JP2001221890A - Nuclear power plant and its fuel processing method - Google Patents

Nuclear power plant and its fuel processing method

Info

Publication number
JP2001221890A
JP2001221890A JP2000030703A JP2000030703A JP2001221890A JP 2001221890 A JP2001221890 A JP 2001221890A JP 2000030703 A JP2000030703 A JP 2000030703A JP 2000030703 A JP2000030703 A JP 2000030703A JP 2001221890 A JP2001221890 A JP 2001221890A
Authority
JP
Japan
Prior art keywords
reactor
steam
coolant
pressurized water
fast breeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000030703A
Other languages
Japanese (ja)
Other versions
JP3377769B2 (en
Inventor
Mitsuru Sato
充 佐藤
Koichi Hirota
耕一 廣田
Yoshiyuki Okubo
良幸 大久保
Masanori Tashimo
正宣 田下
Shinichi Fukuchi
真一 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2000030703A priority Critical patent/JP3377769B2/en
Publication of JP2001221890A publication Critical patent/JP2001221890A/en
Application granted granted Critical
Publication of JP3377769B2 publication Critical patent/JP3377769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve power generation efficiency of a nuclear power plant and reduce construction cost as a whole. SOLUTION: The nuclear power plant has for pressurized water reactors 20 and a fast breeder reactor 30. Each pressurized water reactor 20 has a reactor vessel 23, containing a core 21 and a steam generator 25 receiving reactor coolant heated in the reactor vessel 23. The fast breeder reactor 30 has an intermediate heat exchanger 35 for exchanging heat between primary coolant and secondary coolant and a super heater 41 for exchanging heat between the steam coming out of the steam generator 25 and the secondary coolant. The steam outlet of the superheater 41 is connected to a steam turbine 45.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は原子力発電プラント
に関し、特に加圧水型原子力プラントと高速増殖炉発電
プラントとを組み合わせた複合原子力発電プラント及び
これに用いる燃料の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant, and more particularly to a combined nuclear power plant in which a pressurized water nuclear power plant and a fast breeder reactor power plant are combined and a method of treating fuel used in the combined nuclear power plant.

【0002】[0002]

【従来の技術】図3に現在使用されている加圧水型原子
力発電プラントの主冷却系の系統図が示されている。こ
れを概説すると原子炉1、蒸気発生器3及び冷却材ポン
プ5が原子炉冷却材配管によって連絡されて原子炉冷却
材循環ループを形成し、蒸気発生器3の蒸気配管が蒸気
タービン7に連絡し、発電機9を回転駆動する蒸気ター
ビン7から出る復水を受ける復水器11は給水ポンプ1
3及び配管を介して蒸気発生器3に連絡している。 そ
して、原子炉冷却材である軽水が常に液相に保たれる加
圧水型原子炉において、原子炉冷却材炉心出口温度は約
310℃であり、この高温原子炉冷却材によって加熱さ
れる蒸気発生器3は、温度が約275℃で圧力が約60
Kg/cm2の飽和蒸気を発生し、この飽和蒸気により蒸気
タービン7を駆動する。又、加圧水型原子炉において燃
焼に供された原子炉燃料は使用済燃料になり、これは再
処理施設において再処理され、そこで発生するマイナア
クチナイドは高レベル廃棄物として処理されるであるマ
イナアクチナイドを発生する。一方、現在提案され、開
発されつつある高速増殖炉では、液体ナトリウムである
原子炉冷却材の炉心出口温度が約550℃と比較的高温
であるため、タービン入口蒸気条件を約170Kg/cm2
450℃と高温・高圧にできる。
2. Description of the Related Art FIG. 3 shows a system diagram of a main cooling system of a pressurized water nuclear power plant currently used. In brief, the reactor 1, the steam generator 3, and the coolant pump 5 are connected by a reactor coolant pipe to form a reactor coolant circulation loop, and the steam pipe of the steam generator 3 is connected to the steam turbine 7. The condenser 11 which receives the condensate from the steam turbine 7 which rotates the generator 9 is provided with a feed pump 1
The steam generator 3 is communicated with the steam generator 3 through a pipe 3 and a pipe. In a pressurized water reactor in which light water as a reactor coolant is always maintained in a liquid phase, the reactor coolant core outlet temperature is about 310 ° C., and the steam generator heated by the high-temperature reactor coolant is used. 3 has a temperature of about 275 ° C. and a pressure of about 60
A saturated steam of Kg / cm2 is generated, and the steam turbine 7 is driven by the saturated steam. Also, the reactor fuel burned in the pressurized water reactor becomes spent fuel, which is reprocessed in a reprocessing facility, where the minor actinides generated are treated as high-level waste. Generates minor actinides. On the other hand, in the fast breeder reactor currently proposed and being developed, since the core outlet temperature of the reactor coolant, which is liquid sodium, is relatively high at about 550 ° C., the turbine inlet steam condition is set to about 170 kg / cm 2 ,
Can be as high as 450 ° C and high pressure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ように現在の加圧水型原子力発電プラントにおいては、
飽和蒸気を用いているいてその温度が低いため、発電効
率が約35%と低く海水に放出する排熱を有効利用する
方策が模索されているいという問題があった。又、前述
のように使用済燃料中に半減期の長いマイナアクチナイ
ドがあり、その処理保管に大きな費用を必要とする問題
があった。一方、高速増殖炉においては、蒸気のタービ
ン入口温度が高く、発電効率を約42%まで向上させる
ことができるのであるが、冷却材温度が比較的高温であ
るなどによりプラント全体の建設コストが高いくなると
いう問題があった。従って、本発明は、発電効率が高
く、且つ建設コストが低くて経済効率が良く、更には環
境への負荷となる廃棄物を生じない原子力発電プラント
を提供することを課題とする。
However, as described above, in the present pressurized water nuclear power plant,
Since saturated steam is used and its temperature is low, power generation efficiency is as low as about 35%, and there has been a problem that a measure for effectively utilizing exhaust heat released into seawater has been sought. Further, as described above, there is a problem in that there is a minor actinide having a long half-life in spent fuel, which requires a large cost for processing and storage. On the other hand, in the fast breeder reactor, the steam turbine inlet temperature is high and the power generation efficiency can be improved to about 42%. However, the construction cost of the entire plant is high due to the relatively high coolant temperature. There was a problem of getting worse. Accordingly, an object of the present invention is to provide a nuclear power plant that has high power generation efficiency, low construction cost, high economic efficiency, and that does not generate waste as a load on the environment.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明によれば、原子力発電プラントは、複数基の
加圧水型原子炉と1基の高速増殖炉を有し、前記加圧水
型原子炉のそれぞれは炉心を内蔵する原子炉容器とその
原子炉容器内で加熱される原子炉冷却材を受け入れて蒸
気を発生する蒸気発生器を有し、他方高速増殖炉は原子
炉一次冷却材と原子炉二次冷却材とが熱交換する中間熱
交換器及び加圧水型原子炉の前記蒸気発生器から出た蒸
気と前記原子炉二次冷却材とが熱交換する過熱器を有
し、この過熱器が蒸気タービンに連絡していることを特
徴とする。又、この原子力発電プラントの加圧水型原子
炉で燃焼された使用済燃料から再処理によって出される
マイナアクチナイド等は、高速増殖炉の燃料として加工
されてその炉心に装荷される。更に本発明によれば、原
子力発電プラントの蒸気タービンを高圧タービンと低圧
タービンとから構成し、高速増殖炉の中間熱交換器から
出る高温の原子炉二次冷却材の一部を再熱器に導くよう
に構成し、過熱器を出た過熱蒸気により先ず高圧タービ
ンを駆動し、次いで再熱器を出た再熱蒸気により低圧タ
ービンを駆動するように蒸気系が構成される。
According to the present invention, there is provided a nuclear power plant having a plurality of pressurized water reactors and one fast breeder reactor, wherein the pressurized water reactor is provided. Each of the reactors has a reactor vessel containing a core and a steam generator that receives the reactor coolant heated in the reactor vessel and generates steam, while the fast breeder reactor has a primary reactor coolant and An intermediate heat exchanger for exchanging heat with the secondary coolant of the reactor and a superheater for exchanging heat between the steam discharged from the steam generator of the pressurized water reactor and the secondary coolant of the reactor; The vessel is in communication with the steam turbine. Minor actinides and the like, which are reprocessed from spent fuel burned in the pressurized water reactor of the nuclear power plant, are processed as fuel for the fast breeder reactor and loaded into the core. Further, according to the present invention, the steam turbine of the nuclear power plant is composed of a high-pressure turbine and a low-pressure turbine, and a part of the high-temperature reactor secondary coolant coming out of the intermediate heat exchanger of the fast breeder reactor is used as the reheater. The steam system is configured such that the high-pressure turbine is driven by the superheated steam exiting the superheater first, and then the low-pressure turbine is driven by the reheated steam exiting the reheater.

【0005】[0005]

【発明の実施の形態】以下添付の図面を参照して本発明
の実施形態を説明する。図1を参照するに、4基の加圧
水型原子炉20と1基の高速増殖炉30が設けられてい
る。そして3基の加圧水型原子炉20については一部図
示が省略されているが、残りの1基について示されてい
るように、加圧水型原子炉20は、炉心21を内蔵する
原子炉容器23、蒸気発生器25及び冷却材循環ポンプ
27を有し、これらは冷却材配管によって相互に連結さ
れ、原子炉冷却材の循環ループを形成している。一方、
高速増殖炉30は、炉心31を内蔵する原子炉容器3
3、中間熱交換器35及び原子炉一次冷却材(以下一次
冷却材という。)用循環ポンプ37を有し、これらは原
子炉冷却材配管によって互いに連絡されて一次冷却材循
環ループを形成している。更に、高速増殖炉30は、中
間熱交換器35に連絡した原子炉二次冷却材(以下二次
冷却材という。)用循環ポンプ39及び過熱器41を有
し、これは二次冷却材循環ループを形成している。この
過熱器41は4基の加圧水型原子炉20の内の一つの蒸
気発生器25に連絡し、その発生蒸気を受け入れるよう
になっている。更に、過熱器41の過熱蒸気出口は、発
電機43を駆動する蒸気タービン45に連絡している。
そして、蒸気タービン45に連絡した復水器47は給水
ポンプ49を介して蒸気発生器25の給水入口に連絡し
ている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Referring to FIG. 1, four pressurized water reactors 20 and one fast breeder reactor 30 are provided. Although some of the three pressurized water reactors 20 are not shown, as shown for the remaining one, the pressurized water reactor 20 includes a reactor vessel 23 having a core 21 therein, It has a steam generator 25 and a coolant circulation pump 27, which are interconnected by coolant piping and form a circulation loop of the reactor coolant. on the other hand,
The fast breeder reactor 30 is a reactor vessel 3 having a core 31 therein.
3. It has an intermediate heat exchanger 35 and a circulating pump 37 for reactor primary coolant (hereinafter referred to as primary coolant), which are connected to each other by a reactor coolant pipe to form a primary coolant circulation loop. I have. Furthermore, the fast breeder reactor 30 has a circulating pump 39 and a superheater 41 for a reactor secondary coolant (hereinafter referred to as a secondary coolant) connected to the intermediate heat exchanger 35, which circulates the secondary coolant. Forming a loop. The superheater 41 is connected to a steam generator 25 of one of the four pressurized water reactors 20, and receives the generated steam. Further, the superheated steam outlet of the superheater 41 is connected to a steam turbine 45 that drives the generator 43.
The condenser 47 connected to the steam turbine 45 is connected to a water supply inlet of the steam generator 25 via a water supply pump 49.

【0006】以上のような原子力発電プラントにおい
て、系統が示された加圧水型原子炉20の炉心21で発
生した核反応熱は、循環ループ内を流れる原子炉冷却材
によって運ばれて蒸気発生器25に入り、ここで給水ポ
ンプ49から供給された給水を加熱して蒸気を発生し、
自身は低温になって循環ポンプ27により原子炉容器2
3に戻される。原子炉冷却材は、加圧水型原子炉20の
運転中、前述の循環を繰り返す。蒸気発生器25から過
熱器41に入った蒸気は、後述の二次冷却材により加熱
されて過熱蒸気となり、蒸気タービン45を駆動する。
蒸気タービン45は発電機43を駆動して電気を発生す
るが、蒸気は復水器47に入って凝縮して復水となり、
給水ポンプ49により蒸気発生器25に戻され、これも
運転中繰り返される。それ以外の加圧水型原子炉20も
従来のものと同様に蒸気発生器により飽和蒸気を発生
し、蒸気タービンを駆動して発電を行う。
In the above-described nuclear power plant, the nuclear reaction heat generated in the core 21 of the pressurized water reactor 20 whose system is shown is carried by the reactor coolant flowing in the circulation loop and is supplied to the steam generator 25. , Where the feedwater supplied from the feedwater pump 49 is heated to generate steam,
The temperature of the reactor vessel 2 becomes low and the reactor vessel 2
Returned to 3. The reactor coolant repeats the above-described circulation during operation of the pressurized water reactor 20. The steam that has entered the superheater 41 from the steam generator 25 is heated by a secondary coolant described later to be superheated steam, and drives the steam turbine 45.
The steam turbine 45 drives the generator 43 to generate electricity, but the steam enters the condenser 47 and condenses to condensate.
The water is returned to the steam generator 25 by the water supply pump 49, and this is also repeated during operation. Other pressurized water reactors 20 also generate saturated steam by a steam generator and drive a steam turbine to generate power, similarly to the conventional reactor.

【0007】他方、高速増殖炉30の炉心31で発生す
る熱は、循環ポンプ37によって循環される一次冷却材
例えば一次ナトリウムによって中間熱交換器35に運ば
れ、二次循環ループを流れる二次冷却材例えば二次ナト
リウムを加熱する。自身は低温になった一次冷却材は、
循環ポンプ37により原子炉容器33に戻り、再び炉心
31で加熱され、更に循環する。高速増殖炉30の運転
中、一次冷却材の前述の循環は繰り返される。中間熱交
換器35で加熱された二次冷却材は、循環ポンプ39に
よって過熱器41に運ばれ、前述の飽和蒸気を加熱す
る。このようにして発生された過熱蒸気は、前述のよう
に蒸気タービン45を駆動する。過熱器41から出た低
温の二次冷却材は、循環ポンプ39によって中間熱交換
器35に戻され、ここで再び熱交換により加熱される。
二次冷却材のこの循環も、高速増殖炉30の運転中繰り
返される。
On the other hand, the heat generated in the core 31 of the fast breeder reactor 30 is transferred to the intermediate heat exchanger 35 by the primary coolant, for example, primary sodium circulated by the circulation pump 37, and the secondary cooling flows through the secondary circulation loop. A material such as secondary sodium is heated. The primary coolant, which became cold,
It returns to the reactor vessel 33 by the circulation pump 37, is heated again in the reactor core 31, and circulates again. During operation of the fast breeder reactor 30, the aforementioned circulation of the primary coolant is repeated. The secondary coolant heated by the intermediate heat exchanger 35 is conveyed to the superheater 41 by the circulation pump 39 and heats the above-mentioned saturated steam. The superheated steam generated in this manner drives the steam turbine 45 as described above. The low-temperature secondary coolant discharged from the superheater 41 is returned to the intermediate heat exchanger 35 by the circulation pump 39, where it is heated again by heat exchange.
This circulation of the secondary coolant is also repeated during operation of the fast breeder reactor 30.

【0008】尚、加圧水型原子炉20の炉心21で所定
の燃焼を終えた燃料所謂使用済燃料から発生するマイナ
アクチナイド(MA)等は、再処理・群分離され、高速
増殖炉30の使用済燃料から再処理・群分離されたマイ
ナアクチノイド等と共に、高速増殖炉用燃料として加工
され、燃焼に供される。加圧水型原子炉20の燃料は通
常のものであり、加圧水型原子炉4基と高速増殖炉1基
で発生したマイナアクチノイド等は1基の高速増殖炉3
0で燃焼処理される。
[0008] Minor actinides (MA) and the like generated from the so-called spent fuel that has been burned in the core 21 of the pressurized water reactor 20 are reprocessed and separated into groups. It is processed as fuel for fast breeder reactors and used for combustion together with minor actinides reprocessed and separated from spent fuel. The fuel of the pressurized water reactor 20 is normal, and the minor actinoids and the like generated in four pressurized water reactors and one fast breeder reactor are one fast breeder reactor 3.
Combustion treatment is performed at 0.

【0009】以上説明したように、電気出力100万k
Weクラスの加圧水型原子炉(炉心出力約2860MW
t)が設置されているサイトを想定すると、生成するマ
イナアクチノイド等を装荷し、燃焼させて消滅させる高
速増殖炉は約50万kWeクラス(炉心出力1200M
Wt)の容量となる。これにより、加圧水型原子炉及び
高速増殖炉で発生するマイナアクチノイド等を消滅する
ことができ、これらを環境に放出することなく燃料サイ
クルを完成できる。加圧水型原子炉20の蒸気発生器2
5で発生する蒸気は、約60Kg/cm2(約275℃)の飽
和蒸気である。これを過熱器41により約50Kg/cm2
約500〜550℃の過熱蒸気にする。これにより、タ
ービン効率が向上し、約175万kWEeの電気出力を
発生させることができる。即ち、約50万kWeクラス
の高速増殖炉を過熱器として設置することにより、約7
5万kWeの電気を発電できることになる。従って、前
述の高速増殖炉30は、従来の給水から過熱蒸気を発生
させる場合よりプラントよりも約1.5倍の電気出力を
発生させることができるので、電気出力当たりの建設費
が加圧水型原子炉を含む軽水炉の1.5倍になっても、
軽水炉と同等の経済性を有することになる。又、前述の
高速増殖炉30は、タービン設備も無いため、軽水炉と
同等以上の経済性を有するプラントを実現できる。尚、
前述の実施形態においては、加圧水型原子炉4基と高速
増殖炉1基を組み合わせたが、燃料サイクルの組み替え
を行えば他の組み合わせも可能であり、長期半減期核種
を消滅処理しつつ、発電効率を向上することができる。
As described above, the electric output of 1,000,000 k
We-class pressurized water reactor (core power about 2860MW)
Assuming that the site where t) is installed, a fast breeder reactor loaded with the generated minor actinoids and burned to extinguish it is about 500,000 kWe class (core power 1200M
Wt). As a result, minor actinoids and the like generated in the pressurized water reactor and the fast breeder reactor can be eliminated, and the fuel cycle can be completed without releasing these to the environment. Steam generator 2 of pressurized water reactor 20
The steam generated in 5 is a saturated steam of about 60 kg / cm 2 (about 275 ° C.). This is made into superheated steam of about 500 to 550 ° C. at about 50 kg / cm 2 by the superheater 41. As a result, turbine efficiency is improved, and an electric output of about 1.75 million kWEe can be generated. That is, by installing a fast breeder reactor of about 500,000 kWe class as a superheater, about 7
50,000 kWe of electricity can be generated. Therefore, the above-mentioned fast breeder reactor 30 can generate about 1.5 times as much electric power as the plant compared with the case where the superheated steam is generated from the conventional feed water, so that the construction cost per electric power is reduced by the pressurized water type atomizer. Even if it becomes 1.5 times the light water reactor including the furnace,
It will have the same economics as a light water reactor. Further, since the above-described fast breeder reactor 30 does not have a turbine facility, a plant having economic efficiency equal to or higher than that of a light water reactor can be realized. still,
In the above-described embodiment, four pressurized water reactors and one fast breeder reactor are combined, but other combinations are possible if the fuel cycle is changed, and long-lived nuclides can be eliminated while generating power. Efficiency can be improved.

【0010】尚、前述の実施形態においては、蒸気ター
ビン駆動用として過熱蒸気を用いたが、図2に示すよう
に蒸気タービンを高圧タービン53と低圧タービン55
とから構成し、再熱蒸気も使用しても良い。図1の実施
形態と異なる部分のみを説明すると、高速増殖炉30の
中間熱交換器35の二次冷却材出口配管を2系統に分
け、一方は前述と同じように過熱器41に連絡し、他方
は再熱器51に連絡している。過熱器41及び再熱器5
1の二次冷却材出口は、合流して循環ポンプ39に連絡
している。更に、過熱器41の蒸気出口は高圧タービン
53に連絡し、高圧タービン53の蒸気出口は低圧ター
ビン55に連絡している。
In the above-described embodiment, the superheated steam is used for driving the steam turbine. However, as shown in FIG.
And reheat steam may be used. Explaining only the parts different from the embodiment of FIG. 1, the secondary coolant outlet pipe of the intermediate heat exchanger 35 of the fast breeder reactor 30 is divided into two systems, one of which is connected to the superheater 41 as described above, The other is in communication with the reheater 51. Superheater 41 and reheater 5
The secondary coolant outlets 1 are joined and connected to the circulation pump 39. Further, the steam outlet of the superheater 41 communicates with the high-pressure turbine 53, and the steam outlet of the high-pressure turbine 53 communicates with the low-pressure turbine 55.

【0011】そして、図2の原子力発電プラントは、蒸
気系が前述のように構成されているから、過熱器41か
らの過熱蒸気は先ず高圧タービン53に入ってこれを駆
動し、更にその排出蒸気は再熱器51に入る。ここで、
中間熱交換器35からの高温二次冷却材によって加熱さ
れて再熱蒸気となる。この再熱蒸気は低圧タービン55
に入ってこれを駆動し、最終的に同軸の発電機43を駆
動して電気を発生する。使用済タービン駆動後の蒸気
は、最終的に復水器57に入り、ここで凝縮されて復水
となり、る。この復水は給水ポンプ49により、給水と
して蒸気発生器25に再循環される。
In the nuclear power plant shown in FIG. 2, since the steam system is configured as described above, the superheated steam from the superheater 41 first enters the high-pressure turbine 53 to drive it, and further, the discharged steam Enters the reheater 51. here,
Heated by the high-temperature secondary coolant from the intermediate heat exchanger 35 becomes reheated steam. This reheated steam is supplied to the low pressure turbine 55
And drives it, finally driving the coaxial generator 43 to generate electricity. The steam after the driving of the used turbine finally enters the condenser 57, where it is condensed and condensed. This condensed water is recirculated to the steam generator 25 as feed water by the feed water pump 49.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれは、
加圧水型原子炉に組み合わされて使用される高速増殖炉
により、加圧水型原子炉の発生蒸気が過熱され、或いは
過熱された上に再熱されて蒸気タービン駆動用として用
いられるので、その総合熱効率が大幅に向上する。又、
ここに使用する高速増殖炉は、従来の給水から過熱蒸気
を発生させるプラントよりも多くの電気出力を発生させ
ることができ、かつタービン設備もないことから、軽水
炉と同等以上の経済性を有することができる。更に、加
圧水型原子炉で発生した使用済燃料の中のマイナアクチ
ナイドを高レベル廃棄物が高速増殖炉で燃焼処理する燃
料サイクルを完成できるので、環境への放射性廃棄物の
持ち出しを大幅に低減することができる。
As described above, according to the present invention,
By the fast breeder reactor used in combination with the pressurized water reactor, the steam generated by the pressurized water reactor is superheated or superheated and then reheated and used for driving the steam turbine, so that its overall thermal efficiency is reduced. Significantly improved. or,
The fast breeder reactor used here can generate more electric power than a conventional plant that generates superheated steam from water supply, and has no turbine facilities. Can be. Furthermore, a fuel cycle in which high-level waste is burned in a fast breeder reactor for minor actinides in spent fuel generated in a pressurized water reactor can be completed, greatly reducing the removal of radioactive waste to the environment. Can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を示すプラント系統図であ
る。
FIG. 1 is a plant system diagram showing an embodiment of the present invention.

【図2】前記実施形態の一部を改変した改変実施形態を
示すプラント系統図である。
FIG. 2 is a plant system diagram showing a modified embodiment in which a part of the embodiment is modified.

【図3】従来の加圧水型原子炉の主冷却系の系統図であ
る。
FIG. 3 is a system diagram of a main cooling system of a conventional pressurized water reactor.

【符号の説明】[Explanation of symbols]

20 加圧水型原子炉 21 炉心 23 原子炉容器 25 蒸気発生器 27 循環ポンプ 30 高速増殖炉 31 炉心 33 原子炉容器 35 中間熱交換器 37、39 循環ポンプ 41 過熱器 43 発電機 45 蒸気タービン 47 復水器 49 給水ポンプ 51 再熱器 53 高圧タービン 55 低圧タービン 57 復水器 Reference Signs List 20 pressurized water reactor 21 reactor core 23 reactor vessel 25 steam generator 27 circulation pump 30 fast breeder reactor 31 core 33 reactor vessel 35 intermediate heat exchanger 37, 39 circulation pump 41 superheater 43 generator 45 steam turbine 47 condensate Container 49 Feedwater pump 51 Reheater 53 High-pressure turbine 55 Low-pressure turbine 57 Condenser

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣田 耕一 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 大久保 良幸 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 田下 正宣 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 福地 真一 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Hirota 2-5-1 Marunouchi, Chiyoda-ku, Tokyo 3 Inside Ryoju Heavy Industries Co., Ltd. (72) Yoshiyuki Okubo 2-5-1 Marunouchi 3-chome, Chiyoda-ku, Tokyo 3 Inside Rishi Heavy Industries Co., Ltd. (72) Inventor Masanobu Tage 2-5-1 Marunouchi, Chiyoda-ku, Tokyo Three Ryo Heavy Industries Co., Ltd. No. Kyushu Electric Power Co., Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数基の加圧水型原子炉と1基の高速増
殖炉を有し、前記加圧水型原子炉のそれぞれは炉心を内
蔵する原子炉容器と同原子炉容器内で加熱される原子炉
冷却材を受け入れる蒸気発生器を有し、前記高速増殖炉
は原子炉一次冷却材と原子炉二次冷却材とが熱交換する
中間熱交換器及び前記蒸気発生器から出た蒸気と前記原
子炉二次冷却材とが熱交換する過熱器を有し、同過熱器
が蒸気タービンに連絡していることを特徴とする原子力
発電プラント。
1. A reactor having a plurality of pressurized water reactors and a fast breeder reactor, wherein each of the pressurized water reactors is a reactor vessel containing a core and a reactor heated in the reactor vessel. A steam generator for receiving a coolant, wherein the fast breeder reactor is an intermediate heat exchanger for heat exchange between a primary reactor coolant and a secondary reactor coolant, and steam exiting the steam generator and the reactor A nuclear power plant having a superheater for exchanging heat with a secondary coolant, the superheater being in communication with a steam turbine.
【請求項2】 前記蒸気タービンは高圧タービンと低圧
タービンとからなり、前記中間熱交換器に連絡して再熱
器が更に設けられ、前記過熱器を出た過熱蒸気が前記高
圧タービンに入って駆動し、該高圧タービンを出た蒸気
が該再熱器を経由して該低圧タービンに入って駆動する
ように構成されていることを特徴とする請求項1記載の
原子力発電プラント。
2. The high-pressure turbine and the low-pressure turbine, wherein the reheater is further provided in communication with the intermediate heat exchanger, and superheated steam exiting the superheater enters the high-pressure turbine. 2. The nuclear power plant according to claim 1, wherein the driven steam exiting the high-pressure turbine is configured to enter and drive the low-pressure turbine via the reheater.
【請求項3】 前記加圧水型原子炉及び前記高速増殖炉
から出る使用済燃料を再処理して群分離し、その中に含
まれるマイナアクチナイドは該高速増殖炉の燃料として
使用することを特徴とする請求項1又は請求項2に記載
の原子力発電プラントの燃料を処理する方法。
3. The spent fuel discharged from the pressurized water reactor and the fast breeder reactor is reprocessed and separated into groups, and minor actinides contained therein are used as fuel for the fast breeder reactor. A method for treating fuel in a nuclear power plant according to claim 1 or claim 2.
JP2000030703A 2000-02-08 2000-02-08 Nuclear power plant and fuel processing method Expired - Fee Related JP3377769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030703A JP3377769B2 (en) 2000-02-08 2000-02-08 Nuclear power plant and fuel processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030703A JP3377769B2 (en) 2000-02-08 2000-02-08 Nuclear power plant and fuel processing method

Publications (2)

Publication Number Publication Date
JP2001221890A true JP2001221890A (en) 2001-08-17
JP3377769B2 JP3377769B2 (en) 2003-02-17

Family

ID=18555682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030703A Expired - Fee Related JP3377769B2 (en) 2000-02-08 2000-02-08 Nuclear power plant and fuel processing method

Country Status (1)

Country Link
JP (1) JP3377769B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207819A (en) * 2004-01-21 2005-08-04 Toshihisa Shirakawa Boiling water reactor
CN109637683A (en) * 2018-10-31 2019-04-16 中国核电工程有限公司 A kind of three circuit system of fast reactor nuclear power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207819A (en) * 2004-01-21 2005-08-04 Toshihisa Shirakawa Boiling water reactor
CN109637683A (en) * 2018-10-31 2019-04-16 中国核电工程有限公司 A kind of three circuit system of fast reactor nuclear power plant

Also Published As

Publication number Publication date
JP3377769B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP5645283B2 (en) High temperature gas cooled reactor steam power generation system and method
CN109356679B (en) Nuclear energy steam-Brayton combined cycle power generation system
US9200622B2 (en) Solar-nuclear hybrid power plant
JP4810138B2 (en) Hydrogen production equipment
KR101669733B1 (en) Energy-saving desalination system and method using steam generated in reactor
JPS608601A (en) Method and device for generating and reheating steam
US3851474A (en) Steam turbine power plant,more particularly atomic power station
JP2001221890A (en) Nuclear power plant and its fuel processing method
CN114738065A (en) Fast neutron reactor thermoelectric water trigeminy supplies system
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
Spinks et al. Thermo-economic assessment of advanced, high-temperature CANDU reactors
US4087985A (en) Apparatus and method for thermal power generation
RU2160839C1 (en) Power plant with gas-cooled reactor
JP2002156492A (en) Nuclear power generation system
JP7518036B2 (en) Power Plant
RU2759583C1 (en) Thermal power station and method for operation thereof
JP3068288B2 (en) Auxiliary cooling water system for nuclear power plants
RU2449391C2 (en) Method to increase capacity of double-circuit nuclear power unit
EP3460203B1 (en) Steam turbine plant
JPS6275299A (en) Condenser exhaust-heat utilizer for nuclear power plant
JP2022116882A (en) Thermal power generating unit and nuclear power generating unit
Shahin et al. Design of a power unit with VVER for a NPP with electric capacity of 870 MW
US3715272A (en) Method of operating a nuclear reactor facility with a steam cooled fast breeder reactor as the heat source
Shiota Design of a nuclear desalination facility for Bushehr, Iran
JP2015190709A (en) Cleanup device and cleanup method for water supply system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021112

LAPS Cancellation because of no payment of annual fees