JP2001229931A - Separator for fuel cell, and its molding and production method - Google Patents

Separator for fuel cell, and its molding and production method

Info

Publication number
JP2001229931A
JP2001229931A JP2000036673A JP2000036673A JP2001229931A JP 2001229931 A JP2001229931 A JP 2001229931A JP 2000036673 A JP2000036673 A JP 2000036673A JP 2000036673 A JP2000036673 A JP 2000036673A JP 2001229931 A JP2001229931 A JP 2001229931A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
cell separator
width
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000036673A
Other languages
Japanese (ja)
Inventor
Tomozo Sakaguchi
知三 坂口
Masao Sunahara
昌夫 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2000036673A priority Critical patent/JP2001229931A/en
Publication of JP2001229931A publication Critical patent/JP2001229931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an amorphous carbon separator for a fuel cell, having lighter weight and high strength, superior heat resistance, anti-corrosion and gas non-permeability, and stable shape with no warpages, its molding, and to provide a method of easily producing the separator for the fuel cell. SOLUTION: The separator for the fuel cell has a flow passage for an anode gas or a cathode gas, on at least one face and has a function for separating the anode gas from the cathode gas. The separator 4 for the fuel cell, formed of amorphous carbon, has sealed portions at the longitudinal and cross ends, at least one of which has a width being less than 7.5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アモルファスカー
ボン製の燃料電池用セパレータ、それを得るための成形
体、及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for an amorphous carbon fuel cell, a molded body for obtaining the same, and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、低公害で高い発電効率を持
つ次世代の発電装置として期待されている。この燃料電
池の種類としては、電解質の種類により、アルカリ型、
リン酸型、固体高分子型、溶融炭酸塩型、固体電解質型
などがある。これらの燃料電池には、水素含有ガス(ア
ノードガス)と酸素含有ガス(カソードガス)との電気
化学反応により起電力を生ずる単位電池と、積層された
単位電池の隣合う単位電池間に介在し、隣り合う単位電
池双方の電極と接触して、これら単位電池間を電気的に
接続するとともに反応ガスを分離する作用をなす燃料電
池用セパレータとが備えられている。
2. Description of the Related Art Fuel cells are expected as next-generation power generators having low pollution and high power generation efficiency. Depending on the type of electrolyte, the type of this fuel cell is alkaline,
There are phosphoric acid type, solid polymer type, molten carbonate type, solid electrolyte type and the like. In these fuel cells, a unit cell that generates an electromotive force by an electrochemical reaction between a hydrogen-containing gas (anode gas) and an oxygen-containing gas (cathode gas) and a unit cell adjacent to a stacked unit cell are interposed. A fuel cell separator is provided which is in contact with the electrodes of both adjacent unit cells to electrically connect the unit cells and to separate the reaction gas.

【0003】上記セパレータに要求される特性としては
導電性を有すること、ガス透過性が小さいこと、軽量で
あること、耐熱性及び耐食性があること、アノードガス
及びカソードガスと反応しないことなどである。セパレ
ータの導電性は比電気抵抗が小さいほど好ましく、比電
気抵抗が大きいと燃料電池の内部抵抗の増大を招き、発
電ロスを生じる。実用上は10-2〜10-6Ω・cmであ
るものが好適である。このようなセパレータの素材とし
ては、耐食性を有するステンレス合金を用いたもの、熱
硬化性樹脂に導電性フィラーを混ぜ込んだ材料を用いた
もの、人造黒鉛などの黒鉛系のもの、熱硬化性樹脂など
を炭化焼成して得られるアモルファスカーボンを用いた
ものが考えられている。
The properties required for the separator include conductivity, low gas permeability, light weight, heat resistance and corrosion resistance, and no reaction with anode gas and cathode gas. . The conductivity of the separator is preferably as low as the specific electrical resistance. If the specific electrical resistance is high, the internal resistance of the fuel cell increases, and power generation loss occurs. Practically, those having a resistivity of 10 −2 to 10 −6 Ω · cm are suitable. Examples of materials for such a separator include a material using a stainless steel alloy having corrosion resistance, a material using a thermosetting resin mixed with a conductive filler, a graphite-based material such as artificial graphite, and a thermosetting resin. It has been considered that amorphous carbon obtained by carbonizing and firing the above is used.

【0004】なかでもアモルファスカーボンは、上記特
性を十分満たす材料として注目されている。アモルファ
スカーボン製のセパレータは、フラン樹脂、フェノール
樹脂、ポリイミド樹脂などの熱硬化性樹脂を射出成形、
圧縮成形または押出成形などの方法を用い成形し、その
後炭化焼成して製造している。この場合、焼成時の寸法
収縮が大きいため焼成による形状安定性が悪く変形が生
じやすい。また、セパレータ形状のように平板状で反応
ガスの流路となる溝があり、外周部にはセパレータの強
度を確保し、反応ガスを外部に漏らさないようにシール
するための厚肉の部分があると、溝部分と外周の厚肉部
分との焼成収縮率の違いにより、焼成体が大きく反って
しまうという問題があった。
[0004] Among them, amorphous carbon has been attracting attention as a material that sufficiently satisfies the above characteristics. Amorphous carbon separator is injection molded with thermosetting resin such as furan resin, phenol resin, polyimide resin,
It is manufactured by molding using a method such as compression molding or extrusion molding and then carbonizing and firing. In this case, since the dimensional shrinkage at the time of firing is large, the shape stability due to firing is poor, and deformation tends to occur. In addition, there is a flat plate-like groove serving as a flow path for the reaction gas, as in the separator shape, and a thick portion for securing the strength of the separator and sealing so that the reaction gas does not leak outside is provided on the outer peripheral portion. If there is, there is a problem that the fired body is largely warped due to a difference in firing shrinkage rate between the groove portion and the thick portion on the outer periphery.

【0005】[0005]

【発明が解決しようとする課題】かかる状況に鑑み、本
発明の課題は、軽量かつ高強度であり、耐熱性、耐食
性、ガス不透過性に優れたアモルファスカーボンよりな
り、反りのない燃料電池用セパレータの提供、それを得
るための成形体の提供、及びそれを容易に製造する方法
の提供にある。
SUMMARY OF THE INVENTION In view of such circumstances, an object of the present invention is to provide a fuel cell for a fuel cell which is made of amorphous carbon which is lightweight and has high strength, and is excellent in heat resistance, corrosion resistance and gas impermeability. It is an object of the present invention to provide a separator, a molded body for obtaining the separator, and a method for easily producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を行った結果、後述するようなア
モルファスカーボンよりなる燃料電池用セパレータ、そ
れを得るための成形体、及びその製造方法によると、上
記課題が解決されることを見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, a fuel cell separator made of amorphous carbon as described later, a molded body for obtaining the same, and The present inventors have found that the above problems can be solved by the manufacturing method, and have reached the present invention.

【0007】すなわち、本発明の要旨は、第1に、少な
くとも一方の面にアノードガス又はカソードガスの流路
を有し、かつアノードガスとカソードガスを分離する機
能を有する燃料電池用セパレータにおいて、この燃料電
池用セパレータはアモルファスカーボンよりなり、燃料
電池用セパレータの縦及び横の少なくとも一方の端のシ
ール部の幅が7.5mm未満であることを特徴とする燃
料電池用セパレータであり、第2に、前記アモルファス
カーボンは、密度が1.3〜1.6g/cm3であり、
比電気抵抗が4〜20×10-3Ω・cmであり、かつガ
ス透過率が10 -9〜10-12 cm2 /sであることを特
徴とする燃料電池用セパレータであり、第3に、燃料電
池用セパレータのシール部となる成形体の縦及び横の少
なくとも一方の端部の幅を9mm未満としたことを特徴
とする燃料電池用セパレータを得るための成形体であ
り、第4に、前記燃料電池用セパレータに耐食性、耐熱
性、及び導電性を備えた被膜を形成させたものであるこ
とを特徴とする燃料電池用セパレータであり、第5に、
懸濁重合法によって合成したフェノール樹脂成形材料を
成形して成形体とし、この成形体を炭化焼成することを
特徴とする燃料電池用セパレータの製造方法であり、第
6に、成形する際、予め焼成収縮を見込んだ金型を用い
て射出成形することを特徴とする燃料電池用セパレータ
の製造方法である。
That is, first, the gist of the present invention is to
At least one surface for anode gas or cathode gas flow
For separating anode gas and cathode gas
Fuel cell separator with
The pond separator is made of amorphous carbon,
At least one of the vertical and horizontal edges of the battery separator
Characterized in that the width of the metal part is less than 7.5 mm
A separator for a fuel cell;
Carbon has a density of 1.3 to 1.6 g / cm.ThreeAnd
Specific electric resistance is 4-20 × 10-3Ω · cm
10 transmittance -9-10-12cmTwo/ S
Third, fuel cell separators
Small vertical and horizontal lengths of the molded body to serve as the seal for the pond separator
Characterized in that at least one end has a width of less than 9 mm
Molded article for obtaining a fuel cell separator
Fourth, the fuel cell separator has corrosion resistance and heat resistance.
That a film with electrical and electrical conductivity is formed.
Fifth, a fuel cell separator characterized by the following:
Phenolic resin molding material synthesized by suspension polymerization method
Molding into a compact, and carbonizing and firing this compact.
A method for producing a fuel cell separator, comprising:
6. When molding, use a mold that allows for shrinkage in advance.
Fuel cell separator characterized by injection molding
It is a manufacturing method of.

【0008】[0008]

【発明の実施の形態】以下、本発明について詳細に説明
する。図1は、燃料電池(単電池セル)の基本的な構成
例を示す概略斜視図である。ここで1はアノード、2は
電解質膜、3はカソードである。4はセパレータであ
り、表裏両面にアノードガス及びカソードガスなどの反
応ガスの流路となる溝5が多数形成されている。反応ガ
スの流路となる溝5は少なくとも一方の面に備えられて
いればよく、燃料電池の動作温度を安定させるため、片
側の面に冷却水などの熱媒体を流すことができる溝を備
えてもよい。また、図2及び図3は従来の燃料電池用セ
パレータの例を示す概略平面図及びその断面図であり、
図4及び図5は本発明の燃料電池用セパレータの例を示
す概略平面図及びその断面図である。図4及び図5の燃
料電池用セパレータにおいては、縦及び横の両端のシー
ル部の幅が小さく、シール部の幅が7.5mm未満とな
っているものであるが、縦及び横の少なくとも一方の端
のシール部の幅が7.5mm未満であればよい。また、
燃料電池用セパレータのサイズは特に限定されるもので
はなく目的に応じて設計変更できるものであって、また
その平面形状及び反応ガス流路形状も目的に応じて種々
に変更可能である。燃料電池用セパレータのサイズを変
更する際は、燃料電池用セパレータの縦及び横の少なく
とも一方の端のシール部の幅の割合をそれぞれの幅の
7.5%未満とすることが好ましい。なお、図2〜図5
において、6はアノードガス給排孔であり、7は冷却水
給排孔であり、8はカソードガス給排孔であり、9はカ
ソードガス流路であり、10はアノードガス流路であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. FIG. 1 is a schematic perspective view showing a basic configuration example of a fuel cell (unit cell). Here, 1 is an anode, 2 is an electrolyte membrane, and 3 is a cathode. Reference numeral 4 denotes a separator, and a large number of grooves 5 are formed on both front and rear surfaces as flow paths for reaction gases such as an anode gas and a cathode gas. The groove 5 serving as a flow path for the reaction gas only needs to be provided on at least one surface. In order to stabilize the operating temperature of the fuel cell, a groove through which a heat medium such as cooling water can flow is provided on one surface. You may. 2 and 3 are a schematic plan view and a cross-sectional view showing an example of a conventional fuel cell separator.
FIGS. 4 and 5 are a schematic plan view and a sectional view showing an example of the fuel cell separator of the present invention. In the fuel cell separator of FIGS. 4 and 5, the width of the seal portions at both ends in the vertical and horizontal directions is small and the width of the seal portions is less than 7.5 mm. It is sufficient that the width of the seal portion at the end of is less than 7.5 mm. Also,
The size of the fuel cell separator is not particularly limited and can be changed in design according to the purpose, and its planar shape and the shape of the reaction gas flow path can also be variously changed in accordance with the purpose. When changing the size of the fuel cell separator, it is preferable that the ratio of the width of the seal portion at at least one of the vertical and horizontal ends of the fuel cell separator is less than 7.5% of each width. 2 to 5
In the figure, 6 is an anode gas supply / discharge hole, 7 is a cooling water supply / discharge hole, 8 is a cathode gas supply / discharge hole, 9 is a cathode gas flow path, and 10 is an anode gas flow path.

【0009】本発明の燃料電池用セパレータは、熱硬化
性樹脂を常法の成形方法によって製造することができる
が、以下においては、熱硬化性樹脂として、懸濁重合法
によって合成したフェノール樹脂成形材料を原料とした
燃料電池用セパレータについて述べる。すなわち、懸濁
重合法によって合成したフェノール樹脂成形材料を成形
して成形体とし、この成形体を炭化焼成することによっ
て、燃料電池用セパレータを得る。この際、成形体の縦
及び横の少なくとも一方の端部の幅を9mm未満となる
ように成形することが好ましい。また、フェノール樹脂
成形材料を予め焼成時の寸法収縮を見込んだ寸法形状の
金型を用い射出成形することが好ましい。射出成形する
とき、焼成時の寸法収縮を見込むと共に、セパレータの
外形や、片面又は表裏両面に溝が形成されるような金型
を用いて成形し、得られた成形体を炭化焼成すると、切
削加工のような後加工を必要とせず又は少なくすること
ができて、良好な形状のアモルファスカーボン製の燃料
電池用セパレータを量産性良く製造することができる。
The fuel cell separator of the present invention can be produced from a thermosetting resin by a conventional molding method. In the following, a phenol resin molded by a suspension polymerization method is used as the thermosetting resin. The fuel cell separator made from the material will be described. That is, a phenolic resin molding material synthesized by a suspension polymerization method is molded into a molded body, and the molded body is carbonized and fired to obtain a fuel cell separator. At this time, it is preferable that the formed body is formed so that the width of at least one of the vertical and horizontal ends is less than 9 mm. In addition, it is preferable that the phenolic resin molding material is injection-molded in advance using a mold having a dimension and shape that allows for dimensional contraction during firing. When performing injection molding, besides anticipating dimensional shrinkage during firing, molding using a mold in which grooves are formed on the outer shape of the separator and on one side or both sides, and carbonizing and firing the obtained molded body, cutting Post-processing such as processing is not required or can be reduced, and a good shape amorphous carbon fuel cell separator can be manufactured with high mass productivity.

【0010】成形体を炭化焼成するときは、成形体中の
成分が分解ガスとなって放出され、成形体の中心方向に
寸法収縮をする。この際、従来のように燃料電池用セパ
レータのシール部となる成形体の縦及び横の少なくとも
一方の端部の幅が9mm以上である成形体を炭化焼成す
ると、反応ガスの流路となる溝がある内側部分より、溝
がない外側部分が中心方向への寸法収縮率が大きいた
め、内部応力が発生し、その内部応力を緩和分散させる
ように成形体の内側部分に反りが現れ、製品の形状が安
定しない。また、燃料電池用セパレータのサイズを変更
する際は、燃料電池用セパレータを得るための成形体の
サイズを変更し、セパレータのシール部となる成形体の
縦及び横の少なくとも一方の端部の幅の割合をそれぞれ
の幅の9%未満とすることが好ましい。この反りが発生
したセパレータは燃料電池に組み立てるときに作業性が
悪い。また、組み立てた後、荷重をかけてセパレータを
平坦にした状態で保持する必要があるが、アモルファス
カーボン材は脆性材料であるため、そのときの応力によ
りセパレータが割れてしまう。
[0010] When carbonizing and firing the compact, the components in the compact are released as decomposed gas and shrink in size toward the center of the compact. At this time, when a compact having a width of at least one of the vertical and horizontal ends of at least one end of 9 mm or more is conventionally carbonized and fired, a groove serving as a flow path of a reaction gas is formed. Since the outer part without the groove has a larger dimensional shrinkage in the center direction than the inner part where there is, internal stress is generated, and the inner part of the molded body warps to relax and disperse the internal stress, and the product Shape is not stable. When the size of the fuel cell separator is changed, the size of the molded body for obtaining the fuel cell separator is changed, and the width of at least one of the vertical and horizontal ends of the molded body serving as the seal portion of the separator is changed. Is preferably less than 9% of each width. The warped separator has poor workability when assembled into a fuel cell. Further, after assembling, it is necessary to hold the separator flat by applying a load. However, since the amorphous carbon material is a brittle material, the separator is cracked by the stress at that time.

【0011】そこで、成形体の縦及び横の少なくとも一
方の端部の幅が9mm未満であるような形状にすると、
炭化焼成するとき反応ガスの流路となる溝がある部分
と、シール部となる溝がない部分の中心方向への寸法収
縮率の違いが少なくなり反りの発生が少なくなる。反り
の発生が少なければ、燃料電池に組み立てるときに作業
性が良く、荷重をかけてもアモルファスカーボン材が割
れることはない。また、炭化焼成後においては、燃料電
池用セパレータの縦及び横の少なくとも一方の端のシー
ル部の幅が7.5mm未満であると燃料電池用セパレー
タに反りが少なく、製品の形状が安定である。しかし、
セパレータのシール部の幅が極端に狭いと燃料電池に組
み立てたとき、反応ガスが洩れ出してしまう恐れがあ
り、また、セパレータの強度も低くなるので、反応ガス
が漏れず、セパレータの強度を満足すれば可能な限りシ
ール部の幅は狭くすることが好ましい。
Therefore, when the width of at least one of the vertical and horizontal ends of the molded body is less than 9 mm,
When carbonizing and firing, the difference in the dimensional shrinkage in the center direction between the portion having the groove serving as the flow path of the reaction gas and the portion having no groove serving as the seal portion is reduced, and the occurrence of warpage is reduced. If the occurrence of warpage is small, the workability is good when assembling into a fuel cell, and the amorphous carbon material does not crack even when a load is applied. Further, after the carbonization and firing, if the width of at least one of the longitudinal and lateral ends of the seal portion of the fuel cell separator is less than 7.5 mm, the fuel cell separator is less warped and the product shape is stable. . But,
If the width of the seal portion of the separator is extremely narrow, there is a risk that the reaction gas will leak out when assembled into a fuel cell, and the strength of the separator will also be low, so the reaction gas will not leak and satisfy the strength of the separator. It is preferable to make the width of the seal portion as narrow as possible.

【0012】上記成形体の炭化焼成は真空又は不活性ガ
ス雰囲気中で行うことが好ましく、用いる不活性ガスと
しては窒素ガス、ヘリウムガス、アルゴンガス等が挙げ
られ、炭化焼成温度は、700〜1600℃が好まし
く、800〜1500℃がより好ましい。炭化焼成温度
が700℃未満では樹脂成形体が完全にアモルファスカ
ーボン化することが困難であり、1600℃を超えると
過剰焼成となり、黒鉛化が進む傾向にある。
The carbonization and firing of the compact is preferably performed in a vacuum or an inert gas atmosphere. Examples of the inert gas include nitrogen gas, helium gas, and argon gas. The carbonization and firing temperature is 700 to 1600. C. is preferable, and 800 to 1500 C. is more preferable. If the carbonization firing temperature is lower than 700 ° C., it is difficult to completely turn the resin molded body into amorphous carbon. If the carbonization firing temperature exceeds 1600 ° C., excessive firing occurs and the graphitization tends to progress.

【0013】懸濁重合法によって合成したフェノール樹
脂を炭化焼成して得られるアモルファスカーボンは、真
空中又は不活性ガス雰囲気中では2000℃以上の耐熱
性を有する材料であり、密度が1.3〜1.6g/cm
3 (高密度アモルファスカーボンでは1.6g/cm3
を越えるものもある)と軽量であり、かつ曲げ強度が1
0〜21kg/mm2 、ショアー硬度が90〜120と
高強度であり、硫酸や塩酸などの酸に強く耐食性があ
る。また、導電性は比電気抵抗が4〜20×10 -3Ω・
cmであり、燃料電池用セパレータに要求される特性を
十分満たすほど小さく、ガス不透過性も10-9〜10
-12 cm2 /sと非常に小さいなど、優れた特性を有す
る材料であり、このような特性を有するアモルファスカ
ーボンは、燃料電池用セパレータとして好適に使用でき
る。なお、懸濁重合法によって合成したフェノール樹脂
を炭化焼成したアモルファスカーボンでなくても、この
ような性質を満足するアモルファスカーボンは燃料電池
用セパレータとして好適に使用可能である。
A phenol tree synthesized by a suspension polymerization method
Amorphous carbon obtained by carbonizing and baking fat is
Heat resistant to over 2000 ° C in air or in an inert gas atmosphere
Material having a density of 1.3 to 1.6 g / cm
Three(1.6 g / cm for high density amorphous carbonThree
Overweight) and light weight with a bending strength of 1
0-21kg / mmTwoWith a Shore hardness of 90-120
High strength, strong against acids such as sulfuric acid and hydrochloric acid, and corrosion resistant
You. The conductivity is 4 to 20 × 10. -3Ω
cm, which is the characteristic required for a fuel cell separator.
Small enough to fill, with gas impermeability of 10-9-10
-12cmTwoHas excellent characteristics such as extremely low / s
Amorphous material with such characteristics
Can be suitably used as a fuel cell separator.
You. The phenolic resin synthesized by the suspension polymerization method
Even if it is not amorphous carbon obtained by carbonizing
Amorphous carbon that satisfies such properties is a fuel cell
It can be suitably used as a separator for use.

【0014】アモルファスカーボンは、酸化性雰囲気中
では概ね500℃が耐熱温度であり、それより高温では
アモルファスカーボンの構成元素である炭素と酸素が反
応するため、徐々に消耗し減量する。このため上記アモ
ルファスカーボン製のセパレータは主にアルカリ型燃料
電池、リン酸型燃料電池、固体高分子型燃料電池など比
較的低温で動作する燃料電池に使用するのに好適であ
る。500℃以上で長時間使用するような場合、つまり
溶融炭酸塩型、固体酸化物型などのように高温で使用す
る燃料電池の場合は、上記アモルファスカーボンを基材
とし、その表面の一部又は全部に耐食性、耐熱性、及び
導電性を備えた膜を形成することで軽量なセパレータを
得ることができる。
Amorphous carbon has a heat-resistant temperature of about 500 ° C. in an oxidizing atmosphere. At higher temperatures, carbon and oxygen, which are constituent elements of the amorphous carbon, react with each other, so that they are gradually consumed and lose weight. For this reason, the amorphous carbon separator is suitable mainly for use in fuel cells that operate at relatively low temperatures, such as alkaline fuel cells, phosphoric acid fuel cells, and polymer electrolyte fuel cells. When used for a long time at 500 ° C. or higher, that is, in the case of a fuel cell used at a high temperature such as a molten carbonate type or a solid oxide type, the above-mentioned amorphous carbon is used as a base material and a part of the surface or A lightweight separator can be obtained by forming a film having corrosion resistance, heat resistance, and conductivity on the whole.

【0015】上記耐食性、耐熱性、及び導電性を備えた
膜としては、例えば導電性セラミック、耐熱合金などよ
りなる膜が挙げられ、導電性セラミックとしては炭化珪
素、炭化チタン、窒化チタン、LaCoO3 系、LaM
nO3 系、LaCrO3 系ペロブスカイト型酸化物など
を挙げることができ、耐熱合金としてはNi基耐熱合金
膜、Fe基耐熱合金膜などを挙げることができる。膜の
形成方法としては、溶射法、スパッタリング法、熱CV
D(化学蒸着)法、プラズマCVD(化学蒸着)法、イ
オンプレーティング法などが挙げられる。アモルファス
カーボン基材の表面に形成される膜は、厚さが10μm
〜100μmとなるように形成させることが適当であ
る。厚さが10μm未満では耐食性、耐熱性、導電性が
十分満たされず、100μmを超えるとかなりコスト高
となる。
Examples of the film having corrosion resistance, heat resistance, and conductivity include films made of conductive ceramics and heat-resistant alloys. Examples of the conductive ceramic include silicon carbide, titanium carbide, titanium nitride, and LaCoO 3. System, LaM
An nO 3 -based or LaCrO 3 -based perovskite-type oxide can be used. As the heat-resistant alloy, a Ni-based heat-resistant alloy film, an Fe-based heat-resistant alloy film, or the like can be used. As a method of forming the film, a thermal spraying method, a sputtering method, a thermal CV
D (chemical vapor deposition) method, plasma CVD (chemical vapor deposition) method, ion plating method, and the like. The film formed on the surface of the amorphous carbon substrate has a thickness of 10 μm.
It is appropriate to form them so as to have a thickness of about 100 μm. If the thickness is less than 10 μm, the corrosion resistance, heat resistance, and conductivity are not sufficiently satisfied, and if the thickness exceeds 100 μm, the cost becomes considerably high.

【0016】本発明に用いられるフェノール樹脂原料
は、例えば特開平4−159320号公報に開示されて
いるように、ノボラック樹脂をヘキサメチレンテトラミ
ンのようなアルカリ触媒兼メチレン架橋剤及び懸濁安定
剤の存在下、水媒体中で懸濁重合を行う方法(自己硬化
型変性ノボラック樹脂法)により、フェノール及びホル
ムアルデヒドを塩基性触媒及び懸濁安定剤の存在下、水
性媒体中にて懸濁重合を行う方法等の重合法(固形レゾ
ール樹脂法)などにより製造されるものを好適に採用す
ることができる。
The phenolic resin raw material used in the present invention may be prepared, for example, by dissolving a novolak resin into an alkali catalyst and a methylene crosslinking agent such as hexamethylenetetramine and a suspension stabilizer, as disclosed in JP-A-4-159320. In the presence, phenol and formaldehyde are subjected to suspension polymerization in an aqueous medium in the presence of a basic catalyst and a suspension stabilizer by a method of performing suspension polymerization in an aqueous medium (self-curing modified novolak resin method). Those produced by a polymerization method such as a method (solid resole resin method) can be suitably employed.

【0017】これらの方法によれば、真球状に近い球状
フェノール樹脂原料が得られる。粒径の大きな成形原料
を得るには、上記微粒体を造粒して所定の粒度の原料を
調製する方法が有効である。そして、さらに、フェノー
ル樹脂原料として特開平6−206234号に開示され
ているように、水分含有量が1重量%以下、粒径が50
μm以上で、ディスクキュアー法で測定した熱流動性が
60〜160mmである粒状フェノール樹脂の表層に、
融点が30〜160℃の高級脂肪酸などの低表面張力物
質が対フェノール樹脂組成比0.2〜5重量%被覆され
てなるフェノール樹脂成形材料を用いると高精度の成形
体が得られる点で好ましい。
According to these methods, a spherical phenol resin raw material having a nearly spherical shape can be obtained. In order to obtain a molding raw material having a large particle size, a method of granulating the above fine particles to prepare a raw material having a predetermined particle size is effective. Further, as disclosed in JP-A-6-206234 as a phenol resin raw material, the water content is 1% by weight or less and the particle size is 50%.
μm or more, the surface fluidity of the granular phenolic resin having a heat fluidity of 60 to 160 mm measured by a disc cure method,
It is preferable to use a phenolic resin molding material in which a low surface tension substance such as a higher fatty acid having a melting point of 30 to 160 ° C is coated at a phenolic resin composition ratio of 0.2 to 5% by weight, since a highly accurate molded body can be obtained. .

【0018】本発明において、上記フェノール樹脂原料
には、同一種類の樹脂の硬化物を添加混合することがで
きる。この樹脂硬化物を含む成形材料は、成形加工した
後、成形体を炭化焼成することにより均一なアモルファ
スカーボン材料を与える。前記樹脂硬化物としては、C
ステージまで硬化させた真球状のフェノール樹脂が好ま
しい。その粒径は500μm以下、より好ましくは1〜
100μmであることが望ましい。またディスクキュア
ー法で測定した熱流動性が0〜10mmであることが望
ましい。
In the present invention, a cured product of the same type of resin can be added to and mixed with the phenol resin raw material. The molding material containing the cured resin gives a uniform amorphous carbon material by carbonizing and firing the molded body after molding. As the cured resin, C
A spherical phenol resin cured to the stage is preferred. The particle size is 500 μm or less, more preferably 1 to
Preferably, it is 100 μm. It is desirable that the thermal fluidity measured by the disc cure method is 0 to 10 mm.

【0019】樹脂硬化物の添加量は、樹脂硬化物を添加
した全フェノール樹脂成形材料に対して、20〜60重
量%、より好ましくは30〜50重量%であることが望
ましい。この範囲内では、射出成形時に気泡等を含むこ
となく、成形機のシリンダー内での可塑化溶融状態での
熱安定性に優れ、金型内での硬化性も優れており、しか
も均一なフェノール樹脂成形体を生産性良く得ることが
可能である。20重量%以下の添加量では、十分なシリ
ンダー内での熱安定性が得られず、また70重量%で
は、溶融樹脂の流動性が低下するので好ましくない。
The added amount of the cured resin is preferably 20 to 60% by weight, more preferably 30 to 50% by weight, based on the whole phenolic resin molding material to which the cured resin is added. Within this range, it does not contain bubbles at the time of injection molding, has excellent thermal stability in the plasticized molten state in the cylinder of the molding machine, has excellent curability in the mold, and has uniform phenol. It is possible to obtain a resin molded body with high productivity. If the amount is less than 20% by weight, sufficient thermal stability in the cylinder cannot be obtained, and if it is 70% by weight, the fluidity of the molten resin decreases, which is not preferable.

【0020】本発明の燃料電池用セパレータは軽量かつ
高強度であり、耐熱性、耐食性、ガス不透過性に優れた
アモルファスカーボンよりなり、この燃料電池用セパレ
ータは、セパレータのシール部となる成形体の縦及び横
の少なくとも一方の端部の幅を9mm未満とし、これを
炭化焼成して得られるものであるので、反りがなく形状
が安定したものである。したがって、このセパレータを
積層して燃料電池に用いると、組み立てるときに荷重を
かけても割れなどがなく作業性、量産性が良く、アモル
ファスカーボンの性能が維持され、寿命が長く信頼性が
あり、燃料電池も軽量にすることができる。また、本発
明の製造方法によれば、アモルファスカーボンよりなる
燃料電池用セパレータを容易に製造することができる。
特に予め焼成収縮を見込むと共にシール部となる端部の
幅を小さくした金型を用いて射出成形すると、切削加工
のような後加工を必要とせず又は少なくすることができ
る。
The fuel cell separator of the present invention is made of amorphous carbon which is lightweight and has high strength, and is excellent in heat resistance, corrosion resistance, and gas impermeability. The width of at least one of the vertical and horizontal ends is less than 9 mm and is obtained by carbonizing and firing, so that there is no warpage and the shape is stable. Therefore, when this separator is laminated and used for a fuel cell, there is no cracking or the like even when a load is applied during assembly, workability and mass productivity are good, the performance of amorphous carbon is maintained, life is long and reliability is high, Fuel cells can also be lightweight. Further, according to the production method of the present invention, a fuel cell separator made of amorphous carbon can be easily produced.
In particular, when injection molding is performed using a mold in which shrinkage in advance is expected and the width of the end portion serving as the seal portion is reduced, post-processing such as cutting can be omitted or reduced.

【0021】[0021]

【実施例】次に本発明を実施例によって具体的に説明す
るが、本発明はこれら実施例により限定されない。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0022】参考例 ノボラック樹脂(三井東圧化学(株)製#600)15
0重量部を160℃で溶融して、完全けん化ポリビニル
アルコール(重合度約2000)1重量部を溶解した9
0℃の熱水(220重量部)中へ攪拌しながら投入して
分散し懸濁系を形成し、続いてヘキサミン24重量部を
40重量部の温水に溶解して添加し、さらに同温度にて
20分間攪拌を続けて懸濁重合を行い、反応を終了後懸
濁体を固液分離し、乾燥してフェノール樹脂成形材料を
得た。このフェノール樹脂成形材料の特性を表1に示
す。ただし、表1に示すこれらの特性は次の方法で測定
した。
Reference Example Novolak resin (# 600 manufactured by Mitsui Toatsu Chemicals, Inc.) 15
0 parts by weight were melted at 160 ° C. to dissolve 1 part by weight of completely saponified polyvinyl alcohol (degree of polymerization: about 2000).
The mixture was poured into hot water (220 parts by weight) at 0 ° C. with stirring to disperse and form a suspension, and then 24 parts by weight of hexamine was dissolved in 40 parts by weight of warm water and added. The suspension was stirred for 20 minutes to carry out suspension polymerization. After the reaction was completed, the suspension was subjected to solid-liquid separation and dried to obtain a phenol resin molding material. Table 1 shows the properties of the phenolic resin molding material. However, these characteristics shown in Table 1 were measured by the following methods.

【0023】熱流動性(HPF)は、JIS−K−69
11(1979)5.3.2〔成形材料(円板式)〕の
方法に基づき、試料2gを160℃で1分間1145k
gの荷重下で熱プレスし、形成される円板の直径(最長
径と最短径の平均値)から求めた。平均粒径は、試料を
ガラスプレート上に展開して顕微鏡写真を撮り、任意に
選んだ100個の粒径を測定して、その平均値で示し
た。水分は、赤外線ヒーターを用い、試料10gを80
℃で30分間加熱しその重量減少から求めた。
The thermal fluidity (HPF) is measured according to JIS-K-69.
11 (1979) 5.3.2 [Molding material (disc type)], 1 g of a sample at 1145k at 160 ° C for 1 minute
It was hot-pressed under a load of g and determined from the diameter (average value of the longest diameter and the shortest diameter) of the formed disk. The average particle size was obtained by developing a sample on a glass plate, taking a micrograph, measuring 100 randomly selected particle sizes, and indicating the average value. The moisture was measured using an infrared heater,
C. for 30 minutes and the weight loss was determined.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1〜7 上記参考例のフェノール樹脂成形材料を、予め焼成収縮
を見込んだ金型を用いて射出成形して、縦120mm×
横120mm、厚さ2.4mmで、表裏両面にガスの流
路となる深さ1.0mm、幅5.2mmの溝を備え、セ
パレータのシール部となる端部の幅が12mmの成形体
を得た。この成形体の端部の幅を縦、横それぞれダイヤ
モンドカッターで切断し、外形寸法及び端部の幅が小さ
くなった表2に示す種々の成形体を作成した(表2にお
いてセパレータのシール部となる成形体の端部の幅はシ
ール部の幅と記す。以下同様である。)。この成形体を
高性能焼成炉を用い窒素ガス雰囲気中1500℃で炭化
焼成し、厚さ2.0mmで表裏両面にガスの流路となる
深さ0.8mm、幅4.3mmの溝を備えたアモルファ
スカーボン製燃料電池用セパレータを得た。得られたア
モルファスカーボン製燃料電池用セパレータの反りを測
定し、100サンプルの平均値の結果を表2に示す。反
りの測定は、凹んでいる面にセパレータの外形寸法より
長いJIS規格1級の金尺をあて、セパレータと最も隙
間のあく場所に隙間ゲージを挿入し、挿入することがで
きた最も厚みの厚い隙間ゲージの値をセパレータの反り
とした。
Examples 1 to 7 The phenolic resin molding material of the above reference example was injection-molded using a mold in which shrinkage in baking was expected in advance, and a length of 120 mm ×
A molded body having a width of 120 mm, a thickness of 2.4 mm, a depth of 1.0 mm serving as a gas flow path on both sides, and a width of 5.2 mm, and a width of 12 mm at an end serving as a seal portion of the separator is obtained. Obtained. The width of the end of this molded body was cut vertically and horizontally by a diamond cutter to prepare various molded bodies shown in Table 2 in which the outer dimensions and the width of the end were reduced (in Table 2, the sealing portion of the separator and The width of the end of the resulting molded body is referred to as the width of the seal portion, and the same applies hereinafter.) This molded body is carbonized and fired at 1500 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace, and is provided with a groove of 2.0 mm in thickness and a depth of 0.8 mm and a width of 4.3 mm serving as a gas flow path on both sides. Thus, an amorphous carbon fuel cell separator was obtained. The warpage of the obtained amorphous carbon fuel cell separator was measured, and the results of average values of 100 samples are shown in Table 2. For the measurement of warpage, place a gauge of JIS standard class 1 longer than the external dimensions of the separator on the concave surface, insert a gap gauge at the place where the gap is closest to the separator, and insert the thickest thickest that could be inserted The value of the clearance gauge was defined as the warpage of the separator.

【0026】比較例1 上記参考例のフェノール樹脂成形材料を、予め焼成収縮
を見込んだ金型を用いて射出成形して、縦120mm×
横120mm、厚さ2.4mmで、表裏両面にガスの流
路となる深さ1.0mm、幅5.2mmの溝を備え、セ
パレータのシール部となる端部の幅が12mmの成形体
を得た。この成形体を高性能焼成炉を用い窒素ガス雰囲
気中1500℃で炭化焼成することにより、縦100m
m×横100mm、厚さ2.0mmで表裏両面にガスの
流路となる深さ0.8mm、幅4.3mmの溝を備え、
シール部の幅が10mmのアモルファスカーボン製燃料
電池用セパレータを得た。得られたセパレータの反りは
実施例1〜7と同様の方法により測定し、その結果を表
2に示す。
Comparative Example 1 The phenolic resin molding material of the above reference example was injection-molded using a mold in which firing shrinkage was anticipated, and was 120 mm long ×
A molded body having a width of 120 mm, a thickness of 2.4 mm, a depth of 1.0 mm serving as a gas flow path on both sides, and a width of 5.2 mm, and a width of 12 mm at an end serving as a seal portion of the separator is obtained. Obtained. The formed body is carbonized and fired at 1500 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace to obtain a vertical length of 100 m.
mx 100 mm in width, 2.0 mm in thickness, 0.8 mm in depth and 4.3 mm in width as gas flow channels on both sides,
An amorphous carbon fuel cell separator having a seal portion having a width of 10 mm was obtained. The warpage of the obtained separator was measured by the same method as in Examples 1 to 7, and the results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例8〜14 上記参考例のフェノール樹脂成形材料を、予め焼成収縮
を見込んだ金型を用いて射出成形して、縦120mm×
横240mm、厚さ2.4mmで、表裏両面にガスの流
路となる深さ1.0mm、幅5.2mmの溝を備え、セ
パレータのシール部となる端部の幅が12mmの成形体
を得た。この成形体の端部の幅を縦、横それぞれダイヤ
モンドカッターで切断し、外形寸法及び端部の幅が小さ
くなった表3に示す種々の成形体を作成した。この成形
体を高性能焼成炉を用い窒素ガス雰囲気中1500℃で
炭化焼成し、厚さ2.0mmで表裏両面にガスの流路と
なる深さ0.8mm、幅4.3mmの溝を備えたアモル
ファスカーボン製燃料電池用セパレータを得た。得られ
たセパレータの反りは実施例1〜7と同様の方法により
測定し、その結果を表3に示す。
Examples 8 to 14 The phenolic resin molding material of the above reference example was injection-molded using a mold in which shrinkage of firing was expected in advance, and the length was 120 mm ×
A molded product having a width of 240 mm, a thickness of 2.4 mm, a depth of 1.0 mm, a width of 5.2 mm serving as a gas flow path on both sides, and a width of 12 mm at an end serving as a seal portion of the separator is provided. Obtained. The width of the end of this molded body was cut vertically and horizontally by a diamond cutter to prepare various molded bodies shown in Table 3 in which the outer dimensions and the width of the end were reduced. This molded body is carbonized and fired at 1500 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace, and is provided with a groove of 2.0 mm in thickness and a depth of 0.8 mm and a width of 4.3 mm serving as a gas flow path on both sides. Thus, an amorphous carbon fuel cell separator was obtained. The warpage of the obtained separator was measured by the same method as in Examples 1 to 7, and the results are shown in Table 3.

【0029】比較例2 上記参考例のフェノール樹脂成形材料を、予め焼成収縮
を見込んだ金型を用いて射出成形して、縦120mm×
横240mm、厚さ2.4mmで、表裏両面にガスの流
路となる深さ1.0mm、幅5.2mmの溝を備え、セ
パレータのシール部となる端部の幅が12mmの成形体
を得た。この成形体を高性能焼成炉を用い窒素ガス雰囲
気中1500℃で炭化焼成することにより、縦100m
m×横200mm、厚さ2.0mmで表裏両面にガスの
流路となる深さ0.8mm、幅4.3mmの溝を備え、
シール部の幅が10mmのアモルファスカーボン製燃料
電池用セパレータを得た。得られたセパレータの反りは
実施例1〜7と同様の方法により測定し、その結果を表
3に示す。
COMPARATIVE EXAMPLE 2 The phenolic resin molding material of the above reference example was injection molded using a mold in which shrinkage in advance was expected to be 120 mm long.
A molded product having a width of 240 mm, a thickness of 2.4 mm, a depth of 1.0 mm, a width of 5.2 mm serving as a gas flow path on both sides, and a width of 12 mm at an end serving as a seal portion of the separator is provided. Obtained. The formed body is carbonized and fired at 1500 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace to obtain a vertical length of 100 m.
mx 200 mm in width, 2.0 mm in thickness, 0.8 mm in depth and 4.3 mm in width to serve as a gas flow path on both sides,
An amorphous carbon fuel cell separator having a seal portion having a width of 10 mm was obtained. The warpage of the obtained separator was measured by the same method as in Examples 1 to 7, and the results are shown in Table 3.

【0030】[0030]

【表3】 [Table 3]

【0031】実施例15〜21 表1記載のフェノール樹脂成形材料に、Cステージまで
硬化させた中心粒径が10μmの真球状フェノール樹脂
硬化物を、フェノール樹脂硬化物を添加した全フェノー
ル樹脂成形材料に対して、40重量%混ぜた成形材料
を、予め焼成収縮を見込んだ金型を用いて射出成形を行
い、縦120mm×横240mm、厚さ2.4mmで、
表裏両面にガスの流路となる深さ1.0mm、幅5.2
mmの溝を備え、セパレータのシール部となる端部の幅
が12mmの成形体を得た。この成形体の端部の幅を
縦、横それぞれダイヤモンドカッターで切断し、外形寸
法及び端部の幅が小さくなった表4に示す種々の成形体
を作成した。この成形体を高性能焼成炉を用い窒素ガス
雰囲気中1000℃で炭化焼成し、厚さ2.0mmで表
裏両面にガスの流路となる深さ0.8mm、幅4.3m
mの溝を備えたアモルファスカーボン製燃料電池用セパ
レータを得た。得られたセパレータの反りは実施例1〜
7と同様の方法により測定し、その結果を表4に示す。
Examples 15 to 21 All phenolic resin molding materials obtained by adding a cured spherical phenolic resin having a center particle diameter of 10 μm cured to the C stage to the phenolic resin molding material described in Table 1 and adding the phenolic resin cured material On the other hand, injection molding was performed on a molding material mixed with 40% by weight using a mold in which shrinkage in advance was expected to be 120 mm long × 240 mm wide and 2.4 mm thick.
A depth of 1.0 mm and a width of 5.2 serving as a gas flow path on both sides.
A molded body having a groove of 12 mm and having a width of 12 mm at the end serving as a seal portion of the separator was obtained. The width of the end of this molded body was cut vertically and horizontally by a diamond cutter to prepare various molded bodies shown in Table 4 in which the outer dimensions and the width of the end were reduced. This molded body is carbonized and fired at 1000 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace, and has a thickness of 2.0 mm and a depth of 0.8 mm and a width of 4.3 m serving as a gas flow path on both sides.
Thus, an amorphous carbon fuel cell separator having a groove of m was obtained. The warpage of the obtained separator was as in Examples 1 to
The measurement was carried out in the same manner as in Example 7, and the results are shown in Table 4.

【0032】比較例3 表1記載のフェノール樹脂成形材料に、Cステージまで
硬化させた中心粒径が10μmの真球状フェノール樹脂
硬化物を、フェノール樹脂硬化物を添加した全フェノー
ル樹脂成形材料に対して、40重量%混ぜた成形材料
を、予め焼成収縮を見込んだ金型を用いて射出成形を行
い、縦120mm×横240mm、厚さ2.4mmで、
表裏両面にガスの流路となる深さ1.0mm、幅5.2
mmの溝を備え、セパレータのシール部となる端部の幅
が12mmの成形体を得た。この成形体を高性能焼成炉
を用い窒素ガス雰囲気中1000℃で炭化焼成すること
により、縦100mm×横200mm、厚さ2.0mm
で表裏両面にガスの流路となる深さ0.8mm、幅4.
3mmの溝を備えたアモルファスカーボン製燃料電池用
セパレータを得た。得られたセパレータの反りは実施例
1〜7と同様の方法により測定し、その結果を表4に示
す。
Comparative Example 3 A hardened spherical phenolic resin having a center particle diameter of 10 μm cured to the C stage was added to the phenolic resin molding material shown in Table 1 with respect to the total phenolic resin molding material to which the cured phenolic resin was added. Then, a molding material mixed with 40% by weight is subjected to injection molding using a mold that allows for shrinkage in advance, and is 120 mm long × 240 mm wide and 2.4 mm thick.
A depth of 1.0 mm and a width of 5.2 serving as a gas flow path on both sides.
A molded body having a groove of 12 mm and having a width of 12 mm at the end serving as a seal portion of the separator was obtained. This compact was carbonized and fired at 1000 ° C. in a nitrogen gas atmosphere using a high-performance firing furnace, so that the length was 100 mm × 200 mm in width and 2.0 mm in thickness.
3. A depth of 0.8 mm and a width of 4.
An amorphous carbon fuel cell separator having a groove of 3 mm was obtained. The warpage of the obtained separator was measured by the same method as in Examples 1 to 7, and the results are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】実施例22 実施例1〜7と同様な方法で作成したアモルファスカー
ボン製燃料電池用セパレータを基材とし、その全面にス
パッター法により炭化珪素の膜を30μmの厚さに形成
して燃料電池用セパレータを得た。この炭化珪素の膜を
付ける工程により基材の反りに悪影響を及ぼすことはな
かった。
Example 22 A fuel cell was prepared by forming a silicon carbide film to a thickness of 30 μm on the entire surface of a separator for an amorphous carbon fuel cell prepared in the same manner as in Examples 1 to 7 by sputtering. A battery separator was obtained. The step of applying the silicon carbide film did not adversely affect the warpage of the base material.

【0035】実施例23 実施例1〜7と同様は方法で作成したアモルファスカー
ボン製燃料電池用セパレータを基材とし、その全面にプ
ラズマ溶射法によりLaCrO3 粉末を吹き付けて膜を
30μm形成し燃料電池用セパレータを得た。このLa
CrO3 の膜を付ける工程により基材の反りに悪影響を
及ぼすことはなかった。
Example 23 A fuel cell was prepared by spraying LaCrO 3 powder on the entire surface of a separator for an amorphous carbon fuel cell prepared by the same method as in Examples 1 to 7 by plasma spraying to form a 30 μm film. Was obtained. This La
The step of applying the CrO 3 film did not adversely affect the warpage of the substrate.

【0036】実施例1〜21のセパレータにおいては、
セパレータのシール部となる端部の幅が狭い成形体を炭
化焼成したものであり、炭化焼成時に反応ガスの流路と
なる溝がある部分と、端部の溝がない部分との中心方向
への寸法収縮率の違いが少なく、反りが発生しなかっ
た。成形体の端部の幅を狭くするほど炭化焼成後の反り
が小さかった。しかし比較例1〜3のように成形体の端
部の幅が大きい成形体を用いると、炭化焼成するときに
反応ガスの流路となる溝がある部分より、溝がない端部
の方が中心方向への寸法収縮率が大きいため、製品に応
力が発生する。その応力を分散させるように反応ガスの
流路となる溝部分に反りが現れた。
In the separators of Examples 1 to 21,
It is obtained by carbonizing and firing a molded body having a narrow end portion serving as a seal portion of a separator, and is directed toward a center of a portion having a groove serving as a flow path of a reaction gas during carbonizing and firing, and a portion having no groove at an end portion. Had a small difference in dimensional shrinkage, and no warpage occurred. The smaller the width of the end of the formed body was, the smaller the warpage after carbonization and firing was. However, when a molded body having a large end portion width as in Comparative Examples 1 to 3 is used, the end portion having no groove is more preferable than the portion having a groove serving as a reaction gas flow path when carbonizing and firing. Since the dimensional shrinkage in the center direction is large, stress is generated in the product. A warp appeared in the groove serving as a flow path of the reaction gas so as to disperse the stress.

【0037】実施例1〜21のセパレータではシール部
となる成形体の端部をダイヤモンドカッターで切断し、
成形体の端部の幅を小さくしたが、予め焼成収縮を見込
むと共に端部の幅を小さくした金型で射出成形すること
で、同様の成形体が得られ炭化焼成後に反りのない同様
のセパレータを得ることができた。
In each of the separators of Examples 1 to 21, the end of the molded body serving as the seal portion was cut with a diamond cutter.
Although the width of the end of the molded body was reduced, a similar molded body was obtained by injection molding with a mold in which the width of the end was reduced in anticipation of firing shrinkage and a similar separator without warping after carbonization and firing. Could be obtained.

【0038】次に、実施例1〜23のセパレータを電解
質板、アノード電極、カソード電極と共に積層して燃料
電池を製造した。この際荷重をかけてもセパレータが割
れることなく、作業性良く燃料電池を製造することがで
きた。また、これらのセパレータは軽量でしかも耐食
性、ガス不透過性に優れており、比電気抵抗も十分に小
ので、これらのセパレータを組み込んだ燃料電池は、全
体が非常に軽量であり、セパレータが耐食性に優れてい
ることから長寿命であり、良好な性能を有していた。
Next, the fuel cells were manufactured by laminating the separators of Examples 1 to 23 together with the electrolyte plate, the anode electrode and the cathode electrode. In this case, even when a load was applied, the separator was not cracked, and the fuel cell could be manufactured with good workability. In addition, these separators are lightweight and have excellent corrosion resistance and gas impermeability, and their specific electrical resistance is sufficiently small. Therefore, the fuel cell incorporating these separators is extremely lightweight as a whole, and the separator has corrosion resistance. , It had a long life and good performance.

【0039】[0039]

【発明の効果】本発明のアモルファスカーボン製の燃料
電池用セパレータは、軽量かつ高強度であり、耐熱性、
耐食性、ガス不透過性に優れ、反りがなく形状安定性が
良い。また、このような燃料電池用セパレータは本発明
の成形体から容易得られ、また、このセパレータを燃料
電池に備えると、軽量かつ長寿命で信頼性の高い燃料電
池とすることができる。特に燃料電池用セパレータに耐
食性、耐熱性、及び導電性を備えた被膜を形成させたセ
パレータを用いたものは、高温で長時間の使用に耐えう
る。また、本発明の方法によれば、このようなアモルフ
ァスカーボン製の燃料電池用セパレータを容易に製造す
ることができ、特に予め焼成収縮を見込んだ金型を用い
て射出成形すると、切削加工のような後加工を必要とせ
ず、又は少なくすることができて量産性良く製造するこ
とができる。
Industrial Applicability The separator for an amorphous carbon fuel cell of the present invention is lightweight and high-strength, has heat resistance,
Excellent corrosion resistance and gas impermeability, no warpage and good shape stability. Further, such a fuel cell separator can be easily obtained from the molded article of the present invention, and if this separator is provided in a fuel cell, a lightweight, long-life and highly reliable fuel cell can be obtained. In particular, a fuel cell separator using a separator formed with a coating having corrosion resistance, heat resistance, and conductivity can withstand long-term use at a high temperature. Further, according to the method of the present invention, such a fuel cell separator made of amorphous carbon can be easily manufactured, and particularly when injection molding is performed using a mold that allows for shrinkage in advance, such as cutting. It can be manufactured with good mass productivity without requiring or reducing any post-processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃料電池の基本構成例を示す斜視図である。FIG. 1 is a perspective view showing a basic configuration example of a fuel cell.

【図2】従来のセパレータの例を示す概略平面図及びそ
の断面図である。
FIG. 2 is a schematic plan view showing an example of a conventional separator and a sectional view thereof.

【図3】従来のセパレータの例を示す概略平面図及びそ
の断面図である。
FIG. 3 is a schematic plan view showing an example of a conventional separator and a sectional view thereof.

【図4】本発明のセパレータの例を示す概略平面図及び
その断面図である。
FIG. 4 is a schematic plan view showing an example of the separator of the present invention and a sectional view thereof.

【図5】本発明のセパレータの例を示す概略平面図及び
その断面図である。
FIG. 5 is a schematic plan view showing an example of the separator of the present invention and a sectional view thereof.

【符号の説明】[Explanation of symbols]

1 アノード 2 電解質膜 3 カソード 4 セパレータ 5 反応ガス流路 6 アノードガス給排孔 7 冷却水給排孔 8 カソードガス給排孔 9 カソードガス流路 10 アノードガス流路 DESCRIPTION OF SYMBOLS 1 Anode 2 Electrolyte membrane 3 Cathode 4 Separator 5 Reaction gas flow path 6 Anode gas supply / discharge hole 7 Cooling water supply / discharge hole 8 Cathode gas supply / discharge hole 9 Cathode gas flow path 10 Anode gas flow path

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の面にアノードガス又は
カソードガスの流路を有し、かつアノードガスとカソー
ドガスを分離する機能を有する燃料電池用セパレータに
おいて、この燃料電池用セパレータはアモルファスカー
ボンよりなり、燃料電池用セパレータの縦及び横の少な
くとも一方の端のシール部の幅が7.5mm未満である
ことを特徴とする燃料電池用セパレータ。
1. A fuel cell separator having an anode gas or cathode gas flow path on at least one surface and having a function of separating anode gas and cathode gas, wherein the fuel cell separator is made of amorphous carbon. A fuel cell separator, wherein the width of at least one of the vertical and horizontal ends of the fuel cell separator is less than 7.5 mm.
【請求項2】 請求項1記載のアモルファスカーボン
は、密度が1.3〜1.6g/cm3 であり、比電気抵
抗が4〜20×10-3Ω・cmであり、かつガス透過率
が10-9〜10-12 cm2 /sであることを特徴とする
燃料電池用セパレータ。
2. The amorphous carbon according to claim 1, having a density of 1.3 to 1.6 g / cm 3 , a specific electrical resistance of 4 to 20 × 10 −3 Ω · cm, and a gas permeability. Is 10 −9 to 10 −12 cm 2 / s.
【請求項3】 燃料電池用セパレータのシール部となる
成形体の縦及び横の少なくとも一方の端部の幅を9mm
未満としたことを特徴とする請求項1又は2記載の燃料
電池用セパレータを得るための成形体。
3. The width of at least one of the vertical and horizontal ends of a molded body to be a seal portion of a fuel cell separator is 9 mm.
A molded product for obtaining the fuel cell separator according to claim 1 or 2, wherein
【請求項4】 請求項1又は請求項2記載の燃料電池用
セパレータに耐食性、耐熱性、及び導電性を備えた被膜
を形成させたものであることを特徴とする燃料電池用セ
パレータ。
4. A fuel cell separator comprising the fuel cell separator according to claim 1 or 2 and a coating having corrosion resistance, heat resistance, and conductivity formed thereon.
【請求項5】 懸濁重合法によって合成したフェノール
樹脂成形材料を成形して成形体とし、この成形体を炭化
焼成することを特徴とする請求項1又は2記載の燃料電
池用セパレータの製造方法。
5. The method for producing a fuel cell separator according to claim 1, wherein a phenolic resin molding material synthesized by a suspension polymerization method is formed into a molded body, and the molded body is carbonized and fired. .
【請求項6】 成形する際、予め焼成収縮を見込んだ金
型を用いて射出成形することを特徴とする請求項5記載
の燃料電池用セパレータの製造方法。
6. The method for producing a fuel cell separator according to claim 5, wherein, at the time of molding, the injection molding is carried out using a mold in which shrinkage of firing is expected in advance.
JP2000036673A 2000-02-15 2000-02-15 Separator for fuel cell, and its molding and production method Pending JP2001229931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036673A JP2001229931A (en) 2000-02-15 2000-02-15 Separator for fuel cell, and its molding and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036673A JP2001229931A (en) 2000-02-15 2000-02-15 Separator for fuel cell, and its molding and production method

Publications (1)

Publication Number Publication Date
JP2001229931A true JP2001229931A (en) 2001-08-24

Family

ID=18560689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036673A Pending JP2001229931A (en) 2000-02-15 2000-02-15 Separator for fuel cell, and its molding and production method

Country Status (1)

Country Link
JP (1) JP2001229931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939628B2 (en) * 2002-07-23 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for increasing fuel cell efficiency, power output, or reduced-temperature operation
WO2013125611A1 (en) * 2012-02-23 2013-08-29 日本ゼオン株式会社 Aqueous conductive paste for fuel cell separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939628B2 (en) * 2002-07-23 2005-09-06 Hewlett-Packard Development Company, L.P. Method and apparatus for increasing fuel cell efficiency, power output, or reduced-temperature operation
WO2013125611A1 (en) * 2012-02-23 2013-08-29 日本ゼオン株式会社 Aqueous conductive paste for fuel cell separator
JPWO2013125611A1 (en) * 2012-02-23 2015-07-30 日本ゼオン株式会社 Water-based conductive paste for fuel cell separator

Similar Documents

Publication Publication Date Title
CA1164934A (en) Separator plate for electrochemical cells
US4360485A (en) Method for making improved separator plates for electrochemical cells
KR100528010B1 (en) Polymer electrolyte type fuel cell
JP2008027925A (en) Fuel cell separator
CN110783523B (en) Electrode for solid-state battery and solid-state battery
JPH08222241A (en) Manufacture of graphite member for solid high polymer fuel cell
JP2002008676A (en) Fuel cell separator and solid polymer type fuel cell
JP2001068128A (en) Separator for fuel cell and manufacture thereof
JP4037955B2 (en) Method for producing polymer electrolyte fuel cell separator member
JP2001229931A (en) Separator for fuel cell, and its molding and production method
JP2008016307A (en) Fuel cell separator
JP2002231261A (en) Separator for fuel cell and its manufacturing method
JP2001143719A (en) Separator in fuel cell and method of manufacturing the same
JP2004139885A (en) Fuel cell separator and manufacturing method of the same
JP2000243409A (en) Separator member for sold polymer fuel cell and its manufacture
EP1329967A2 (en) Method of manufacturing a separator for a polymer electrolyte fuel cell
JP2007007868A (en) Mold for manufacturing fuel cell separator and manufacturing method of fuel cell separator using the same
JP2003217610A (en) Resin molding material for separator for fuel cell, separator for fuel cell using the same, and method for manufacturing the same
JP2524820B2 (en) Method for producing carbonaceous composite base material for fuel cell
JP2003303598A (en) Mold for molding separator for solid polymer type fuel cell, method of manufacturing the separator, and the separator
JP2004273449A (en) Separator for fuel cell and manufacturing method of the same
CN114464833A (en) Ceramic fuel cell bipolar plate and manufacturing method thereof
JP2003249239A (en) Separator for fuel cell and manufacturing method
JP2603916B2 (en) Heater panel for electrolyte plate production of molten carbonate fuel cell
JP2002254464A (en) Mold for press molding and its production method