JP2001221524A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2001221524A
JP2001221524A JP2001001127A JP2001001127A JP2001221524A JP 2001221524 A JP2001221524 A JP 2001221524A JP 2001001127 A JP2001001127 A JP 2001001127A JP 2001001127 A JP2001001127 A JP 2001001127A JP 2001221524 A JP2001221524 A JP 2001221524A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant flow
liquid receiver
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001001127A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Hiroaki Matsushima
弘章 松嶋
Kazuhiro Endo
和広 遠藤
Kensaku Kokuni
研作 小国
Kazumiki Urata
和幹 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001001127A priority Critical patent/JP2001221524A/en
Publication of JP2001221524A publication Critical patent/JP2001221524A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the composition difference between a sealed nonazeotropic mixture refrigerant and a circulating refrigerant to a minimum at either air cooling or heating mode. SOLUTION: A compressor 1 is inserted and connected through a first refrigerant passage switchover unit 2 in one refrigerant passage connecting an indoor heat exchanger 3 and an outdoor heat exchanger 10, a liquid receiver 8 and a decompressor 9 are inserted and connected through second refrigerant passage changeover units (4, 5, 6, 7) in another refrigerant passage connecting the indoor heat exchanger and the outdoor heat exchanger, whereby the nonazeotropic mixture refrigerant of at least two kinds of refrigerants is circulated in the refrigerant passage and the first and second refrigerant passage changeover units are changed over to form an air cooling/heating refrigeration cycle. A capacitance detector 20 is provided for detecting the capacitance of the refrigerant flowing from the receiver to the decompressor, and the compressor is stopped when the detector detects the gas refrigerant being flowing, thereby suppressing the composition difference between the sealed refrigerant and the circulating refrigerant to a minimum and preventing damage due to feeding of the gas refrigerant to the compressor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は空気調和装置に係
り、特に、冷凍サイクルに非共沸混合冷媒を用いるのに
好適な空気調和装置に関する。
The present invention relates to an air conditioner, and more particularly to an air conditioner suitable for using a non-azeotropic mixed refrigerant in a refrigeration cycle.

【0002】[0002]

【従来の技術】圧縮機、冷媒流路切換装置、室内熱交換
器、減圧装置、室外熱交換器を接続してなる従来の冷凍
サイクルは、特開昭62−80471号公報に記載され
ているように、圧縮機の吸込口の手前にアキュムレータ
としての機能を併せて、液溜めが設けられているもので
あった。
2. Description of the Related Art A conventional refrigeration cycle including a compressor, a refrigerant flow switching device, an indoor heat exchanger, a decompression device, and an outdoor heat exchanger is described in Japanese Patent Application Laid-Open No. 62-80471. As described above, the liquid reservoir is provided in front of the suction port of the compressor together with the function as an accumulator.

【0003】[0003]

【発明が解決しようとする課題】上記従来例では、冷媒
として非共沸混合冷媒を使用することは考慮されていな
かったため、次のような問題があった。すなわち冷暖房
負荷が変化した場合、循環冷媒量も変化するので、余剰
の冷媒を受液器が必要となってくるが、非共沸混合冷媒
では、図3に示すように液相と気相で組成が異なるた
め、受液器が、蒸発器となる熱交換器と圧縮機の間にあ
る場合、受液器に流入する冷媒の乾き度が大きい(図中
の組成A)と、受液器には高沸点冷媒のHFC−134
aが多く含まれる組成の冷媒(図中の組成B)が滞留す
る。定常状態になると冷凍サイクル内を循環する冷媒は
HFC−32が多くなり、循環する冷媒の組成が封入時
の組成と異なるものになってしまう。このHFC−32
は低沸点冷媒なので、暖房時には着霜の原因となり、ま
た、ガス化して漏れたりすると可燃性なので極めて危険
であった。
In the above conventional example, the use of a non-azeotropic refrigerant mixture as the refrigerant has not been considered, and therefore the following problems have been encountered. That is, when the cooling / heating load changes, the amount of the circulating refrigerant also changes, so that a receiver for the surplus refrigerant is required. In the case of the non-azeotropic mixed refrigerant, as shown in FIG. Since the composition is different, when the receiver is between the heat exchanger serving as an evaporator and the compressor, if the dryness of the refrigerant flowing into the receiver is large (composition A in the figure), the receiver Has a high boiling point refrigerant HFC-134
The refrigerant having a composition containing a large amount (composition B in the figure) stays. In the steady state, the refrigerant circulating in the refrigeration cycle contains a large amount of HFC-32, and the composition of the circulating refrigerant differs from the composition at the time of charging. This HFC-32
Since it is a low boiling point refrigerant, it causes frost during heating, and is extremely dangerous because it is flammable if it gasifies and leaks.

【0004】また、現場での施工性を向上させるため
に、冷媒封入済みの受液器等を設置された装置において
も、配管が短い場合には余剰冷媒を受液器に貯える必要
があるので、上記と同様の問題があった。
[0004] Further, in order to improve the workability at the site, even in a device provided with a receiver filled with a refrigerant, if the piping is short, it is necessary to store excess refrigerant in the receiver. However, there was the same problem as described above.

【0005】本発明の目的は、冷凍サイクルを循環する
冷媒に非共沸混合冷媒を用いた空気調和装置において、
冷房、暖房いずれのモードでも封入冷媒の組成と循環冷
媒の組成の差を最小限に抑えることにある。
An object of the present invention is to provide an air conditioner using a non-azeotropic refrigerant mixture as a refrigerant circulating in a refrigeration cycle.
An object of the present invention is to minimize the difference between the composition of the sealed refrigerant and the composition of the circulating refrigerant in both the cooling mode and the heating mode.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、圧縮機と、冷媒流路切換装置と、室内熱
交換器と、室外熱交換器と、受液器と、減圧装置とを有
し、前記受液器と前記減圧装置を連結して前記室内熱交
換器と前記室外熱交換器の間の冷媒流路に挿入し、少な
くとも2種類以上の冷媒を混合した非共沸混合冷媒とす
る冷暖房が可能な冷凍サイクルを有する空気調和装置に
おいて、前記室内熱交換器に接続された冷媒流路と、前
記室外熱交換器に接続された冷媒流路と、前記受液器に
接続された冷媒流路と、前記減圧装置に接続された冷媒
流路とが冷媒流路切換手段を介して連結され、前記受液
器の出口に静電容量検出器を設け、該検出器によりガス
冷媒が流れていることが検出される場合に前記圧縮機を
停止することを特徴とする。
In order to achieve the above object, the present invention provides a compressor, a refrigerant flow switching device, an indoor heat exchanger, an outdoor heat exchanger, a liquid receiver, Device, the liquid receiver and the pressure reducing device are connected and inserted into a refrigerant flow path between the indoor heat exchanger and the outdoor heat exchanger, and at least two or more types of refrigerant are mixed. In an air conditioner having a refrigeration cycle capable of cooling and heating using a boiling mixed refrigerant, a refrigerant flow path connected to the indoor heat exchanger, a refrigerant flow path connected to the outdoor heat exchanger, and the liquid receiver And a refrigerant flow path connected to the pressure reducing device are connected via refrigerant flow switching means, and a capacitance detector is provided at an outlet of the liquid receiver, The compressor is stopped when it is detected that the gas refrigerant is flowing. To.

【0007】言い換えれば、室内熱交換器と室外熱交換
器を連結する一方の冷媒流路に第1の冷媒流路切換装置
を介して圧縮機を挿入接続し、前記室内熱交換器と前記
室外熱交換器を連結する他方の冷媒流路に第2の冷媒流
路切換装置を介して受液器と減圧装置とを挿入接続し、
前記冷媒流路に少なくとも2種類以上の冷媒を混合した
非共沸混合冷媒を循環させると共に、第1と第2の冷媒
流路切換装置を切り換えて冷暖房の冷凍サイクルを形成
し、前記受液器から前記減圧装置に流入する冷媒の静電
容量を検出する静電容量検出器を設け、該検出器により
ガス冷媒が流れていることが検出される場合に前記圧縮
機を停止することを特徴とする。
In other words, a compressor is inserted and connected via a first refrigerant flow switching device to one refrigerant flow path connecting the indoor heat exchanger and the outdoor heat exchanger, and the indoor heat exchanger and the outdoor heat exchanger are connected to each other. A liquid receiver and a pressure reducing device are inserted and connected to the other refrigerant flow path connecting the heat exchanger via a second refrigerant flow switching device,
A non-azeotropic mixed refrigerant in which at least two or more types of refrigerant are mixed is circulated in the refrigerant flow path, and a first and second refrigerant flow switching device is switched to form a cooling / heating refrigeration cycle. A capacitance detector for detecting the capacitance of the refrigerant flowing into the pressure reducing device from the above, wherein the compressor is stopped when it is detected that the gas refrigerant is flowing by the detector I do.

【0008】前記冷媒流路切換手段又は第2の冷媒流路
切換装置は、四方弁を適用できる。また、これに代え
て、前記室外熱交換器に接続された冷媒流路から前記受
液器への接続部に設けた逆止弁と、前記室内熱交換器に
接続された冷媒流路から前記受液器への接続部に設けた
逆止弁と、前記減圧装置から前記室外熱交換器に接続さ
れた冷媒流路への接続部に設けられた逆止弁と、前記減
圧装置から前記室内熱交換器に接続された冷媒流路への
接続部に設けられた逆止弁とを有して構成することがで
きる。
The refrigerant flow switching means or the second refrigerant flow switching device may employ a four-way valve. Also, instead of this, a check valve provided at a connection portion from the refrigerant flow path connected to the outdoor heat exchanger to the liquid receiver, and a refrigerant flow path connected to the indoor heat exchanger A check valve provided at a connection part to the liquid receiver, a check valve provided at a connection part from the pressure reducing device to a refrigerant flow path connected to the outdoor heat exchanger, and A check valve provided at a connection to the refrigerant flow path connected to the heat exchanger.

【0009】上記のように構成することにより、暖房時
には、圧縮機で圧縮された高温高圧の冷媒ガスは、第1
の冷媒流路切換装置を通り、室内熱交換器で例えば室内
送風ファンにより送風されてくる空気へ放熱して凝縮
し、冷媒流路切換手段(第2の冷媒流路切換装置)を介
して受液器に流入される。その結果、非定常時は、余剰
冷媒は液相で滞留するが、受液器に流入する冷媒の乾き
度は小さいため、この流入する冷媒の組成と滞留する冷
媒の組成の差は小さい。そのため定常状態においても、
封入組成と循環組成の差はかなり小さくなる。さらに受
液器から流出した冷媒は、減圧装置で減圧され、冷媒流
路切換手段を介するこことにより、低圧側の室外熱交換
器に流入し、室外送風ファンにより送風される空気から
吸熱して蒸発し、再び圧縮機へ戻るサイクルを形成する
ことができる。
With the above-described configuration, during heating, the high-temperature and high-pressure refrigerant gas compressed by the compressor is supplied to the first
Through the refrigerant flow switching device, and radiates heat to the air blown by, for example, an indoor blower fan in the indoor heat exchanger, condenses, and receives the refrigerant through the refrigerant flow switching means (second refrigerant flow switching device). It flows into the liquid container. As a result, in an unsteady state, the surplus refrigerant stays in the liquid phase, but since the dryness of the refrigerant flowing into the receiver is small, the difference between the composition of the flowing refrigerant and the composition of the retained refrigerant is small. Therefore, even in a steady state,
The difference between the encapsulation composition and the circulating composition is much smaller. Further, the refrigerant flowing out of the receiver is decompressed by the decompression device, flows into the low pressure side outdoor heat exchanger by passing through the refrigerant flow switching means, and absorbs heat from the air blown by the outdoor blower fan. A cycle can be formed that evaporates and returns to the compressor again.

【0010】また冷房時は、圧縮機で圧縮された高温高
圧の冷媒ガスは、第1の冷媒流路切換装置を通り、室外
熱交換器で室外送風ファンにより送風されてくる空気へ
放熱して凝縮し、冷媒流路切換手段(第2の冷媒流路切
換装置)を介して暖房時と同様の方向から受液器に流入
させることができる。上述したように、受液器に流入す
る冷媒の乾き度は小さいので、受液器から流出する液冷
媒の組成との差は小さい。さらに受液器から流出した冷
媒は、減圧装置で減圧され、冷媒流路切換手段を介する
こことにより、低圧側の室内熱交換器に流入し、室内送
風ファンにより送風される空気から吸熱して蒸発し、再
び圧縮機へ戻るサイクルを形成することができる。
During cooling, the high-temperature and high-pressure refrigerant gas compressed by the compressor passes through the first refrigerant flow switching device and radiates heat to the air blown by the outdoor blower fan in the outdoor heat exchanger. It condenses and can be made to flow into the receiver from the same direction as during heating through the refrigerant flow switching means (second refrigerant flow switching device). As described above, since the dryness of the refrigerant flowing into the receiver is small, the difference from the composition of the liquid refrigerant flowing out of the receiver is small. Further, the refrigerant flowing out of the receiver is decompressed by the decompression device, flows into the low-pressure side indoor heat exchanger by passing through the refrigerant flow switching means, and absorbs heat from the air blown by the indoor blower fan. A cycle can be formed that evaporates and returns to the compressor again.

【0011】そのため、冷媒として非共沸混合冷媒を用
いた冷凍サイクルにおいて、負荷が変化しても、乾き度
の小さい冷媒が受液器に流入するので、冷房、暖房いず
れのモードでも冷媒の循環組成と封入組成の差を最小限
におさえることができる。
Therefore, in a refrigeration cycle using a non-azeotropic mixed refrigerant as the refrigerant, even if the load changes, the refrigerant having a small degree of dryness flows into the receiver, and the refrigerant circulates in either the cooling mode or the heating mode. The difference between the composition and the encapsulation composition can be minimized.

【0012】特に、受液器から減圧装置に流入する冷媒
がガス冷媒の場合は、圧縮機を停止するようにしている
から、圧縮機の損傷を予防できる。
In particular, when the refrigerant flowing into the pressure reducing device from the liquid receiver is a gas refrigerant, the compressor is stopped, so that damage to the compressor can be prevented.

【0013】[0013]

【実施の形態】以下、本発明の実施形態を、図面を参照
して説明する。図1は、本発明の第1の実施形態を示す
ものである。本実施形態は、圧縮機1、冷媒流路切換装
置としての四方弁2、室内熱交換器3、さらに第2の冷
媒流路切換手段として4個の逆止弁4、5、6、7、受
液器8、減圧装置としての膨張弁9、室外熱交換器10
からなり、これらは順に配管接続されていて冷凍サイク
ルが構成され、冷媒には非共沸混合冷媒、たとえばHF
C−32(CH2F2)/134a(CF3CH2F)が用いられて
いる。尚、室内熱交換器3には室内送風ファン11が、
室外熱交換器10には室外送風ファン12が設けられて
いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. This embodiment includes a compressor 1, a four-way valve 2 as a refrigerant flow switching device, an indoor heat exchanger 3, and four check valves 4, 5, 6, 7, as a second refrigerant flow switching device. Liquid receiver 8, expansion valve 9 as a pressure reducing device, outdoor heat exchanger 10
These are sequentially connected by piping to form a refrigeration cycle, and the refrigerant is a non-azeotropic mixed refrigerant such as HF
C-32 (CH 2 F 2 ) / 134a (CF 3 CH 2 F) is used. The indoor heat exchanger 3 is provided with an indoor blower fan 11,
The outdoor heat exchanger 10 is provided with an outdoor blower fan 12.

【0014】このように構成された冷凍サイクルの動作
について、まず暖房を例にとり説明する。圧縮機1で圧
縮された高温高圧の冷媒ガスは、四方弁2を通り、室内
熱交換器3で室内送風ファン11により送風されてくる
空気へ放熱して凝縮し、逆止弁5を通り、受液器8に入
る。本実施形態では、室内熱交換器3で凝縮させた後で
受液器8に流入させているので、非定常時は、図2に示
すように、余剰冷媒は液相で滞留するが、受液器8に流
入する冷媒の乾き度は小さいのため、この流入する冷媒
の組成Aと滞留する冷媒の組成Bの差は小さい。そのた
め定常状態においても、封入組成と循環組成の差はかな
り小さくなる。さらに受液器8から流出した冷媒は、膨
張弁9で減圧され、高圧側に接続されている逆止弁7に
は流入せず低圧側の逆止弁6に流入する。そして高圧側
に接続されている逆止弁4には流入せず室外熱交換器1
0に流入し、室外送風ファン12により送風される空気
から吸熱して蒸発し、再び圧縮機1へ戻る。
The operation of the refrigeration cycle configured as described above will be described first by taking heating as an example. The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2, radiates heat to the air blown by the indoor blower fan 11 in the indoor heat exchanger 3, condenses, passes through the check valve 5, Enter the receiver 8. In the present embodiment, since the refrigerant is condensed in the indoor heat exchanger 3 and then flows into the liquid receiver 8, the surplus refrigerant stays in the liquid phase as shown in FIG. Since the dryness of the refrigerant flowing into the liquid container 8 is small, the difference between the composition A of the flowing refrigerant and the composition B of the stagnating refrigerant is small. Therefore, even in the steady state, the difference between the encapsulation composition and the circulation composition becomes considerably small. Further, the refrigerant flowing out of the liquid receiver 8 is decompressed by the expansion valve 9 and does not flow into the check valve 7 connected to the high pressure side but flows into the low pressure side check valve 6. The outdoor heat exchanger 1 does not flow into the check valve 4 connected to the high pressure side and does not flow.
The air flows into the compressor 1 and absorbs heat from the air blown by the outdoor blower fan 12, evaporates, and returns to the compressor 1 again.

【0015】また冷房の場合は、圧縮機1で圧縮された
高温高圧の冷媒ガスは、四方弁2を通り、室外熱交換器
10で、室外送風ファン12により送風されてくる空気
へ放熱して凝縮し、逆止弁4を通り、暖房時と同様の方
向から受液器8に入る。上述したように、受液器8に流
入する冷媒の乾き度は小さいので、受液器8から流出す
る液冷媒の組成との差は小さい。さらに受液器8から流
出した冷媒は、膨張弁9で減圧され、高圧側に接続され
ている逆止弁6には流入せず低圧側の逆止弁7に流入す
る。そして高圧側に接続されている逆止弁5には流入せ
ず室内熱交換器3に流入し、室内送風ファン11により
送風される空気から吸熱して蒸発し、再び圧縮機1へ戻
る。
In the case of cooling, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and radiates heat to the air blown by the outdoor blower fan 12 by the outdoor heat exchanger 10. It condenses, passes through the check valve 4 and enters the receiver 8 from the same direction as during heating. As described above, since the dryness of the refrigerant flowing into the receiver 8 is small, the difference from the composition of the liquid refrigerant flowing out of the receiver 8 is small. Further, the refrigerant flowing out of the receiver 8 is decompressed by the expansion valve 9 and does not flow into the check valve 6 connected to the high pressure side but flows into the check valve 7 on the low pressure side. Then, it does not flow into the check valve 5 connected to the high pressure side, but flows into the indoor heat exchanger 3, absorbs heat from the air blown by the indoor blower fan 11, evaporates, and returns to the compressor 1 again.

【0016】以上のように、冷房時、暖房時とも受液器
8が、凝縮器として作用する熱交換器と減圧装置との間
に位置するような構成とすることで、封入する冷媒の組
成と循環する冷媒の組成の差はかなり小さくできる。ま
た、本実施形態では、上述したように、循環する冷媒の
組成の差を小さくできるので、可燃性を持つHFC−3
2の循環組成が増加するのを抑えることができる。ま
た、冷媒の組成変化が少ないので、膨張弁として感温筒
の中にサイクルに封入されている冷媒と同じ冷媒を封入
する温度自動膨張弁を用いることができる。
As described above, the liquid receiver 8 is located between the heat exchanger functioning as a condenser and the decompression device at the time of cooling and heating. And the difference in the composition of the circulating refrigerant can be considerably reduced. Further, in the present embodiment, as described above, since the difference in the composition of the circulating refrigerant can be reduced, the flammable HFC-3
An increase in the circulation composition of No. 2 can be suppressed. Further, since the composition change of the refrigerant is small, an automatic temperature expansion valve that seals the same refrigerant as the refrigerant sealed in the cycle can be used as the expansion valve.

【0017】次に、本発明の第2の実施形態を図4を用
いて説明する。本実施形態は、第1の実施形態における
第2の冷媒流路切換装置を、逆止弁ではなく第2の四方
弁13により構成したものである。暖房時は、圧縮機1
で圧縮された高温高圧の冷媒ガスは、四方弁2を通り、
室内熱交換器3で、室内送風ファン11により送風され
てくる空気へ放熱して凝縮し、第2の四方弁13に流入
する。第2の四方弁13は冷媒が受液器8に流れるよう
切換えられているので、冷媒は受液器8に流入する。上
述したように受液器8に流入する冷媒の乾き度は小さい
ので、受液器8から流出する液冷媒の組成との差は小さ
い。さらに受液器8から流出した冷媒は、膨張弁9で減
圧され、第2の四方弁13を通り、室外熱交換器10に
流入し、室外送風ファン12により送風される空気から
吸熱して蒸発し、再び圧縮機1へ戻る。
Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the second refrigerant flow switching device in the first embodiment is configured by a second four-way valve 13 instead of a check valve. During heating, the compressor 1
The high-temperature and high-pressure refrigerant gas compressed in the above passes through the four-way valve 2,
In the indoor heat exchanger 3, the heat is released to the air blown by the indoor blower fan 11, condensed, and flows into the second four-way valve 13. Since the second four-way valve 13 is switched so that the refrigerant flows into the receiver 8, the refrigerant flows into the receiver 8. As described above, since the dryness of the refrigerant flowing into the receiver 8 is small, the difference from the composition of the liquid refrigerant flowing out of the receiver 8 is small. Further, the refrigerant flowing out of the liquid receiver 8 is decompressed by the expansion valve 9, flows through the second four-way valve 13, flows into the outdoor heat exchanger 10, absorbs heat from the air blown by the outdoor blower fan 12, and evaporates. Then, the process returns to the compressor 1 again.

【0018】冷房時は、四方弁2と第2の四方弁13が
切換わり、冷媒のサイクル中の流れは暖房時とは逆にな
るが、暖房時と同様に受液器8を流出した冷媒は、膨張
弁9に流入するサイクル構成となる。本実施形態は、第
1の実施形態と同様に、封入する冷媒の組成と循環する
冷媒の組成との差をかなり小さくでき、さらに第2の冷
媒流路切換装置の部品点数が減るので、より信頼性の高
い冷凍サイクルとすることができる。
During cooling, the four-way valve 2 and the second four-way valve 13 are switched, and the flow of the refrigerant during the cycle is opposite to that during heating, but the refrigerant flowing out of the receiver 8 is heated in the same manner as during heating. Is a cycle configuration that flows into the expansion valve 9. In the present embodiment, similarly to the first embodiment, the difference between the composition of the refrigerant to be sealed and the composition of the circulating refrigerant can be considerably reduced, and the number of parts of the second refrigerant flow switching device is reduced. A highly reliable refrigeration cycle can be obtained.

【0019】本発明の第3の実施形態を図5により説明
する。本実施形態は第1の実施形態と同様の構成である
が、本実施形態では膨張弁9の出口に追加冷媒封入用バ
ルブ14を設けたものである。冷媒補給時は、追加冷媒
ボンベ16を追加冷媒封入用パイプ15に接続し、さら
に追加冷媒封入用パイプ15内の空気を抜いた後、追加
冷媒封入用バルブ14に接続する。膨張弁9の出口は、
暖房、冷房どちらのモードであっても低圧状態であるの
で、追加冷媒封入用バルブ14を開けると圧力差により
冷媒を補給することができる。さらに補給された冷媒は
蒸発器で蒸発した後に圧縮機1に流入するので、冷媒補
給時に圧縮機1に液冷媒が流入する恐れが低くなる。
A third embodiment of the present invention will be described with reference to FIG. The present embodiment has the same configuration as the first embodiment, but in this embodiment, an additional refrigerant charging valve 14 is provided at the outlet of the expansion valve 9. At the time of refrigerating the refrigerant, the additional refrigerant cylinder 16 is connected to the additional refrigerant charging pipe 15, the air in the additional refrigerant charging pipe 15 is evacuated, and then connected to the additional refrigerant charging valve 14. The outlet of the expansion valve 9 is
Since the pressure is low in both the heating mode and the cooling mode, when the additional refrigerant charging valve 14 is opened, the refrigerant can be supplied by the pressure difference. Further, since the supplied refrigerant flows into the compressor 1 after being evaporated by the evaporator, the possibility that the liquid refrigerant flows into the compressor 1 at the time of supplying the refrigerant is reduced.

【0020】本発明の第4の実施形態を図6により説明
する。本実施形態においては、受液器に蓄えられる熱を
除霜に利用するように構成している。すなわち受液器8
の周囲には蓄熱材17が設けてあり、室外熱交換器10
と蓄熱材17との間には二方弁18が接続されている。
A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the heat stored in the liquid receiver is used for defrosting. That is, the receiver 8
A heat storage material 17 is provided around the outdoor heat exchanger 10.
A two-way valve 18 is connected between the heat storage material 17 and the heat storage material 17.

【0021】このように構成された冷凍サイクルの作用
について説明する。通常の暖房運転時には蓄熱材17に
受液器8の熱が蓄えられる。除霜時には四方弁2が冷房
側に切換わり、2方弁18が開く。そのため圧縮機1で
圧縮された高温高圧の冷媒ガスは、四方弁2を通り、室
外熱交換器10に流入し除霜を行なって凝縮し、さらに
冷媒のほとんどは流路抵抗の少ない側の二方弁18を経
て、蓄熱材17に蓄えられた受液器8の熱を吸熱し、再
び圧縮機1へ戻る。以上のように受液器8に流入する冷
媒の熱を有効利用することにより、除霜時間を短縮し、
かつ除霜時に必要な電力を低減できる。
The operation of the refrigeration cycle configured as described above will be described. During the normal heating operation, the heat of the liquid receiver 8 is stored in the heat storage material 17. During defrosting, the four-way valve 2 switches to the cooling side, and the two-way valve 18 opens. Therefore, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 2 and flows into the outdoor heat exchanger 10 to be defrosted and condensed. Through the way valve 18, the heat of the liquid receiver 8 stored in the heat storage material 17 is absorbed, and the flow returns to the compressor 1 again. By effectively utilizing the heat of the refrigerant flowing into the receiver 8 as described above, the defrosting time is reduced,
In addition, the power required for defrosting can be reduced.

【0022】本発明の第5の実施形態を図7により説明
する。本実施形態においては、最適なスーパーヒート制
御を行うよう構成している。すなわち、常に液冷媒が流
れる受液器8の出口に冷媒組成検出器(たとえば温度検
出器19と静電容量検出器20)を設け、圧縮機1の吸
入口に圧縮機吸入圧力検出器21と温度検出器22を設
けている。受液器8から流出する冷媒の温度と静電容量
値を、それぞれ温度検出器19と静電容量検出器20が
検出する。この2つの検出値から循環冷媒の組成を算出
できるので、圧縮機吸入圧力検出器21からの検出値と
併せて、圧縮機1に入り込む冷媒の露点温度を算出でき
る。そこで制御器24は、これらの検出値から得られた
露点温度と、圧縮機吸入口の温度検出器22からの検出
した温度が一定になる、すなわちスーパーヒートが一定
となるように、電動膨張弁23の開度や、室外送風ファ
ン11の回転数制御を行う。以上のように構成すること
で、受液器8に流入する冷媒の乾き度が小さくない場合
でも、最適なスーパーヒート制御を行うことができる。
A fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the configuration is such that optimal superheat control is performed. That is, a refrigerant composition detector (for example, a temperature detector 19 and a capacitance detector 20) is provided at the outlet of the receiver 8 where the liquid refrigerant always flows, and the compressor suction pressure detector 21 is provided at the suction port of the compressor 1. A temperature detector 22 is provided. The temperature and the capacitance value of the refrigerant flowing out of the liquid receiver 8 are detected by the temperature detector 19 and the capacitance detector 20, respectively. Since the composition of the circulating refrigerant can be calculated from these two detected values, the dew point temperature of the refrigerant entering the compressor 1 can be calculated together with the detected value from the compressor suction pressure detector 21. Therefore, the controller 24 controls the electric expansion valve so that the dew point temperature obtained from these detected values and the temperature detected from the temperature detector 22 at the compressor inlet become constant, that is, the superheat becomes constant. 23 and the rotation speed of the outdoor blower fan 11 are controlled. With the configuration described above, optimal superheat control can be performed even when the dryness of the refrigerant flowing into the liquid receiver 8 is not small.

【0023】さらに上記実施形態において、受液器8を
流出した冷媒がガス冷媒の場合、すなわち冷凍サイクル
の冷媒不足が起こった場合には、静電容量検出器20の
検出値は液冷媒が流れている場合と大きく異なるので、
制御器24が受液器8の出口にガス冷媒が流れていると
判断した場合に圧縮機1が停止するよう制御すれば、圧
縮機の損傷などを防ぐことができ、冷凍サイクルの信頼
性を向上することもできる。
Further, in the above embodiment, when the refrigerant flowing out of the receiver 8 is a gas refrigerant, that is, when the refrigerant in the refrigeration cycle runs short, the value detected by the capacitance detector 20 indicates that the liquid refrigerant is flowing. Because it is very different from
By controlling the compressor 1 to stop when the controller 24 determines that the gas refrigerant is flowing to the outlet of the receiver 8, damage to the compressor can be prevented, and the reliability of the refrigeration cycle can be reduced. Can also be improved.

【0024】[0024]

【発明の効果】本発明によれば、冷房、暖房いずれのモ
ードでも、負荷が変化しても受液器内に滞留する冷媒組
成と、冷凍サイクル内の循環組成の差を小さくすること
ができる。
According to the present invention, in any of the cooling mode and the heating mode, the difference between the refrigerant composition staying in the receiver even when the load changes and the circulation composition in the refrigeration cycle can be reduced. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施形態を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第一の実施形態を説明するための気液
平衡線図。
FIG. 2 is a vapor-liquid equilibrium diagram for explaining the first embodiment of the present invention.

【図3】本発明の課題を説明するための気液平衡線図。FIG. 3 is a vapor-liquid equilibrium diagram for explaining the problem of the present invention.

【図4】本発明の第二の実施形態を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】本発明の第三の実施形態を示す構成図。FIG. 5 is a configuration diagram showing a third embodiment of the present invention.

【図6】本発明の第四の実施形態を示す構成図。FIG. 6 is a configuration diagram showing a fourth embodiment of the present invention.

【図7】本発明の第五の実施形態を示す構成図。FIG. 7 is a configuration diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室内熱交換器 4、5、6、7 逆止弁 8 受液器 9 減圧装置 10 室外熱交換器 11 室内送風ファン 12 室外送風ファン 13 第2の四方弁 14 追加冷媒封入用バルブ 15 追加冷媒封入用パイプ 16 追加冷媒封入用ボンベ 17 蓄熱材 18 二方弁 19 凝縮器出口温度検出器 20 静電容量検出器 21 圧縮機吸入圧力検出器 22 温度検出器 23 電動膨張弁 24 制御器 REFERENCE SIGNS LIST 1 compressor 2 four-way valve 3 indoor heat exchanger 4, 5, 6, 7 check valve 8 liquid receiver 9 pressure reducing device 10 outdoor heat exchanger 11 indoor blower fan 12 outdoor blower fan 13 second four-way valve 14 additional refrigerant Filling valve 15 Additional refrigerant filling pipe 16 Additional refrigerant filling cylinder 17 Heat storage material 18 Two-way valve 19 Condenser outlet temperature detector 20 Capacitance detector 21 Compressor suction pressure detector 22 Temperature detector 23 Electric expansion valve 24 Controller

フロントページの続き (72)発明者 遠藤 和広 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 小国 研作 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 浦田 和幹 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Continued on the front page (72) Inventor Kazuhiro Endo 502, Kachidate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. (72) Inventor Kazuki Urata 502 Kandamachi, Tsuchiura-shi, Ibaraki Pref.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、冷媒流路切換装置と、室内熱
交換器と、室外熱交換器と、受液器と、減圧装置とを有
し、前記受液器と前記減圧装置を連結して前記室内熱交
換器と前記室外熱交換器の間の冷媒流路に挿入し、少な
くとも2種類以上の冷媒を混合した非共沸混合冷媒とす
る冷暖房が可能な冷凍サイクルを有する空気調和装置に
おいて、 前記室内熱交換器に接続された冷媒流路と、前記室外熱
交換器に接続された冷媒流路と、前記受液器に接続され
た冷媒流路と、前記減圧装置に接続された冷媒流路とが
冷媒流路切換手段を介して連結され、前記受液器の出口
に静電容量検出器を設け、該検出器によりガス冷媒が流
れていることが検出される場合に前記圧縮機を停止する
ことを特徴とする空気調和装置。
1. A compressor, a refrigerant flow switching device, an indoor heat exchanger, an outdoor heat exchanger, a liquid receiver, and a pressure reducing device, wherein the liquid receiver and the pressure reducing device are connected. An air conditioner having a refrigeration cycle capable of being inserted into a refrigerant flow path between the indoor heat exchanger and the outdoor heat exchanger and capable of cooling and heating to a non-azeotropic mixed refrigerant in which at least two or more types of refrigerant are mixed. In the above, the refrigerant flow path connected to the indoor heat exchanger, the refrigerant flow path connected to the outdoor heat exchanger, the refrigerant flow path connected to the liquid receiver, and the refrigerant flow path connected to the pressure reducing device The refrigerant flow path is connected to the refrigerant flow path switching means, and a capacitance detector is provided at an outlet of the liquid receiver. When the detector detects that the gas refrigerant is flowing, the compression is performed. An air conditioner characterized by stopping the machine.
【請求項2】 請求項1記載の空気調和装置において、
前記冷媒流路切換手段は四方弁であることを特徴とする
空気調和装置。
2. The air conditioner according to claim 1, wherein
The air conditioner, wherein the refrigerant flow switching means is a four-way valve.
【請求項3】 請求項1記載の空気調和装置において、
前記冷媒流路切換手段は、前記室外熱交換器に接続され
た冷媒流路から前記受液器への接続部に設けた逆止弁
と、前記室内熱交換器に接続された冷媒流路から前記受
液器への接続部に設けた逆止弁と、前記減圧装置から前
記室外熱交換器に接続された冷媒流路への接続部に設け
られた逆止弁と、前記減圧装置から前記室内熱交換器に
接続された冷媒流路への接続部に設けられた逆止弁とを
有することを特徴とする空気調和装置。
3. The air conditioner according to claim 1, wherein
The refrigerant flow path switching unit includes a check valve provided at a connection portion from the refrigerant flow path connected to the outdoor heat exchanger to the liquid receiver, and a refrigerant flow path connected to the indoor heat exchanger. A check valve provided at a connection to the liquid receiver, a check valve provided at a connection from the decompression device to a refrigerant flow path connected to the outdoor heat exchanger, and An air conditioner comprising: a check valve provided at a connection to a refrigerant flow path connected to the indoor heat exchanger.
【請求項4】 圧縮機と、四方弁と、室内熱交換器と、
室外熱交換器と、受液器とを備え冷暖房が可能な冷凍サ
イクルを有する空気調和装置において、 前記冷凍サイクルを循環するHFC−32を含む非共沸
混合冷媒と、前記室内熱交換器と前記室外熱交換器との
間に設けられ前記室内熱交換器又は前記室外熱交換器で
凝縮した後の余剰冷媒を貯留する前記受液器と、前記室
外熱交換器から前記受液器の入口側へ接続された逆止弁
と、前記受液器の出口側に接続され開度制御される電動
膨張弁と、前記電動膨張弁の反前記受液器側から前記室
内熱交換器へ接続された逆止弁と、前記室内熱交換器か
ら前記受液器の入口側へ接続された逆止弁と、前記電動
膨張弁の反前記受液器側から前記室外熱交換器へ接続さ
れた逆止弁と、前記室外熱交換器に空気を送風する回転
数制御される室外送風ファンとを備えたことを特徴とす
る空気調和装置。
4. A compressor, a four-way valve, an indoor heat exchanger,
An air conditioner having an outdoor heat exchanger and a refrigeration cycle capable of cooling and heating including a liquid receiver, a non-azeotropic mixed refrigerant including HFC-32 circulating in the refrigeration cycle, the indoor heat exchanger, The liquid receiver provided between the outdoor heat exchanger and the excess heat refrigerant condensed in the indoor heat exchanger or the outdoor heat exchanger, and the inlet side of the liquid receiver from the outdoor heat exchanger A check valve connected to an electric expansion valve connected to an outlet side of the liquid receiver and controlled in opening degree, and connected to the indoor heat exchanger from a side of the electric expansion valve opposite the liquid receiver. A check valve, a check valve connected from the indoor heat exchanger to the inlet side of the liquid receiver, and a check valve connected to the outdoor heat exchanger from the side of the electric expansion valve opposite the liquid receiver. A valve, and a rotationally controlled outdoor blower for blowing air to the outdoor heat exchanger. An air conditioner, comprising:
JP2001001127A 2001-01-09 2001-01-09 Air conditioner Withdrawn JP2001221524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001001127A JP2001221524A (en) 2001-01-09 2001-01-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001001127A JP2001221524A (en) 2001-01-09 2001-01-09 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27037893A Division JP3168496B2 (en) 1993-10-28 1993-10-28 Air conditioner

Publications (1)

Publication Number Publication Date
JP2001221524A true JP2001221524A (en) 2001-08-17

Family

ID=18869799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001001127A Withdrawn JP2001221524A (en) 2001-01-09 2001-01-09 Air conditioner

Country Status (1)

Country Link
JP (1) JP2001221524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890501A (en) * 2011-12-22 2014-06-25 三菱电机株式会社 Air conditioning device
CN114413498A (en) * 2022-02-08 2022-04-29 珠海格力电器股份有限公司 Air conditioner injection circulation system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890501A (en) * 2011-12-22 2014-06-25 三菱电机株式会社 Air conditioning device
CN103890501B (en) * 2011-12-22 2016-06-29 三菱电机株式会社 Conditioner
CN114413498A (en) * 2022-02-08 2022-04-29 珠海格力电器股份有限公司 Air conditioner injection circulation system and control method thereof
CN114413498B (en) * 2022-02-08 2023-09-12 珠海格力电器股份有限公司 Air conditioner jet circulation system and control method thereof

Similar Documents

Publication Publication Date Title
US9671119B2 (en) Air-conditioning apparatus
US5651263A (en) Refrigeration cycle and method of controlling the same
US9032747B2 (en) Multi-mode air conditioner with refrigerant cycle and heat medium cycle
US20090158764A1 (en) Air conditioning system
US20240085044A1 (en) Air-conditioning apparatus
JP4974658B2 (en) Air conditioner
WO2018011994A1 (en) Air conditioning device
JP5908183B1 (en) Air conditioner
EP0976994B1 (en) Refrigerator and method of filling it with coolant
US11796212B2 (en) Air-conditioning apparatus
JP5334554B2 (en) Air conditioner
JP3287260B2 (en) Refrigeration apparatus and refrigerant charging method thereof
CN108885029B (en) Refrigerating device
JP2001012826A (en) Air-conditioning equipment
JP2001221524A (en) Air conditioner
JP3168496B2 (en) Air conditioner
JP6238202B2 (en) Air conditioner
JPH04217754A (en) Air conditioner
JP2009115336A (en) Refrigeration system
JP2003214743A (en) Refrigerator
WO2023139702A1 (en) Refrigeration cycle device
JP2004232951A (en) Refrigerant sealing method
JP4238943B2 (en) Air conditioner
JP2000035249A (en) Freezing apparatus
JPH08145484A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041207