as in Example 4, it was 42.6%.
The decomposition rate was much lower than in the case of Example 4. Furthermore, the complete decomposition rate of benzophenone to carbon dioxide was measured in the same manner as in Example 4, and it was 14.5%, which also revealed that the decomposition rate was remarkably inferior. As a result, it was found that the effect of the conditions of the oxidative decomposition of organic substances by hydrogen peroxide on the decomposition efficiency is greater than the presence or absence of a metal catalyst in the reaction pH.

【0028】<比較例5>反応pHを2.5とし、酸化
剤として酸素を用い、更に、使用する酸素量を理論量の
3倍とした以外は実施例3と同様にして、模擬廃水の酸
素による酸化分解を行った。酸化分解処理後に得られた
処理水中のベンゾフェノンの分解率を実施例3と同様に
して測定した結果、殆ど分解されておらず、その分解率
は0.1%未満であることがわかった。この結果、有機
物を完全に酸化分解させて無害な二酸化炭素とするため
には、酸性条件下における過酸化水素による酸化処理が
必要であることがわかった。
Comparative Example 5 Simulated wastewater was prepared in the same manner as in Example 3 except that the reaction pH was 2.5, oxygen was used as an oxidizing agent, and the amount of oxygen used was three times the theoretical amount. Oxidative decomposition by oxygen was performed. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured in the same manner as in Example 3. As a result, it was found that the benzophenone was hardly decomposed, and the decomposition rate was less than 0.1%. As a result, it was found that an oxidation treatment with hydrogen peroxide under acidic conditions was necessary to completely oxidize and decompose organic substances into harmless carbon dioxide.

【0029】<比較例6>反応pHを11.0、酸化剤
として酸素を用い、更に、使用する酸素量を理論量の3
倍とした以外は実施例3と同様にして、模擬廃水の酸素
による酸化分解を行った。酸化分解処理後に得られた処
理水中のベンゾフェノンの分解率を実施例3と同様にし
て測定した結果、殆ど分解されておらず、その分解率は
0.1%未満であることがわかった。このことからも、
有機物を完全に酸化分解させて無害な二酸化炭素とする
ためには、酸性条件下における過酸化水素による酸化処
理が必要であることがわかった。
<Comparative Example 6> The reaction pH was 11.0, oxygen was used as an oxidizing agent, and the amount of oxygen used was set to a theoretical amount of 3
Oxidative decomposition of the simulated wastewater with oxygen was performed in the same manner as in Example 3 except that the amount was doubled. The decomposition rate of benzophenone in the treated water obtained after the oxidative decomposition treatment was measured in the same manner as in Example 3. As a result, it was found that the benzophenone was hardly decomposed, and the decomposition rate was less than 0.1%. From this,
It was found that oxidation treatment with hydrogen peroxide under acidic conditions was necessary in order to completely oxidize and decompose organic substances into harmless carbon dioxide.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】上記したように、本発明によれば、湿式
酸化方式による廃水の処理方法において、環境ホルモン
等の難分解性物質や高濃度廃水中の特に有機物を高い効
率で酸化分解することができ、しかも、簡易な方法で、
効率よく、ほぼ完全に、無害な炭酸ガス、水、窒素にま
でも完全に分解できる完全分解率が極めて高い廃水の処
理方法が提供される。
As described above, according to the present invention, in a method for treating wastewater by a wet oxidation method, highly decomposable substances such as environmental hormones and particularly organic substances in high-concentration wastewater are oxidatively decomposed with high efficiency. And in a simple way,
There is provided a method for treating wastewater having an extremely high complete decomposition rate, which can efficiently and almost completely decompose even harmless carbon dioxide, water and nitrogen.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の廃水の処理方法の処理フローの一例で
ある。
FIG. 1 is an example of a processing flow of a wastewater treatment method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 加温加圧下で、難分解性物質含有廃水及
び/又は高濃度廃水に含有されている有機性及び無機性
物質を酸化分解する廃水の処理方法において、酸化剤と
して過酸化水素を用い、pH6以下の条件で処理するこ
とを特徴とする廃水の処理方法。
1. A method for treating wastewater that oxidatively decomposes organic and inorganic substances contained in wastewater containing hardly decomposable substances and / or high-concentration wastewater under heating and pressurization, wherein hydrogen peroxide is used as an oxidizing agent. And treating the wastewater under conditions of pH 6 or less.
【請求項2】 過酸化水素を、廃水中に含有されている
有機性及び無機性物質を炭酸ガス、水、窒素にまで酸化
分解処理するのに必要な理論酸素量の0.1〜5倍量を
用いる請求項1に記載の廃水の処理方法。
2. The amount of hydrogen peroxide is 0.1 to 5 times the theoretical amount of oxygen required for oxidatively decomposing organic and inorganic substances contained in wastewater into carbon dioxide, water and nitrogen. The method for treating wastewater according to claim 1, wherein an amount is used.
【請求項3】 過酸化水素を複数回に分けて添加する請
求項1又は2に記載の廃水の処理方法。
3. The method for treating wastewater according to claim 1, wherein the hydrogen peroxide is added in plural times.
【請求項4】 更に、アルミニウム、鉄、コバルト、ニ
ッケル、銅、亜鉛、ゲルマニウム、イットリウム、ニオ
ブ、ルテニウム、銀、インジウム、スズ、ハフニウム、
ビスマス、サマリウム、ユウロピウム、ガドリニウム、
テルビウム、ジスプロシウム、白金、ホルミウム、イッ
テルビウムの金属、これらの金属酸化物、金属塩及び錯
体からなる群から選ばれる金属触媒を添加して処理する
請求項1〜3のいずれか1項に記載の廃水の処理方法。
4. An aluminum, iron, cobalt, nickel, copper, zinc, germanium, yttrium, niobium, ruthenium, silver, indium, tin, hafnium,
Bismuth, samarium, europium, gadolinium,
The wastewater according to any one of claims 1 to 3, wherein the wastewater is treated by adding a metal catalyst selected from the group consisting of terbium, dysprosium, platinum, holmium, and ytterbium, and metal oxides, metal salts, and complexes thereof. Processing method.
JP2000384128A 1999-12-17 2000-12-18 Wastewater treatment method Expired - Fee Related JP3811614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384128A JP3811614B2 (en) 1999-12-17 2000-12-18 Wastewater treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35969499 1999-12-17
JP11-359694 1999-12-17
JP2000384128A JP3811614B2 (en) 1999-12-17 2000-12-18 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2001232379A true JP2001232379A (en) 2001-08-28
JP3811614B2 JP3811614B2 (en) 2006-08-23

Family

ID=26581009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384128A Expired - Fee Related JP3811614B2 (en) 1999-12-17 2000-12-18 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3811614B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314880A (en) * 2005-05-11 2006-11-24 Ebara Corp Method and apparatus for treating water by using sulfate free radical
JP2007514515A (en) * 2003-08-22 2007-06-07 エフエムシー フォーレット エスエイ Wastewater purification method, equipment and chemicals
JP2010221098A (en) * 2009-03-23 2010-10-07 Hitachi Zosen Corp Method of decomposing lower alcohol in waste water
CN103771576A (en) * 2014-02-11 2014-05-07 许昌元化生物科技有限公司 Method for producing water rich in hydrogen
WO2014080739A1 (en) * 2012-11-20 2014-05-30 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
JP2019037931A (en) * 2017-08-24 2019-03-14 公立大学法人大阪市立大学 Hydrothermal oxidation reaction catalyst composed of binary oxide containing copper, and method of treating poorly-degradable organic pollutant using the catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514515A (en) * 2003-08-22 2007-06-07 エフエムシー フォーレット エスエイ Wastewater purification method, equipment and chemicals
JP2006314880A (en) * 2005-05-11 2006-11-24 Ebara Corp Method and apparatus for treating water by using sulfate free radical
JP2010221098A (en) * 2009-03-23 2010-10-07 Hitachi Zosen Corp Method of decomposing lower alcohol in waste water
WO2014080739A1 (en) * 2012-11-20 2014-05-30 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
CN104812710A (en) * 2012-11-20 2015-07-29 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment for organic halogen compound and catalyst therefor
JP5901791B2 (en) * 2012-11-20 2016-04-13 公立大学法人大阪市立大学 Method for hydrothermal oxidation treatment of organohalogen compounds and catalyst thereof
US9526936B2 (en) 2012-11-20 2016-12-27 Osaka City University Method for hydrothermal oxidation treatment for organic halogen compound
CN103771576A (en) * 2014-02-11 2014-05-07 许昌元化生物科技有限公司 Method for producing water rich in hydrogen
JP2019037931A (en) * 2017-08-24 2019-03-14 公立大学法人大阪市立大学 Hydrothermal oxidation reaction catalyst composed of binary oxide containing copper, and method of treating poorly-degradable organic pollutant using the catalyst

Also Published As

Publication number Publication date
JP3811614B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
Neyens et al. A review of classic Fenton’s peroxidation as an advanced oxidation technique
Prousek Advanced oxidation processes for water treatment
US4012321A (en) Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light
EP0490317B1 (en) Active carbon materials, process for the preparation thereof and the use thereof
KR20020043946A (en) Oxidation catalyzer, method for fabricating the same, method for recycling the same, and method for treating waste water using the same
WO1997014657A1 (en) Advanced oxidation of water using catalytic ozonation
CN113371812B (en) Solid reagent pack for removing organic matters in wastewater and application thereof
JP3811614B2 (en) Wastewater treatment method
US6483006B1 (en) Method of decomposing organochlorine compound
US20230322595A1 (en) Wastewater Ozone Treatment
JP3766298B2 (en) Wastewater treatment method and apparatus
KR101076331B1 (en) Methods for the removal of organic nitrogen organic and inorganic contaminants from an aqueous liquid
KR100394180B1 (en) Metal oxide catalysts for Fenton photo-oxidation, method for preparing the same and method for treating waste water using the same
KR100495765B1 (en) Method of preparing iron oxide catalysts for fenton oxidation and use of iron oxide catalysts prepared thereby
KR100465521B1 (en) Method of treating wastewater using catalytic wet oxidation process
KR100495764B1 (en) Method of preparing iron catalysts for fenton oxidation and use of iron catalysts prepared thereby
CN111392847B (en) Water treatment method for promoting trace copper ions to generate Cu (III) by using background pollutants
KR960010550A (en) Treatment of Refractory Wastewater Using Iron Salt Catalytic Air Oxidation and Hydrogen Peroxide
RU2749105C1 (en) Method for integrated treatment of industrial wastewater (options)
CN110639491B (en) Catalyst for harmless treatment of highly toxic wastewater and preparation method and application thereof
KR100467442B1 (en) A method of treatment for dyeing wastewater by using catalyst oxidizing water
JPH11253970A (en) Removal of organic chlorine compound in drainage
JP3138449B2 (en) Ozone reaction catalyst consisting of methylphenol
Al-Sarawy et al. Overview on Chemical Oxidation Technology in Wastewater Treatment
KR20030061083A (en) Treatment method of waste water containing ethylene glycol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees