JP2001226761A - Oxidation resistant film structure for niobium type heat resistant material and method of its deposition - Google Patents

Oxidation resistant film structure for niobium type heat resistant material and method of its deposition

Info

Publication number
JP2001226761A
JP2001226761A JP2000036352A JP2000036352A JP2001226761A JP 2001226761 A JP2001226761 A JP 2001226761A JP 2000036352 A JP2000036352 A JP 2000036352A JP 2000036352 A JP2000036352 A JP 2000036352A JP 2001226761 A JP2001226761 A JP 2001226761A
Authority
JP
Japan
Prior art keywords
niobium
oxidation
resistant
layer
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000036352A
Other languages
Japanese (ja)
Inventor
Akio Kasama
昭夫 笠間
Kazuyuki Sakamoto
和志 坂本
Yumi Cho
弓 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Original Assignee
Chokoon Zairyo Kenkyusho Kk
Japan Ultra High Temperature Materials Research Institute JUTEM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chokoon Zairyo Kenkyusho Kk, Japan Ultra High Temperature Materials Research Institute JUTEM filed Critical Chokoon Zairyo Kenkyusho Kk
Priority to JP2000036352A priority Critical patent/JP2001226761A/en
Publication of JP2001226761A publication Critical patent/JP2001226761A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation resistant film structure for a niobium type heat resistant material, capable of standing long use under an ultrahigh- temperature oxidizing atmosphere and hardly causing cracking and peeling even under a severe heat cycle, and a method of its deposition. SOLUTION: A diffusion preventive layer composed of niobium nitride or/and niobium boride is deposited onto the surface of a base material composed of niobium type heat resistant material. Then an oxidation resistant layer composed of silicides of one or more elements among Nb, Cr and Mo is further deposited onto the above surface. Moreover, the deposition of the diffusion preventive layer is performed by the ion implantation of N or/and B ions or by the vapor deposition of Nb simultaneously with the ion implantation; and the deposition of the oxidation resistant layer is performed by ion plating, sputter deposition or vacuum deposition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温の酸化性雰囲
気下で使用されるガスタービン部材等のニオブ系耐熱材
料の基材表面に、耐酸化を目的として形成する被膜の構
造およびその形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a film formed for the purpose of resistance to oxidation on a substrate surface of a niobium-based heat-resistant material such as a gas turbine member used in a high-temperature oxidizing atmosphere and a method of forming the film. About.

【0002】[0002]

【従来の技術】近年、ガスタービンの運転温度の一層の
高温化が求められ、従来からタービン部材として多用さ
れているNi基超合金よりも、使用温度限界の高い新た
な耐熱材料が必要となっている。このような材料の一つ
として、ニオブ(Nb)系の耐熱材料、例えば固溶強化
型や析出強化型のNb基合金やNb−Al系金属化合物
等が注目されている。
2. Description of the Related Art In recent years, it has been required to further increase the operating temperature of a gas turbine, and a new heat-resistant material having a higher operating temperature limit than a Ni-based superalloy conventionally used frequently as a turbine member is required. ing. As one of such materials, a niobium (Nb) -based heat-resistant material, for example, a solid solution strengthening type or a precipitation strengthening type Nb-based alloy, an Nb-Al-based metal compound, and the like have been attracting attention.

【0003】これらのNb系耐熱材料は高温強度に優れ
るが、いずれも高温域例えば800℃以上の温度域では
きわめて酸化され易く、ガスタービンのような高温の酸
化性雰囲気下でそのまま使用することは困難であり、タ
ービン部材等の基材表面に、種々の耐酸化被膜を形成す
る試みがなされている。
Although these Nb-based heat-resistant materials are excellent in high-temperature strength, they are very easily oxidized in a high-temperature region, for example, a temperature region of 800 ° C. or higher, and cannot be used as they are in a high-temperature oxidizing atmosphere such as a gas turbine. It is difficult, and attempts have been made to form various oxidation resistant coatings on the surface of a substrate such as a turbine member.

【0004】従来から、かかるNb系耐熱材料の耐酸化
被覆として、Ir被膜を形成する方法が種々検討されて
いる(例えば特開平10ー140333号公報など)。
また、Cr,Fe,Ta等のシリサイドを添加したNb
Si2をコーティング材として用いる方法や、シリケー
ト系のコーティング材を用いる方法等も試みられてい
る。
Conventionally, various methods of forming an Ir film as an oxidation-resistant coating of such a Nb-based heat-resistant material have been studied (for example, Japanese Patent Application Laid-Open No. H10-140333).
Nb added with silicide such as Cr, Fe, Ta, etc.
A method using Si 2 as a coating material, a method using a silicate-based coating material, and the like have also been attempted.

【0005】[0005]

【発明が解決しようとする課題】タービン部材は120
0℃以上の高温で長時間使用されるとともに、運転時・
休止時に昇降温を繰返すため、苛酷な熱サイクル下での
耐用性も要求される。前述したシリケートのような酸化
物系のコーティング材は、熱膨張率が基材のニオブ系材
料と相違し、被膜自身も靭性に欠けるため、熱サイクル
下では被膜に亀裂や剥離を生じ、耐酸化被覆としての機
能を失うことが多い。
SUMMARY OF THE INVENTION The turbine member is 120
Used for a long time at a high temperature of 0 ° C or higher,
Since the temperature rises and falls repeatedly during rest, durability under severe heat cycles is also required. The oxide-based coating material such as silicate described above has a different coefficient of thermal expansion from the niobium-based material of the base material, and the coating itself lacks toughness. Often loses its function as a coating.

【0006】また、IrやNbSi2等の被膜は、上記
のような熱サイクルの問題に加えて、IrやSiがNb
に固溶するため、高温で長時間使用するとIrやSiが
基材中に拡散して、被膜の酸素遮断性能が低下するとい
う問題がある。
Further, the coating such as Ir or NbSi 2, in addition to the thermal cycling problems as described above, Ir and Si is Nb
When used for a long time at a high temperature, Ir and Si diffuse into the base material, and the oxygen barrier performance of the coating film is deteriorated.

【0007】そのため、前記の特開平10−14033
3号公報には、Irの表面被覆層の下に、Ta,Re,
Wの蒸着層(拡散防止層)を形成したNb合金耐熱部材
が開示されている。しかし、この方法でも、拡散防止層
のTa,Re,W自体がNb合金に固溶するためその拡
散が避けられず、耐久性に問題が残ると考えられる。
For this reason, Japanese Patent Application Laid-Open No.
No. 3 discloses that Ta, Re, and Ta are provided under the surface coating layer of Ir.
An Nb alloy heat-resistant member having a W vapor-deposited layer (diffusion prevention layer) is disclosed. However, even in this method, Ta, Re, and W themselves of the diffusion prevention layer form a solid solution in the Nb alloy, so that the diffusion is inevitable, and it is considered that there is a problem in durability.

【0008】そこで本発明は、Nb系耐熱材料の耐酸化
被覆であって、超高温の酸化性雰囲気下での長時間の使
用に耐えることができ、苛酷な熱サイクル下でも亀裂や
剥離を生じることのない耐酸化被膜構造とその形成方法
を提供することを目的とする。
Therefore, the present invention provides an oxidation-resistant coating of an Nb-based heat-resistant material, which can withstand long-time use in an oxidizing atmosphere at an extremely high temperature, and causes cracks and peeling even under a severe thermal cycle. It is an object of the present invention to provide an oxidation-resistant film structure free from any problems and a method for forming the same.

【0009】[0009]

【課題を解決するための手段】本発明者らは、Nb系耐
熱材料の表面に形成した窒化ニオブ又はホウ化ニオブの
薄被膜は、基材との密着性に優れていることを知見し
た。また、この薄被膜のみでは酸素遮断性能が十分でな
いが、さらにその表面に酸化防止層を形成すれば、この
薄被膜が拡散防止層として機能することを知見した。さ
らに、酸化防止層の被膜物質として、窒化ニオブ又はホ
ウ化ニオブ被膜との密着性や耐熱サイクル性のよいN
b、Cr、Mo等のシリサイドが好適であることを知見
した。
Means for Solving the Problems The present inventors have found that a thin film of niobium nitride or niobium boride formed on the surface of an Nb-based heat-resistant material has excellent adhesion to a substrate. In addition, it has been found that the oxygen barrier performance is not sufficient with only this thin film, but that if the antioxidant layer is further formed on the surface thereof, this thin film functions as a diffusion preventing layer. Further, as a coating material of the antioxidant layer, N having good adhesion to a niobium nitride or niobium boride coating and a heat cycle resistance.
It has been found that silicides such as b, Cr, and Mo are suitable.

【0010】これらの知見に基づく本発明のニオブ系耐
熱材料の耐酸化被膜構造は、ニオブ系耐熱材料の基材表
面に、窒化ニオブ、ホウ化ニオブ又はこれらの混合物も
しくは複合化合物を主成分とする拡散防止層が形成さ
れ、さらにその表面にニオブシリサイド、クロムシリサ
イド、モリブデンシリサイド又はこれらのうちの二種以
上の混合物もしくは複合化合物からなる耐酸化層が形成
されてなるニオブ系耐熱材料の耐酸化被膜構造である。
On the basis of these findings, the oxidation-resistant coating structure of the niobium-based heat-resistant material of the present invention comprises a base material of the niobium-based heat-resistant material, which is mainly composed of niobium nitride, niobium boride, or a mixture or composite compound thereof. An oxidation-resistant coating of a niobium-based heat-resistant material having a diffusion prevention layer formed thereon and further having an oxidation-resistant layer formed of niobium silicide, chromium silicide, molybdenum silicide or a mixture or a composite compound of two or more thereof formed on the surface thereof. Structure.

【0011】また、前記拡散防止層の厚みが0.1〜1
0μmであり、かつ前記耐酸化層の厚みが10〜100
μmである上記のニオブ系耐熱材料の耐酸化被膜構造で
ある。
Further, the thickness of the diffusion preventing layer is 0.1 to 1
0 μm, and the thickness of the oxidation-resistant layer is 10 to 100
It is an oxidation-resistant coating structure of the above-mentioned niobium-based heat-resistant material having a thickness of μm.

【0012】また、本発明のニオブ系耐熱材料の耐酸化
被膜の形成方法は、ニオブ系耐熱材料の基材表面に、N
とBのいずれか一方又は双方をイオン注入して前記拡散
防止層を形成し、または該イオン注入と同時にイオンプ
レーティング法、スパッタ蒸着法又は真空蒸着法により
ニオブを蒸着することにより前記拡散防止層を形成し、
さらにその表面にニオブシリサイド、クロムシリサイ
ド、モリブデンシリサイド又はこれらのうちの二種以上
の混合物をイオンプレーティング法、スパッタ蒸着法又
は真空蒸着法により蒸着して前記耐酸化層を形成するこ
とを特徴とするニオブ系耐熱材料の耐酸化被膜の形成方
法である。
Further, the method for forming an oxidation-resistant coating of a niobium-based heat-resistant material according to the present invention is characterized in that the surface of a substrate of the niobium-based heat-resistant material is coated with
And B are ion-implanted to form the diffusion preventing layer, or simultaneously with the ion implantation, niobium is deposited by an ion plating method, a sputter deposition method, or a vacuum deposition method. To form
Further, niobium silicide, chromium silicide, molybdenum silicide or a mixture of two or more thereof is deposited on the surface by ion plating, sputter deposition or vacuum deposition to form the oxidation-resistant layer. This is a method for forming an oxidation-resistant coating of a niobium-based heat-resistant material.

【0013】また、前記のイオン注入を、イオンの加速
エネルギー0.1eV以上で行なうことを特徴とする上
記のニオブ系耐熱材料の耐酸化被膜の形成方法である。
Further, there is provided the above-mentioned method for forming an oxidation-resistant film of a niobium-based heat-resistant material, wherein the ion implantation is performed at an ion acceleration energy of 0.1 eV or more.

【0014】[0014]

【発明の実施の形態】本発明の耐酸化被膜構造は、ニオ
ブ系耐熱材料の基材表面に、相異なる被膜物質からなる
2層の被膜を有することを特徴とする。上側(外側)の
層は、雰囲気からの酸素の遮断を主な目的とするもの
で、本発明ではこれを耐酸化層という。下側(内側)の
層は、耐酸化層の基材への密着性を高め、かつ耐酸化層
の物質の基材中への拡散を防止することを主な目的とす
るもので、本発明ではこれを拡散防止層という。
BEST MODE FOR CARRYING OUT THE INVENTION The oxidation-resistant film structure of the present invention is characterized in that a substrate of a niobium-based heat-resistant material has two layers of different coating materials. The upper (outer) layer has a main purpose of shielding oxygen from the atmosphere, and is referred to as an oxidation-resistant layer in the present invention. The lower (inner) layer is mainly intended to enhance the adhesion of the oxidation-resistant layer to the substrate and to prevent the substance of the oxidation-resistant layer from diffusing into the substrate. This is called a diffusion prevention layer.

【0015】耐酸化層の被膜に要求される特性として
は、高融点であり、超高温域例えば1500℃以上での
安定性が高いこと、酸素の遮断性能が高いこと、拡散防
止層との密着性が良くかつこれとの熱膨張率の差が小さ
いこと、被膜自体がある程度の靭性を有しひび割れしに
くいこと等があげられる。
The properties required for the oxidation-resistant layer are that it has a high melting point, high stability in an ultra-high temperature range, for example, 1500 ° C. or higher, high oxygen blocking performance, and close contact with the diffusion preventing layer. It has good properties and a small difference in the coefficient of thermal expansion from this, and the coating itself has a certain degree of toughness and hardly cracks.

【0016】本発明においては、耐酸化層の被膜物質と
して、ニオブシリサイド(NbSi 2を主相とするが、
Nb5Si3等の相を含んでいてもよい)、クロムシリサ
イド(CrSi2を主相とするが、Cr5Si3等の相を
含んでいてもよい)、モリブデンシリサイド(MoSi
2を主相とするが、Mo5Si3等の相を含んでいてもよ
い)、又はこれらのうちの二種以上の混合物もしくは複
合化合物(Nb,Cr,Moのうちの二種以上とSiと
の化合物)を用いる。これらの物質は、いずれも前記の
諸特性を兼ね備え、耐酸化層の被膜物質として好適であ
る。
In the present invention, the coating material of the oxidation-resistant layer is
And niobium silicide (NbSi TwoIs the main phase,
NbFiveSiThreeEtc.), chrome silisa
Id (CrSiTwoIs the main phase, but CrFiveSiThreeLike phases
Molybdenum silicide (MoSi)
TwoIs the main phase, but MoFiveSiThreeMay contain phases such as
), Or a mixture or mixture of two or more of these
Compounds (Two or more of Nb, Cr, Mo and Si
Is used. All of these substances are
It has various properties and is suitable as a coating material for an oxidation resistant layer.
You.

【0017】また、拡散防止相の被膜に要求される特性
としては、高融点で高温域での安定性が高いこと、基材
との密着性が高いこと、耐酸化層物質の拡散抵抗が大き
いことの他に、その被膜物質自体の基材内への拡散が比
較的少ないこと等があげられる。
The properties required for the coating of the anti-diffusion phase include high melting point, high stability in a high temperature range, high adhesion to the substrate, and high diffusion resistance of the oxidation-resistant layer material. In addition, the diffusion of the coating substance itself into the substrate is relatively small.

【0018】本発明者らは、耐酸化層に前記の物質を用
いた場合の拡散防止層の被膜物質としては、窒化ニオブ
とホウ化ニオブが、上記の諸特性を満し、好適であるこ
とを知見した。したがって本発明においては、拡散防止
層の被膜物質として、窒化ニオブ(Nb2Nを主相とす
るが、Nb43等の相を含んでいてもよい)、ホウ化ニ
オブ(NbB2を主相とするが、Nb32等の相を含ん
でいても良い)、又はこれらの混合物もしくは複合化合
物(Nb,NおよびBの化合物)を用いる。
The present inventors have found that niobium nitride and niobium boride satisfy the above-mentioned characteristics and are suitable as the coating material for the diffusion preventing layer when the above-mentioned material is used for the oxidation-resistant layer. Was found. Therefore, in the present invention, niobium nitride (having a main phase of Nb 2 N but may contain a phase such as Nb 4 N 3 ), niobium boride (having a main phase of NbB 2 As the phase, a phase such as Nb 3 B 2 may be included), or a mixture or composite compound thereof (compound of Nb, N and B) is used.

【0019】また、上記の拡散防止層は、基材のニオブ
系材料との間に、N又は/およびBの濃度勾配を有する
混合層を有するものであることが好ましい。この混合層
は、基材と拡散防止層との密着性をより高め、熱応力の
発生を緩和するためである。このような混合層は、拡散
防止層の形成を後述するようなイオン注入法により行え
ば、容易に形成される。
It is preferable that the diffusion preventing layer has a mixed layer having a concentration gradient of N and / or B between the diffusion preventing layer and the niobium-based material. This mixed layer is for further improving the adhesion between the base material and the diffusion preventing layer and for reducing the generation of thermal stress. Such a mixed layer can be easily formed by forming the diffusion preventing layer by an ion implantation method as described later.

【0020】なお、本発明における基材であるNb系耐
熱材料は、Nb中に、Mo,W,Ta,Zr等を固溶し
た固溶強化型Nb基合金、Nb−Si系、Nb−Ti系
等の析出強化型のNb基合金や、Nb−Al系等のNb
の金属間化合物等のいずれであっても良い。
The Nb-based heat-resistant material as the base material in the present invention is a solid-solution strengthened Nb-based alloy in which Mo, W, Ta, Zr, etc. are dissolved in Nb, Nb-Si-based, Nb-Ti Nb-based alloys such as Nb-Al alloys
Or any of the above-mentioned intermetallic compounds.

【0021】本発明において、耐酸化層の厚みは10〜
100μmであることが望ましい。これが10μm未満
では酸素遮断性能が不十分であり、100μmを越える
と、熱応力等により被膜がひび割れ、剥離し易くなるた
めである。なお、より好ましい耐酸化層の厚みは20〜
50μmである。
In the present invention, the thickness of the oxidation-resistant layer is from 10 to
Preferably, it is 100 μm. If the thickness is less than 10 μm, the oxygen blocking performance is insufficient, and if it exceeds 100 μm, the coating is easily cracked and peeled off due to thermal stress or the like. The more preferable thickness of the oxidation-resistant layer is 20 to
50 μm.

【0022】また、拡散防止層の厚みは0.1〜10μ
mであることが望ましい。これが0.1μm未満では、
層としての緻密さが得られにくく、耐酸化層の物質の拡
散抵抗が小さくなり、10μmをこえると、基材との熱
膨張率の差により熱応力が生じて、拡散防止層にミクロ
なひび割れが生じるおそれがあるためである。
The thickness of the diffusion preventing layer is 0.1 to 10 μm.
m is desirable. If this is less than 0.1 μm,
It is difficult to obtain the denseness of the layer, and the diffusion resistance of the material of the oxidation-resistant layer is small. When the thickness exceeds 10 μm, a thermal stress is generated due to a difference in a coefficient of thermal expansion with the base material. This is because there is a risk of occurrence.

【0023】なお、拡散防止層と基材との間に前述した
混合相がある場合には、拡散防止層の厚みは比較的厚目
(例えば5〜10μm)であった方が好ましく、混合相
がない場合が比較的薄目(例えば0.1〜5μm)の方
が好ましい。
In the case where the above-mentioned mixed phase is present between the diffusion preventing layer and the substrate, the thickness of the diffusion preventing layer is preferably relatively thick (for example, 5 to 10 μm). It is preferable that the thickness is relatively thin (for example, 0.1 to 5 μm).

【0024】次に、本発明の耐酸化被膜の形成方法につ
いて述べる。本発明の方法は、Nb系耐熱材料の基材表
面に、NとBのいずれか一方又は双方をイオン注入する
ことにより、窒化ニオブ、ホウ化ニオブ又はこれらの混
合物もしくは複合化合物を主成分とする拡散防止層を形
成し、または、NとBのいずれか一方又は双方のイオン
注入と同時にイオンプレーティング法、スパッタ蒸着法
又は真空蒸着法によりニオブを蒸着することにより前記
拡散防止層を形成し、かつ前記酸化層の形成を、イオン
プレーティング法、スパッタ蒸着、真空蒸着等のPVD
法により行うことを特徴とする。
Next, a method for forming an oxidation resistant film according to the present invention will be described. The method of the present invention comprises, as a main component, niobium nitride, niobium boride, or a mixture or a composite compound thereof by ion-implanting one or both of N and B on a substrate surface of an Nb-based heat-resistant material. Forming a diffusion prevention layer, or forming the diffusion prevention layer by depositing niobium by ion plating, sputter deposition or vacuum deposition simultaneously with ion implantation of one or both of N and B; And forming the oxide layer by PVD such as ion plating, sputter deposition, vacuum deposition, etc.
It is characterized in that it is performed by a method.

【0025】拡散防止層の形成をイオン注入法により行
う理由は、緻密で均質が被膜が得られるだけでなく、前
述したように基材との間に混合層が形成されてその密着
性が高まり、拡散防止層を比較的に厚目にしてもひび割
れや剥離が生じることがないためである。
The reason why the diffusion preventing layer is formed by the ion implantation method is that not only a dense and uniform film can be obtained, but also a mixed layer is formed between the substrate and the substrate, as described above, and the adhesion is enhanced. This is because even if the diffusion preventing layer is relatively thick, cracking and peeling do not occur.

【0026】イオン注入法は、窒素ガス、あるいはボロ
ンのハロゲン化物等を原料として、必要に応じてAr等
の希釈ガスとともにプラズマを作り、その中からイオン
を引き出し、必要に応じて質量分離するなどして、Nイ
オンまたはBイオンを選別し、さらに電場により加速し
てニオブ系耐熱材料に注入すればよい。
In the ion implantation method, a plasma is produced using nitrogen gas or a halide of boron or the like as a raw material together with a diluent gas such as Ar if necessary, ions are extracted therefrom, and mass separation is performed as necessary. Then, N ions or B ions may be selected, accelerated by an electric field, and injected into a niobium-based heat-resistant material.

【0027】拡散防止層に窒化ニオブとホウ化ニオブの
混合物あるいは複合化合物を形成する場合は、Nイオン
の注入とBイオンの注入を順次行うか、あるいは複数の
イオン注入機により同時にNイオンとBイオンの注入を
行ってもよい。
When a mixture or a compound of niobium nitride and niobium boride is formed in the diffusion preventing layer, N ions and B ions are sequentially implanted, or N ions and B ions are simultaneously implanted by a plurality of ion implanters. Ion implantation may be performed.

【0028】つぎに、耐酸化層の形成をPVD法により
行う理由は、拡散防止層との密着性が良く、緻密で均質
な薄膜の形成が可能で、かつ膜厚の制御も容易なためで
ある。PVD法は、真空蒸着、スパッタ蒸着、イオンプ
レーティング等種々の形式のものに分類されるが、比較
的蒸着速度の大きい、例えば真空蒸着やイオンプレーテ
ィング等の方法によるのが好ましい。
Next, the reason why the oxidation resistant layer is formed by the PVD method is that the adhesion to the diffusion preventing layer is good, a dense and uniform thin film can be formed, and the thickness can be easily controlled. is there. The PVD method is classified into various types such as vacuum deposition, sputter deposition, and ion plating, and it is preferable to use a method having a relatively high deposition rate, such as vacuum deposition or ion plating.

【0029】すなわち、前記の耐酸化層の被膜物質の1
種又は2主以上を蒸発源又はターゲット材とし、通常の
PVD装置を使用して、拡散防止層の上に所定厚みの耐
酸化層を形成させればよい。
That is, one of the coating materials for the oxidation-resistant layer is
An oxidation resistant layer having a predetermined thickness may be formed on the diffusion preventing layer by using a seed or two or more of them as an evaporation source or a target material and using a normal PVD apparatus.

【0030】本発明においては、上記のようにして、基
材の表面に2層の被膜を形成した後、あるいは拡散防止
層を形成させた後、耐酸化層を形成する前に、必要に応
じてこれを熱処理してもよい。熱処理は、真空又は不活
性ガス雰囲気下で、例えば500〜1800℃で1〜2
4時間加熱するような方法によればよい。このような熱
処理により、2層の被膜の均質性と密着性をより高める
ことができる。
In the present invention, if necessary, after forming the two-layer coating on the surface of the base material, or after forming the diffusion preventing layer, and before forming the oxidation resistant layer, as described above. This may be heat treated. The heat treatment is performed under a vacuum or an inert gas atmosphere at, for example, 500 to 1800 ° C. for 1 to 2 hours.
A method of heating for 4 hours may be used. Such heat treatment can further enhance the homogeneity and adhesion of the two-layer coating.

【0031】[0031]

【実施例】以下、実施例に基いて本発明をさらに詳しく
説明する。純度99.9%のNb,Mo,Wの粒状原料
を真空アークハース溶解して、Nb−20at%Mo−
10at%Wのニオブ基合金の板状の基材を作成し、こ
れに本発明の耐酸化被膜を形成した。基材の寸法は15
×15×4(厚み)mmであった。
The present invention will be described below in more detail with reference to examples. Nb, Mo, W granular material having a purity of 99.9% is melted in a vacuum arc hearth to obtain Nb-20 at% Mo-.
A 10 at% W niobium-based alloy plate-shaped substrate was prepared, and an oxidation-resistant film of the present invention was formed thereon. Substrate size is 15
× 15 × 4 (thickness) mm.

【0032】実施例は、この基材を表面調整(研磨とク
リーニング)した後、Nをイオン注入して拡散防止層を
形成し、さらにその表面にイオンプレーティングにより
耐酸化層を形成した。拡散防止層の形成条件は一定と
し、その上に、ニオブシリサイド、クロムシリサイド、
モリブデンシリサイドのそれぞれについて、ほぼ同一の
条件で耐酸化層を形成した3種の被覆材を作成した。
In the example, after the surface of this substrate was adjusted (polishing and cleaning), N was ion-implanted to form a diffusion preventing layer, and an oxidation resistant layer was formed on the surface by ion plating. The conditions for forming the diffusion prevention layer are constant, and niobium silicide, chromium silicide,
For each of the molybdenum silicides, three types of coating materials having an oxidation resistant layer formed under substantially the same conditions were prepared.

【0033】一方比較例は、拡散防止層を形成すること
なく、表面調整した基材に、ニオブシリサイド、クロム
シリサイド、モリブデンシリサイドのそれぞれについ
て、実施例とほぼ同じ条件で耐酸化層のみを形成した3
種の被覆材である。
On the other hand, in the comparative example, without forming a diffusion preventing layer, only an oxidation-resistant layer was formed on each of the niobium silicide, chromium silicide, and molybdenum silicide on the surface-conditioned substrate under substantially the same conditions as in the example. 3
Kind of coating material.

【0034】拡散防止層は、窒素ガスを原料としてプラ
ズマを作り、ここからイオンを引き出したのち、質量分
離して、N+イオンだけを取り出し、さらに電場により
加速して、加速電圧400kV、電流密度180μA/c
m2で、8×1017個/cm2の注入量まで注入し、厚み約
0.4μmの拡散防止層を形成した。
The diffusion preventing layer forms a plasma using a nitrogen gas as a raw material, extracts ions from the raw material, separates them by mass, extracts only N + ions, accelerates the same by an electric field, accelerates by an electric field of 400 kV, current density 180μA / c
m 2, and the injected until the 8 × 10 17 pieces / cm 2 injection volume, to form a diffusion preventing layer having a thickness of about 0.4 .mu.m.

【0035】耐酸化層は、実施例、比較例ともにアーク
イオンプレーティング方式のイオンプレーティング装置
を用い、例えば耐酸化層としてニオブシリサイドを形成
する場合には、形成したいニオブシリサイドと同じ組成
を持つターゲットを用いて、バイアス電圧40Vの条件
で、厚み約50μmの耐酸化層をコーティングした。基
材の取り付け方法を変えながら同じ条件の処理を数回繰
り返して行うことにより、基材のどの面についても、ほ
ぼ同じ厚さの拡散防止層ならびに耐酸化層を形成した。
The oxidation-resistant layer uses an ion plating apparatus of an arc ion plating method in both the examples and comparative examples. For example, when niobium silicide is formed as the oxidation-resistant layer, it has the same composition as the niobium silicide to be formed. Using a target, an oxidation-resistant layer having a thickness of about 50 μm was coated at a bias voltage of 40 V. By repeating the treatment under the same conditions several times while changing the method of attaching the base material, a diffusion preventing layer and an oxidation-resistant layer having substantially the same thickness were formed on all surfaces of the base material.

【0036】さらに、実施例、比較例とともに被覆材を
1×10-2Torrの真空中で、1400℃×24hr
の熱処理を行った。このようにして得た実施例、比較例
各3種の被覆材について、1200℃、大気雰囲気下で
24hrの曝露試験を行い、試験後の被覆材について、
その重量変化の測定、被膜の外観の目視観察、EPMA
による被膜の断面観察を行った。
Further, together with the examples and comparative examples, the coating material was heated at 1400 ° C. for 24 hours in a vacuum of 1 × 10 −2 Torr.
Was heat-treated. The thus obtained coating materials of Examples and Comparative Examples were subjected to an exposure test at 1200 ° C. for 24 hours in an air atmosphere for each of the three types of coating materials.
Measurement of the weight change, visual observation of the appearance of the coating, EPMA
The cross section of the coating film was observed by the following method.

【0037】重量変化は、△w=(試験後重量−初期重
量)/初期重量×100により定義されるものである。
外観の目視観察は、酸化物の生成、ひび割れ・剥離等を
目視観察したもので3段階評価した(○:表面の変色が
あるものの特に破損なし、△:剥離物が認められる、
×:剥離物多数で試験片の外観は試験前の原形をとどめ
ない)。
The change in weight is defined by Δw = (weight after test−initial weight) / initial weight × 100.
Visual observation of the external appearance was performed by visually observing the formation of oxides, cracks and peeling, etc., and evaluated on a three-point scale (O: discoloration of the surface but no particular damage, Δ: peeled off,
×: Appearance of the test specimen is not limited to the original shape before the test because of many peeled products.)

【0038】EPMAによる断面観察は、暴露試験後の
試験片を樹脂に埋め込み、切断して断面を観察するとと
もに、断面の深さ方向にO(酸素)とNb,Mo,C
r,Siの元素濃度の分布を調べて、耐酸化被膜として
の性能を評価した。結果をまとめて表1に示す。
The cross-section observation by EPMA is performed by embedding a test piece after the exposure test in a resin, cutting the specimen, observing the cross-section, and measuring O (oxygen), Nb, Mo, C
The distribution of the element concentrations of r and Si was examined to evaluate the performance as an oxidation-resistant film. The results are summarized in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1の結果から明らかなように、拡散防止
層を形成した実施例においては、耐酸化層の物質がN
b,Cr,Moのシリサイドのいずれの場合も、重量変
化は+0.1〜0.2%と小さく、表面の変色があるも
のの特に破損は認めらず、基材側への被膜物質の拡散は
軽微であった。
As is clear from the results in Table 1, in the embodiment in which the diffusion preventing layer was formed, the material of the oxidation resistant layer was N.
In any of the b, Cr, and Mo silicides, the weight change was as small as +0.1 to 0.2%, and although there was discoloration of the surface, no particular damage was observed, and the diffusion of the coating material to the base material side was suppressed. It was minor.

【0041】これに対して、拡散防止層が無く耐酸化層
のみの比較例においては、重量変化は−10〜20%と
大きく(酸化物の剥落による)、試験片の外観は試験前
の原形をとどめない状態であり、本発明の耐酸化被膜構
造が、ニオブ系耐熱材料の耐酸化性能の向上にきわめて
顕著な効果があることが確かめられた。
On the other hand, in the comparative example having no diffusion preventing layer and only the oxidation-resistant layer, the weight change was as large as -10 to 20% (due to oxide peeling), and the appearance of the test piece was the original shape before the test. , And it was confirmed that the oxidation-resistant coating structure of the present invention had a very remarkable effect in improving the oxidation resistance of the niobium-based heat-resistant material.

【0042】[0042]

【発明の効果】本発明により、ガスタービン部材等に用
いられるニオブ系耐熱材料の基材表面に、超高温の酸化
性雰囲気下での長時間の使用に耐えることができ、亀裂
や剥離を生じることのない耐酸化被膜を形成させること
が可能になった。
According to the present invention, the surface of a substrate made of a niobium-based heat-resistant material used for a gas turbine member or the like can withstand a long-time use in an ultra-high temperature oxidizing atmosphere, causing cracks and peeling. This makes it possible to form an oxidation-resistant film without any problem.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 27/02 102 C22C 27/02 102Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 27/02 102 C22C 27/02 102Z

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ系耐熱材料の基材表面に、窒化ニ
オブ、ホウ化ニオブ又はこれらの混合物もしくは複合化
合物を主成分とする拡散防止層が形成され、さらにその
表面にニオブシリサイド、クロムシリサイド、モリブデ
ンシリサイド又はこれらのうちの二種以上の混合物もし
くは複合化合物からなる耐酸化層が形成されてなるニオ
ブ系耐熱材料の耐酸化被膜構造。
An anti-diffusion layer composed mainly of niobium nitride, niobium boride, or a mixture or composite compound thereof is formed on a substrate surface of a niobium-based heat-resistant material, and further has niobium silicide, chromium silicide, An oxidation-resistant film structure of a niobium-based heat-resistant material in which an oxidation-resistant layer made of molybdenum silicide or a mixture or a composite compound of two or more thereof is formed.
【請求項2】 前記拡散防止層の厚みが0.1〜10μ
mであり、かつ前記耐酸化層の厚みが10〜100μm
である請求項1記載のニオブ系耐熱材料の耐酸化被膜構
造。
2. The thickness of the diffusion preventing layer is 0.1 to 10 μm.
m, and the thickness of the oxidation-resistant layer is 10 to 100 μm.
The oxidation-resistant film structure of a niobium-based heat-resistant material according to claim 1.
【請求項3】 ニオブ系耐熱材料の基材表面に、窒素と
ホウ素のいずれか一方又は双方をイオン注入して前記拡
散防止層を形成し、または該イオン注入と同時にイオン
プレーティング法、スパッタ蒸着法又は真空蒸着法によ
りニオブを蒸着することにより前記拡散防止層を形成
し、さらにその表面にニオブシリサイド、クロムシリサ
イド、モリブデンシリサイド又はこれらのうちの二種以
上の混合物をイオンプレーティング法、スパッタ蒸着法
又は真空蒸着法により蒸着して前記耐酸化層を形成する
ことを特徴とするニオブ系耐熱材料の耐酸化被膜の形成
方法。
3. The diffusion preventing layer is formed by ion-implanting one or both of nitrogen and boron on the surface of a substrate made of a niobium-based heat-resistant material, or by ion plating or sputter deposition simultaneously with the ion implantation. The diffusion preventing layer is formed by vapor-depositing niobium by a vacuum or vapor deposition method, and then niobium silicide, chromium silicide, molybdenum silicide or a mixture of two or more thereof is ion-plated, sputter-deposited on the surface. A method for forming an oxidation-resistant film of a niobium-based heat-resistant material, wherein the oxidation-resistant layer is formed by vapor deposition or vacuum deposition.
【請求項4】 前記のイオン注入を、イオンの加速エネ
ルギー0.1eV以上で行なうことを特徴とする請求項
3記載のニオブ系耐熱材料の耐酸化被膜の形成方法。
4. The method according to claim 3, wherein the ion implantation is performed at an ion acceleration energy of 0.1 eV or more.
JP2000036352A 2000-02-15 2000-02-15 Oxidation resistant film structure for niobium type heat resistant material and method of its deposition Pending JP2001226761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000036352A JP2001226761A (en) 2000-02-15 2000-02-15 Oxidation resistant film structure for niobium type heat resistant material and method of its deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000036352A JP2001226761A (en) 2000-02-15 2000-02-15 Oxidation resistant film structure for niobium type heat resistant material and method of its deposition

Publications (1)

Publication Number Publication Date
JP2001226761A true JP2001226761A (en) 2001-08-21

Family

ID=18560402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000036352A Pending JP2001226761A (en) 2000-02-15 2000-02-15 Oxidation resistant film structure for niobium type heat resistant material and method of its deposition

Country Status (1)

Country Link
JP (1) JP2001226761A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530402A (en) * 2004-04-03 2007-11-01 アプライド マテリアルズ ゲーエムベーハー アンド コンパニー カーゲー Glass coating
JP2008001962A (en) * 2006-06-23 2008-01-10 Shimane Univ Oxidation-resistant material and manufacturing method thereof
CN112639374A (en) * 2018-08-09 2021-04-09 株式会社丰田自动织机 Solar heat collecting pipe
CN114606493A (en) * 2021-11-19 2022-06-10 中南大学 NbB-containing alloy for niobium alloy2/Nb3B2Antioxidant coating of composite diffusion barrier and preparation method thereof
CN114657524A (en) * 2022-03-07 2022-06-24 有研工程技术研究院有限公司 Method for preparing gradient Nb-Si-based alloy film by adopting multi-target codeposition magnetron sputtering high-throughput technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530402A (en) * 2004-04-03 2007-11-01 アプライド マテリアルズ ゲーエムベーハー アンド コンパニー カーゲー Glass coating
JP2008001962A (en) * 2006-06-23 2008-01-10 Shimane Univ Oxidation-resistant material and manufacturing method thereof
CN112639374A (en) * 2018-08-09 2021-04-09 株式会社丰田自动织机 Solar heat collecting pipe
CN114606493A (en) * 2021-11-19 2022-06-10 中南大学 NbB-containing alloy for niobium alloy2/Nb3B2Antioxidant coating of composite diffusion barrier and preparation method thereof
CN114657524A (en) * 2022-03-07 2022-06-24 有研工程技术研究院有限公司 Method for preparing gradient Nb-Si-based alloy film by adopting multi-target codeposition magnetron sputtering high-throughput technology
CN114657524B (en) * 2022-03-07 2023-10-27 有研工程技术研究院有限公司 Method for preparing gradient Nb-Si-based alloy film by adopting multi-target codeposition magnetron sputtering high-flux technology

Similar Documents

Publication Publication Date Title
JP3039381B2 (en) Method of forming composite hard coating with excellent high temperature oxidation resistance
US5238752A (en) Thermal barrier coating system with intermetallic overlay bond coat
Haynes et al. High-temperature diffusion barriers for protective coatings
US5556713A (en) Diffusion barrier for protective coatings
KR20090028476A (en) A method and apparatus for depositing a coating onto a substrate
JP2012132099A (en) Niobium-based alloy heat-resistant material
JP5139768B2 (en) Surface treatment method for Ti-Al alloy and Ti-Al alloy obtained thereby
RU2131482C1 (en) High-temperature metal article and process of its manufacture
RU2742919C2 (en) Method for protecting a detail made of a single-crystal, hafnium-free nickel-based superalloy from corrosion and oxidation
JP2001226761A (en) Oxidation resistant film structure for niobium type heat resistant material and method of its deposition
KR20130074647A (en) Coated steel sheet and method for manufacturing the same
JP3857690B2 (en) Re alloy film for diffusion barrier
JPH0598423A (en) Chrome coating film for preventing oxidation of titanium
JP3857689B2 (en) ReCrNi alloy coating for diffusion barrier
JP3910588B2 (en) ReCr alloy coating for diffusion barrier
EP2516689B1 (en) Methods of forming nickel aluminide coatings
JPH0657399A (en) Ceramic-coating method for metal base material
JP2004269985A (en) Hard film
CN114086090A (en) Continuous SiC fiber reinforced refractory metal matrix composite based on nano multilayer structure and preparation method and application thereof
JPH05283149A (en) Heater material with excellent surface insulation property and its manufacture
JPH0587591B2 (en)
JPH0587592B2 (en)
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP2001288557A (en) Oxidation resistant coating structure of niobium type heat resistant material, and method of forming the same
US3526534A (en) Method for improving the oxidation resistance of chromium containing iron,cobalt and nickel base alloys