JP2001216964A - Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery - Google Patents

Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery

Info

Publication number
JP2001216964A
JP2001216964A JP2000024180A JP2000024180A JP2001216964A JP 2001216964 A JP2001216964 A JP 2001216964A JP 2000024180 A JP2000024180 A JP 2000024180A JP 2000024180 A JP2000024180 A JP 2000024180A JP 2001216964 A JP2001216964 A JP 2001216964A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
secondary battery
lithium secondary
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000024180A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugiura
勉 杉浦
Taro Kono
太郎 河野
Takeshi Hamada
健 濱田
Hiromasa Shoji
浩雅 莊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000024180A priority Critical patent/JP2001216964A/en
Publication of JP2001216964A publication Critical patent/JP2001216964A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery in an industrial manner having as much discharge capacity as the maximum level discharge capacity of flaky graphite such as natural graphite or theoretical capacity determined by a graphite structure and overcoming problems on the flaky graphite, and its manufacturing method as well as the lithium secondary battery using the same. SOLUTION: Graphite for a lithium secondary battery negative electrode which is obtained by treating carbon precipitated in the cooling process of a metal and carbon under melted conditions, with the number of flaky particles of size 4 μm or more and less than 200 μm accounting for 80% or less of the total number of particles of size 4 μm or more and less than 200 μm, a carbon content of 90% by mass or more, and a specific surface area of 7 m2/g or less, and an average particle size of 4 μm or more and less than 200 μm, and its preparation as well as the lithium secondary battery using the same as a negative electrode active material, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムの挿入、
脱離反応を利用するリチウム二次電池およびこれに用い
られる負極活物質に関するものである。さらに詳しく
は、放電容量が大きく、且つ、充放電時の容量ロスの少
ない高性能なリチウム二次電池およびこれに用いられる
負極活物質に関するものである。
FIELD OF THE INVENTION The present invention relates to lithium insertion,
The present invention relates to a lithium secondary battery utilizing an elimination reaction and a negative electrode active material used for the lithium secondary battery. More specifically, the present invention relates to a high-performance lithium secondary battery having a large discharge capacity and a small capacity loss at the time of charging and discharging, and a negative electrode active material used for the same.

【0002】[0002]

【従来の技術】黒鉛等の炭素材料を負極として用いるリ
チウム二次電池は、金属リチウムを用いた場合に問題と
なる充電時のデンドライト生成がなく信頼性の高い電池
であることから活発に研究されている。特に炭素材料と
して黒鉛を用いた場合は、充電時にリチウムが黒鉛層間
に挿入したいわゆる黒鉛層間化合物を形成することによ
り充電時にリチウムが負極中に吸蔵され、負極材料に金
属リチウムを用いた際に問題となるデンドライトの生成
が抑止され、かつ放電電位も金属リチウムを用いた場合
に比べ0〜0.1V程度とわずかに高いに過ぎないため
に高起電力が得られるといった優れた特性を持つ。
2. Description of the Related Art A lithium secondary battery using a carbon material such as graphite as a negative electrode has been actively studied because it is a highly reliable battery without dendrite generation during charging, which is a problem when lithium metal is used. ing. In particular, when graphite is used as the carbon material, lithium is inserted into the graphite layer during charging, forming a so-called graphite intercalation compound, whereby lithium is occluded in the negative electrode during charging, and a problem occurs when metallic lithium is used as the negative electrode material. And the discharge potential is only about 0 to 0.1 V, which is slightly higher than that in the case of using lithium metal, so that a high electromotive force can be obtained.

【0003】ただし、黒鉛材料と分類される炭素は、そ
の形状、構造、組織は多様であり、この違いが電極性能
に反映される。
However, carbon classified as a graphite material has various shapes, structures and structures, and this difference is reflected in the electrode performance.

【0004】黒鉛材料として天然黒鉛等の鱗片状黒鉛を
用いた場合、その高度に発達した黒鉛結晶構造により、
以下で述べるメソフェーズ小球体、ピッチ系炭素繊維、
ピッチコークス等を黒鉛化焼成して得られる人造黒鉛に
比べて、高い放電容量が得られることが知られている
(例えば、第40回電池討論会1D14)。しかしなが
ら、これら鱗片状黒鉛においては、初期充電過程におい
て、主として黒鉛層構造端部近傍で進行する副反応に起
因する初期不可逆容量が大きいという問題がある。加え
て、天然黒鉛においては、これらの結晶構造は炭素網面
層が特定方向への優先配向をしているため、材料中のリ
チウムの拡散方向が限定され、しかもその拡散距離が非
常に長い。従って大きな充放電電流下で使用した場合、
高い放電容量を得ることは難しく、実用上の制約を受け
るものと思われる。
When flaky graphite such as natural graphite is used as a graphite material, its highly developed graphite crystal structure causes
Mesophase small spheres described below, pitch-based carbon fiber,
It is known that a higher discharge capacity can be obtained than artificial graphite obtained by graphitizing and firing pitch coke or the like (for example, 40th Battery Symposium 1D14). However, these flaky graphites have a problem in the initial charging process that the initial irreversible capacity is large due to a side reaction that proceeds mainly near the end of the graphite layer structure. In addition, in natural graphite, in these crystal structures, since the carbon netting layer has a preferential orientation in a specific direction, the diffusion direction of lithium in the material is limited, and the diffusion distance is very long. Therefore, when used under a large charge / discharge current,
It is difficult to obtain a high discharge capacity, and it is considered that practical limitations are imposed.

【0005】黒鉛材料として、メソフェーズピッチの光
学的異方性相が球状に生成した段階で採取して調製した
メソフェーズ小球体を用いた場合、黒鉛化後の炭素層面
の発達が天然黒鉛に比べて劣ることにより、理論的放電
容量に比べて80〜85%程度の放電容量しか得られな
いという問題があり、加えてサイクル特性にも問題があ
ると指摘されている(例えば、第34回電池討論会3A
07)。
[0005] When a mesophase sphere obtained by sampling at the stage when the optically anisotropic phase of the mesophase pitch is formed into a spherical shape is used as a graphite material, the carbon layer surface after graphitization is more developed than natural graphite. Due to the inferiority, there is a problem that only about 80 to 85% of the discharge capacity can be obtained as compared with the theoretical discharge capacity, and it is pointed out that there is also a problem in the cycle characteristics (for example, the 34th Battery Discussion). Association 3A
07).

【0006】ピッチ系炭素繊維も、超高温の温度領域で
の黒鉛化処理により人造黒鉛としての種々特性を備え、
かつリチウムの拡散方向が繊維外周から内部へ向かって
の多方向、かつ拡散距離が繊維外周から繊維軸までの繊
維径の半分の数μm程度と短いため、この炭素繊維を粉
砕した粉末は拡散係数が他の易黒鉛化性材料と比較して
大きく、重負荷特性を確認したとの報告(J. Electroch
emi. Soc., 142, 8, 2564 (1995))もされている。しか
し、繊維の形態を維持するがゆえに熱処理温度を高くし
ても、結晶構造の発達が阻害されて放電容量が大きくな
らないこと、繊維の形態を確保するためのピッチの高純
度化処理、繊維化工程等が必要なため、黒鉛化処理前の
段階で他材料と比較して、より多くの製造コストがかか
るなどの問題がある。
[0006] Pitch-based carbon fibers also have various characteristics as artificial graphite by graphitization in an ultra-high temperature range,
In addition, since the diffusion direction of lithium is multi-directional from the outer periphery of the fiber toward the inside and the diffusion distance is as short as several μm, which is half the fiber diameter from the outer periphery of the fiber to the fiber axis, the powder obtained by pulverizing this carbon fiber has a diffusion coefficient of Reported that the heavy load characteristics were confirmed as compared to other graphitizable materials (J. Electroch
emi. Soc., 142, 8, 2564 (1995)). However, even if the heat treatment temperature is increased because the fiber form is maintained, the development of the crystal structure is not hindered and the discharge capacity does not increase, the pitch is highly purified to secure the fiber form, and the fiber is formed. Since a process or the like is required, there is a problem that a higher production cost is required as compared with other materials before the graphitization treatment.

【0007】ピッチコークスは易黒鉛化性材料の部類に
属し、超高温の温度領域での黒鉛化処理により天然黒鉛
に近い炭素網面層の層間距離に近づくが、コークスの持
つ光学的異方性組織により、天然黒鉛ほど黒鉛化が発達
せず、これらの結晶構造は炭素網面層が特定方向への優
先配向をしていない。従って、天然黒鉛等の鱗片状黒鉛
に見られた電流密度下の制約は無く、リチウム二次電池
用負極材料として非常に有望な材料であり、これまで多
くの研究がなされている(例えば、特開昭63-121
257号公報、特開平1-204361号公報、特開平
4-206276号公報など)。しかしながら、通常の
ピッチコークスの超高温処理(2000〜3000℃焼
成)品の放電容量は、理論容量(372mAh/g)と
比較して低い(<300mAh/g)という問題があ
る。
[0007] Pitch coke belongs to the class of graphitizable materials. Graphite treatment in an ultra-high temperature range approaches the interlayer distance of a carbon netting layer close to natural graphite. Due to the structure, graphitization does not develop as much as natural graphite, and in these crystal structures, the carbon network layer does not have a preferred orientation in a specific direction. Therefore, there is no restriction on the current density observed in flaky graphite such as natural graphite, and it is a very promising material as a negative electrode material for lithium secondary batteries, and many studies have been made so far (for example, 63-121
257, JP-A-1-204361, JP-A-4-206276, etc.). However, there is a problem that the discharge capacity of the product of ultra-high temperature treatment (baked at 2000 to 3000 ° C.) of ordinary pitch coke is lower (<300 mAh / g) as compared with the theoretical capacity (372 mAh / g).

【0008】以上の様に、リチウム二次電池の負極活物
質として種々の黒鉛材料を用いる際に、高い放電容量を
得るためには、高度に発達した黒鉛層状構造が必要であ
るが、この目的で天然黒鉛等の鱗片状黒鉛を使用した場
合には、初期不可逆容量が大きく、大きな充放電電流下
で良好な特性が得られない等の問題があり、一方、メソ
フェーズ小球体、ピッチ系炭素繊維あるいはピッチコー
クスを用いた場合には、その黒鉛構造の発達程度が鱗片
状黒鉛に及ばないため、高い放電容量が得られないとい
う実用上の問題があった。
As described above, when various graphite materials are used as a negative electrode active material of a lithium secondary battery, a highly developed graphite layered structure is required to obtain a high discharge capacity. In the case of using flaky graphite such as natural graphite, there is a problem that the initial irreversible capacity is large and good characteristics cannot be obtained under a large charging / discharging current.On the other hand, mesophase microspheres, pitch-based carbon fibers Alternatively, when pitch coke is used, there is a practical problem that a high discharge capacity cannot be obtained because the degree of development of the graphite structure is less than that of flake graphite.

【0009】[0009]

【発明が解決しようとする課題】本発明は、リチウム二
次電池負極用炭素材料として、天然黒鉛等の鱗片状黒鉛
の最高水準の放電容量もしくは黒鉛構造から決定される
理論容量と同程度の放電容量を持つと共に、かつ充電初
期における副反応に起因する不可逆容量が大きく、大き
な充放電電流下で使用した場合に高い放電容量が得られ
ない等の鱗片状黒鉛の問題を解決したリチウム二次電池
用負極材料およびその製造方法並びにこれを用いたリチ
ウム二次電池を工業的に提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a carbon material for a negative electrode of a lithium secondary battery, which has a discharge capacity at the highest level of flake graphite such as natural graphite or a discharge capacity equivalent to a theoretical capacity determined from the graphite structure. A lithium secondary battery that has the capacity and has a large irreversible capacity due to side reactions in the initial stage of charging, and solves the problem of flaky graphite such that a high discharge capacity cannot be obtained when used under a large charge / discharge current. It is an object to industrially provide a negative electrode material for use, a method for producing the same, and a lithium secondary battery using the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、各種黒鉛
材料の粒子形状、生成過程、構造及び粒度等の粉体特性
と電気的物性との関連を鋭意検討した結果、金属と炭素
の溶融状態の冷却過程に析出した炭素を用いて、その形
状や炭素含有量及び平均粒径を最適に調製することによ
り、これをリチウム二次電池の負極として用いることが
でき、かつこのリチウム二次電池負極用材料が黒鉛の理
論放電容量に匹敵する放電容量を示すと共に、従来放電
容量の大きな鱗片状黒鉛で問題となっていた不可逆容量
が大きい等の問題を大きく改善できる材料であることを
見出し、リチウム二次電池の負極としての電極特性に優
れるリチウム二次電池負極用炭素材料とその製造方法並
びにこれを用いたリチウム二次電池を提供するべく、本
発明はかかる知見に基づいて完成されたものである。
Means for Solving the Problems The present inventors have conducted intensive studies on the relationship between the powder properties such as the particle shape, formation process, structure, and particle size of various graphite materials and the electrical properties. By using carbon deposited during the cooling process in the molten state and optimally adjusting its shape, carbon content and average particle size, it can be used as a negative electrode of a lithium secondary battery, and It has been found that the material for the battery negative electrode exhibits a discharge capacity comparable to the theoretical discharge capacity of graphite and is a material that can greatly improve the problems such as the large irreversible capacity that had previously been a problem with flaky graphite having a large discharge capacity. In order to provide a carbon material for a negative electrode of a lithium secondary battery having excellent electrode characteristics as a negative electrode of a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same, the present invention provides such knowledge. It has been completed on the basis of.

【0011】即ち、本発明は、(1) 金属と炭素の溶
融状態の冷却過程に析出した炭素を処理して得られる黒
鉛であって、粒径4μm以上200μm未満の鱗片状粒
子の数が粒径4μm以上200μm未満の全粒子の数に
占める割合が80%以下、かつ炭素含有量が90質量%
以上、BET法による比表面積が7m2/g以下、平均
粒径が4μm以上200μm未満の黒鉛からなるリチウ
ム二次電池負極用黒鉛、(2) 20回タップ時のタッ
プ密度が0.40g/cm3以上、かつ300回タップ
時のタップ密度が0.55g/cm3以上である(1)
に記載のリチウム二次電池負極用黒鉛、(3) (1)
または(2)に記載のリチウム二次電池負極用黒鉛の製
造方法であって、金属と炭素の溶融状態の冷却過程に析
出した炭素を、炭素含有量が90質量%以上に達するま
で高純度化処理を行った後に、インペラーミル、ジェッ
トミル、レイモンドミルまたはボールミルより選ばれた
粉砕機を用いた粉砕と空気分級を行うことを特徴とする
リチウム二次電池用負極用黒鉛の製造方法、(4) 前
記金属が、シリコン、鉄、ニッケル、コバルトより選ば
れた1種または2種以上の金属である(3)に記載のリ
チウム二次電池負極用黒鉛の製造方法、(5) 前記金
属と炭素の溶融状態が、製鉄プロセスの溶融銑鉄におけ
る鉄と炭素の固溶状態であることを特徴とする(3)に
記載のリチウム二次電池負極用黒鉛の製造方法、(6)
正極活物質、負極活物質及び非水系電解質を含有する
リチウム二次電池において、(1)または(2)に記載
の黒鉛を負極活物質として用いてなることを特徴とする
リチウム二次電池、である。
That is, the present invention relates to (1) graphite obtained by treating carbon precipitated during a cooling process of a molten state of metal and carbon, wherein the number of flaky particles having a particle diameter of 4 μm or more and less than 200 μm is reduced. 80% or less of the total number of particles having a diameter of 4 μm or more and less than 200 μm, and a carbon content of 90% by mass.
As described above, graphite for a negative electrode of a lithium secondary battery comprising graphite having a specific surface area of 7 m 2 / g or less according to the BET method and an average particle diameter of 4 μm or more and less than 200 μm, (2) a tap density at the time of 20 taps of 0.40 g / cm. 3 or more, and tap density at the time of 300 taps is 0.55 g / cm 3 or more (1)
Graphite for a negative electrode of a lithium secondary battery described in (3), (3) (1)
Or the method for producing graphite for a negative electrode of a lithium secondary battery according to (2), wherein the carbon deposited during the cooling process in the molten state of metal and carbon is highly purified until the carbon content reaches 90% by mass or more. After the treatment, pulverization using a pulverizer selected from an impeller mill, a jet mill, a Raymond mill or a ball mill and air classification are performed, and a method for producing graphite for a negative electrode for a lithium secondary battery, (4 The method for producing graphite for a negative electrode of a lithium secondary battery according to (3), wherein the metal is one or more metals selected from silicon, iron, nickel, and cobalt; (5) the metal and carbon (3) the method for producing graphite for a negative electrode of a lithium secondary battery according to (3), wherein the molten state of iron is a solid solution state of iron and carbon in the molten pig iron in the iron making process.
A lithium secondary battery containing a positive electrode active material, a negative electrode active material, and a non-aqueous electrolyte, wherein the graphite according to (1) or (2) is used as a negative electrode active material. is there.

【0012】[0012]

【発明の実施の形態】以下に、本発明の内容について具
体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be specifically described below.

【0013】本発明に係るリチウム二次電池負極用黒鉛
は、金属と炭素の溶融状態の冷却過程に析出した炭素を
処理して、粒径4μm以上200μm未満の鱗片状粒子
の数が粒径4μm以上200μm未満の全粒子の数に占
める割合が80%以下、かつ炭素含有量が90質量%以
上、BET法による比表面積が1m2/g以上7m2/g
以下、平均粒径を4μm以上200μm未満に調製する
ことにより得られる。
The graphite for a negative electrode of a lithium secondary battery according to the present invention is prepared by treating carbon precipitated during a cooling process in a molten state of metal and carbon, so that the number of flaky particles having a particle diameter of 4 μm or more and less than 200 μm is 4 μm. The proportion of the total number of particles having a size of not less than 200 μm and not more than 80% is 80% or less, the carbon content is 90% by mass or more, and the specific surface area by the BET method is 1 m 2 / g or more and 7 m 2 / g.
Hereinafter, it can be obtained by adjusting the average particle size to 4 μm or more and less than 200 μm.

【0014】本発明のリチウム二次電池負極用黒鉛の要
件としては、第一に人造黒鉛でありながら天然黒鉛に匹
敵する高度な黒鉛構造を得るために金属との溶融状態か
ら析出せしめること、第二にリチウム二次電池負極用黒
鉛として性能に劣る粒子形状である鱗片状粒子の割合を
一定以下とすること、第三に不純物を低減させ一定以上
の炭素含有量の範囲に組成を制御すること、第四にリチ
ウム二次電池負極用黒鉛として最適な比表面積に制御す
ること、そして第五にこれをリチウム二次電池用負極材
料として最適な性能を示す平均粒径、粒度分布に調製す
ること、のすべてを組み合わせることにある。以上の第
一から第五まですべての要件を合わせて、以下の記述に
て上記要件(1)と呼ぶ。
The requirements for the graphite for a negative electrode of a lithium secondary battery of the present invention are as follows: first, in order to obtain an advanced graphite structure comparable to natural graphite while being artificial graphite, the graphite must be precipitated from a molten state with a metal. Second, the proportion of flake-like particles, which have inferior performance as graphite for lithium secondary battery negative electrodes, should be less than a certain ratio, and third, reduce impurities and control the composition to a range of more than a certain carbon content. Fourth, controlling the specific surface area to be optimal for graphite for a lithium secondary battery negative electrode, and fifthly, adjusting the average particle size and particle size distribution to show optimum performance as a negative electrode material for a lithium secondary battery. , Is to combine everything. All of the above first to fifth requirements are collectively referred to as requirement (1) in the following description.

【0015】第一の要件である、人造黒鉛でありながら
天然黒鉛に匹敵する高度な黒鉛構造を得るために金属と
の溶融状態から析出せしめることに関して説明する。
The first requirement, that is, precipitation from a molten state with a metal in order to obtain an advanced graphite structure comparable to natural graphite while being artificial graphite, will be described.

【0016】本発明のリチウム二次電池負極用黒鉛は、
その生成過程における天然黒鉛と人造黒鉛という区分に
おいて、人造黒鉛に属する。一般に人造黒鉛を製造する
方法としては、炭素を主成分とする原料を用いて最終的
に2000〜3000℃の高温で熱処理することが最も
一般的である。しかし、この方法を用いた場合に得られ
る人造黒鉛では、天然黒鉛に比較して黒鉛構造が十分に
進行しないため、黒鉛化度は劣る。一方、金属と炭素の
溶融状態の冷却過程に析出した炭素は、高度に発達した
黒鉛構造をとる。これは、炭素が溶融相から析出する
際、熱力学的に安定な構造である黒鉛を形成することに
よる。この高度に発達した黒鉛構造と天然黒鉛等鱗片状
黒鉛における本質的差異の詳細は未だ明らかではない
が、本発明のリチウム二次電池負極用黒鉛の電気的性能
において天然黒鉛等の鱗片状黒鉛で問題となっていた不
可逆容量が大きい等の問題を大きく改善できる。これ
は、天然黒鉛は黒鉛粒子がほぼ単結晶黒鉛から成り、か
つその結晶配向がほぼ一方向になっているのに対し、本
発明の黒鉛粒子は、黒鉛多結晶から成っており、しかも
その配向が天然黒鉛に比較して多方向になっていること
に起因すると推定される。
The graphite for a negative electrode of a lithium secondary battery according to the present invention comprises:
In the generation process, natural graphite and artificial graphite belong to artificial graphite. Generally, as a method for producing artificial graphite, it is most common to finally perform a heat treatment at a high temperature of 2000 to 3000 ° C. using a raw material containing carbon as a main component. However, in the artificial graphite obtained by using this method, the degree of graphitization is inferior to that of natural graphite because the graphite structure does not proceed sufficiently. On the other hand, carbon precipitated during the cooling process of the molten state of metal and carbon has a highly developed graphite structure. This is due to the formation of graphite, a thermodynamically stable structure, when carbon precipitates from the molten phase. Although the details of the essential difference between this highly developed graphite structure and the flaky graphite such as natural graphite are not yet clear, the electrical performance of the graphite for the negative electrode of the lithium secondary battery of the present invention is based on the flaky graphite such as natural graphite. The problem such as the large irreversible capacity which has been a problem can be greatly improved. This is because, in natural graphite, graphite particles are substantially made of single-crystal graphite, and the crystal orientation is almost unidirectional, whereas the graphite particles of the present invention are made of graphite polycrystal, and the orientation Is presumed to be caused by multi-directionality as compared with natural graphite.

【0017】また、第二の要件である鱗片状粒子の割合
を一定以下とすることに関して説明する。図1は、本発
明で得られた黒鉛を走査型電子顕微鏡で観察して得られ
たものである。図1において、いずれの粒子の形状も、
球形、円盤状等のなめらかな曲面に近い外殻面からなっ
ている。この様な形状を以下の記述で曲面形状と呼ぶ。
また、図2は、図1の黒鉛と同じ原料から得られた多数
の鱗片状粒子を含む黒鉛の写真である。また、図3は、
一般に鱗片状黒鉛と総称されている天然黒鉛である。図
3においては、大部分の粒子が尖鋭あるいは角張った粒
子よりなっている。この図3に見られる尖鋭または直線
上の外角形状を持つ粒子を本発明で鱗片状黒鉛と定義す
る。即ち、図1が非鱗片状粒子、図3が鱗片状粒子であ
る。本発明では4μm以上200μm未満の全粒子につ
いて、鱗片状粒子の数の割合を規定する。ここで、各粒
子の形状は球形でないことから、粒径はその粒子の最も
長い径と定義する。また、粒子が凝集していたり、その
粒子形状は判然としない場合には、その粒子は数えない
ものとする。一例として前記図1及び図2の黒鉛粒子に
関し説明する。図4、図5は、それぞれ図1、図2の写
真上に粒子を特定して番号を振ったものである。図4に
おいて、鱗片状粒子と特定されるものは、図中番号の
7、16、23であり、全粒子数は28個である。ま
た、図5においては、大部分が鱗片状であり、非鱗片状
粒子として特定されるものは、2、6、13のみであ
り、特定された全粒子数は34個である。同様の操作を
少なくとも無作為に選んだ10以上の視野にて行い、か
つ少なくとも4μm以上200μm未満の全粒子数が5
00個以上となるまで行い、鱗片状粒子の数の割合を求
める。粒径範囲を4μm以上200μm未満と規定して
いる理由は、負極活物質として実際に使用される際の原
料粒度が通常数十μm程度に調製されることから、20
0μm以上の粒子が材料物性を代表しないこと、及び4
μm未満の微粒子ではその形状の特定が困難であること
による。以上の様に、本発明では、4μm以上200μ
m未満の鱗片状黒鉛の数の割合が同じ粒度範囲の全粒子
数の少なくとも80%以下である場合に、リチウム二次
電池負極用黒鉛として高い特性を有することを見出し
た。これは、鱗片状黒鉛と同等な高い黒鉛化度を有する
ことにより、高い放電容量が得られること、及び、鱗片
状黒鉛の割合を減らすことにより、充電初期における副
反応に起因する不可逆容量が大きく、大きな充放電電流
下で使用した場合に高い放電容量が得られない等の鱗片
状黒鉛の問題点が減少することに起因すると考えられ
る。
The second requirement, that is, the ratio of the scale-like particles is set to a certain value or less will be described. FIG. 1 is obtained by observing the graphite obtained by the present invention with a scanning electron microscope. In FIG. 1, the shape of each particle is
It has an outer shell surface close to a smooth curved surface such as a sphere or a disk. Such a shape is called a curved surface shape in the following description.
FIG. 2 is a photograph of graphite containing many flaky particles obtained from the same raw material as the graphite of FIG. Also, FIG.
It is a natural graphite that is generally called flake graphite. In FIG. 3, most of the particles are sharp or angular particles. The particles having a sharp or straight outer angular shape shown in FIG. 3 are defined as flake graphite in the present invention. That is, FIG. 1 shows non-scale particles, and FIG. 3 shows scale particles. In the present invention, the ratio of the number of flaky particles is specified for all particles having a size of 4 μm or more and less than 200 μm. Here, since the shape of each particle is not spherical, the particle size is defined as the longest diameter of the particle. If the particles are aggregated or the shape of the particles is not clear, the particles are not counted. As an example, the graphite particles of FIGS. 1 and 2 will be described. FIGS. 4 and 5 show the particles identified and numbered on the photographs of FIGS. 1 and 2, respectively. In FIG. 4, particles identified as scaly particles are numbered 7, 16, and 23 in the figure, and the total number of particles is 28. In FIG. 5, most of the particles are scaly, and only 2, 6, and 13 are specified as non-scale particles, and the total number of specified particles is 34. The same operation is performed in at least 10 or more randomly selected visual fields, and the total number of particles of at least 4 μm or more and less than 200 μm is 5
The process is repeated until the number of particles becomes 00 or more, and the ratio of the number of flaky particles is determined. The reason that the particle size range is defined as 4 μm or more and less than 200 μm is that the raw material particle size when actually used as the negative electrode active material is usually adjusted to about several tens μm,
That particles of 0 μm or more do not represent material properties;
This is because it is difficult to specify the shape of the fine particles having a diameter of less than μm. As described above, in the present invention, 4 μm to 200 μm
It has been found that when the proportion of the number of flake graphite less than m is at least 80% or less of the total number of particles in the same particle size range, the graphite has high characteristics as a negative electrode graphite for lithium secondary batteries. This means that by having a high degree of graphitization equivalent to flaky graphite, a high discharge capacity can be obtained, and by reducing the proportion of flaky graphite, the irreversible capacity due to side reactions in the initial stage of charging is large. This is considered to be due to a decrease in the problem of flaky graphite such as a failure to obtain a high discharge capacity when used under a large charge / discharge current.

【0018】また、第三の要件である炭素含有量に関し
て説明する。リチウム二次電池用負極材料として黒鉛を
用いることの大きな意義の一つは、充放電過程の化学変
化即ち充電時に黒鉛層間にリチウムイオンが挿入して黒
鉛層間化合物を形成し放電時にリチウムイオンが脱離し
て黒鉛に戻る反応における電位が、リチウム金属とリチ
ウムイオンの変化における電位と同等であり、かつ使用
領域の大部分で平坦な放電曲線が得られることである。
従って、負極材料である黒鉛の純度が低い場合にはその
負極材料中の充放電反応に関与する黒鉛の割合が小さく
なり、負極材料として高い放電容量を担うことはできな
い。仮に負極材料中の黒鉛がその理論容量である372
mAh/gの放電容量を持っていたとしても、その含有
量が90質量%未満であれば、その容量は335mAh
/gに達しないため高容量の負極材用黒鉛は得られない
し、更に望ましい炭素含有量の下限は95質量%以上で
ある。
The third requirement, that is, the carbon content will be described. One of the great significance of using graphite as a negative electrode material for lithium secondary batteries is that a chemical change in the charge / discharge process, that is, lithium ions are inserted between graphite layers during charging to form a graphite intercalation compound and lithium ions are desorbed during discharging. The potential in the reaction that separates and returns to graphite is equivalent to the potential in the change of lithium metal and lithium ion, and a flat discharge curve can be obtained in most of the use area.
Therefore, when the purity of the graphite as the negative electrode material is low, the proportion of the graphite involved in the charge / discharge reaction in the negative electrode material becomes small, and the negative electrode material cannot have a high discharge capacity. Suppose graphite in the negative electrode material has a theoretical capacity of 372.
Even if it has a discharge capacity of mAh / g, if its content is less than 90% by mass, its capacity is 335 mAh / g.
/ G is not reached, so that a high capacity graphite for negative electrode material cannot be obtained, and a more desirable lower limit of the carbon content is 95% by mass or more.

【0019】また、第四の要件であるBET比表面積に
関して説明する。BET比表面積は、黒鉛粉末の比表面
積を記述する一般的な指標として、当業界を始め炭素、
黒鉛に関連する技術分野で広く用いられている。これ
は、予め吸着物を脱離させて真空容器に入れた粉末に液
体窒素温度にて窒素ガスを吸着させてその等温吸着曲線
を求めることにより得られる。このBET法による比表
面積が7m2/g超とした場合、負極電極作製の際に塗
工面にむらや不均一部分が発生する、あるいは大気中水
分の吸着が顕著となり不純物濃度が増加する、あるいは
充放電初期の副反応が増大する等、電極性能の劣化が顕
著となる。
Next, the fourth requirement, the BET specific surface area, will be described. The BET specific surface area is a general index describing the specific surface area of graphite powder, including carbon,
Widely used in technical fields related to graphite. This is obtained by desorbing the adsorbed material in advance and adsorbing nitrogen gas at a liquid nitrogen temperature to powder placed in a vacuum vessel, and obtaining an isothermal adsorption curve thereof. When the specific surface area by this BET method is more than 7 m 2 / g, unevenness or uneven portion is generated on the coated surface during production of the negative electrode, or adsorption of atmospheric moisture is remarkable, and the impurity concentration increases, or Deterioration of electrode performance becomes remarkable, such as an increase in side reactions at the beginning of charging and discharging.

【0020】また、第五の要件である平均粒径に関して
説明する。平均粒径が4μm未満と小さい場合、前記第
四の要件の達成をより困難にする比表面積の増大や、か
つ嵩密度やタップ密度の低下に起因した負極電極塗工液
の不均一が発生する等の問題がある。また、平均粒径が
200μmを超えて大きい場合、リチウム二次電池負極
として必要な電極箔に塗布した際に平滑性が得られない
等の問題が生じ、更に反応の均一性、粒子内部でのリチ
ウムイオンの拡散のしやすさから平均粒径50μm以下
であることがより望ましい。
The fifth requirement, that is, the average particle size, will be described. When the average particle size is as small as less than 4 μm, an increase in the specific surface area which makes it more difficult to achieve the fourth requirement, and a non-uniformity of the negative electrode coating solution due to a decrease in bulk density and tap density occur. There are problems such as. Further, when the average particle size is larger than 200 μm, there arises a problem that smoothness cannot be obtained when applied to an electrode foil required as a negative electrode of a lithium secondary battery, and further, uniformity of the reaction, It is more preferable that the average particle diameter is 50 μm or less from the viewpoint of easy diffusion of lithium ions.

【0021】以上の様に、上記要件(1)、即ち前記第
一から第五までのすべての要件を同時に満たすことによ
り、リチウム二次電池負極用炭素材料として、天然黒鉛
等の鱗片状黒鉛の最高水準の放電容量もしくは黒鉛構造
から決定される理論容量と同程度の放電容量を持つと共
に、かつ充電初期における副反応に起因する不可逆容量
が小さく、大きな充放電電流下で使用した場合に高い放
電容量が得られる等の優れた特性が得られ、鱗片状黒鉛
の問題を解決したリチウム二次電池用負極材料が提供さ
れるに至った。
As described above, by simultaneously satisfying the requirement (1), that is, all of the first to fifth requirements, a carbon material for a negative electrode of a lithium secondary battery can be obtained by using scaly graphite such as natural graphite. It has the highest level of discharge capacity or the same discharge capacity as the theoretical capacity determined from the graphite structure, and has a small irreversible capacity due to side reactions in the initial stage of charging, and a high discharge when used under a large charge / discharge current Excellent characteristics such as high capacity have been obtained, and a negative electrode material for a lithium secondary battery has been provided which has solved the problem of flake graphite.

【0022】さらに、本発明のリチウム二次電池負極用
黒鉛の要件として、上記要件(1)に加えて、20回タ
ップ時のタップ密度が0.40g/cm3以上、かつ3
00回タップ時のタップ密度が0.55g/cm3以上
であるものが好ましい。以下の記述にて、これを上記要
件(2)と呼ぶ。黒鉛粉末材料のタップ密度の測定法は
JIS-K5101に規定されており、当業界を始め炭
素、黒鉛に関連する技術分野では共通の指標である。リ
チウム二次電池負極用黒鉛においてタップ密度を向上さ
せることは、電極箔塗工工程の安定操業を容易にするの
みならず、材料の運送、保管等の操作においても重要で
ある。例えば、類似の粒度分布を持つ天然黒鉛と、メソ
フェーズ小球体を比較すると天然黒鉛のタップ密度は1
/3〜1/5と低く、これがために塗工液作製時に同質
量の黒鉛を用いた場合にその液粘度は極めて大きくな
り、均一な塗工がより困難になる等の問題を生じる。本
発明では、上記要件(1)を満足することに加えて、適
切な粉砕、分級条件を選定することにより一定の値以上
のタップ密度を満足することにより、天然黒鉛等の低タ
ップ密度材料で生じる問題を回避するものである。
Further, in addition to the requirement (1), the graphite for a negative electrode of a lithium secondary battery according to the present invention has a tap density at the time of 20 taps of 0.40 g / cm 3 or more and 3
It is preferable that the tap density at the time of 00 taps is 0.55 g / cm 3 or more. This is referred to as requirement (2) in the following description. The method for measuring the tap density of graphite powder material is specified in JIS-K5101, and is a common indicator in the technical field related to carbon and graphite, including the industry. Improving the tap density of graphite for a negative electrode of a lithium secondary battery is important not only in facilitating stable operation of the electrode foil coating process but also in operations such as transport and storage of materials. For example, when natural graphite having a similar particle size distribution is compared with mesophase microspheres, the tap density of natural graphite is 1
This is as low as 3 to 5, which causes a problem that when the same mass of graphite is used at the time of preparing the coating liquid, the liquid viscosity becomes extremely large and uniform coating becomes more difficult. In the present invention, in addition to satisfying the above requirement (1), by selecting an appropriate pulverization and classification condition to satisfy a tap density of a certain value or more, it is possible to use a low tap density material such as natural graphite. It avoids the problems that arise.

【0023】次に、上記本発明のリチウム二次電池負極
用黒鉛の製造方法について説明する。上記構成要件
(1)、(2)を満たす黒鉛の製造方法は、金属と炭素
の溶融状態の冷却過程に析出した炭素の処理が、炭素含
有量が90質量%以上に達するまで高純度化処理を行っ
た後に、インペラーミル、ジェットミル、レイモンドミ
ルまたはボールミルより選ばれた粉砕機を用いた粉砕と
空気分級を行うことを特徴とするリチウム二次電池用負
極用黒鉛の製造方法である。本要件を以下の記述で、上
記要件(3)と呼ぶ。即ち、上記要件(3)は、上記要
件(1)、(2)で規定したリチウム二次電池負極用黒
鉛を容易にかつ工業的に製造する目的で、高純度化処理
を行った後に、インペラーミル、ジェットミル、レイモ
ンドミル、ボールミルより選ばれた粉砕機を用いた粉砕
と空気分級を行って、炭素含有量を90質量%以上に調
製するものである。上記要件(1)、(2)に示したリ
チウム二次電池負極用黒鉛を製造するためのプロセスは
種々考え得るが、本発明の製造方法により容易にかつ高
い工程歩留で製品を得ることが可能である。ここで言う
高純度化とは、金属と炭素の溶融状態の冷却過程に析出
した炭素の炭素含有量を90質量%以上に高めるための
処理であり、浮遊選鉱法、酸処理、高温熱処理等の一般
に知られた精製プロセスを単独あるいは組み合わせて用
いることである。高純度化処理を行う前に粒度調製を行
った場合は、高純度化処理で大部分の金属粒子が脱離す
ること等に起因する粒度変化により、最終の平均粒度を
制御することが困難である。また、高純度化の後に粉砕
を行わなければ所定の平均粒度を持つ製品を高い歩留で
得ることはできない。また、インペラーミル、ジェット
ミル、レイモンドミル、ボールミルより選ばれる粉砕機
を用いることにより、粉砕を経ていない場合に比べて嵩
密度、タップ密度等の粉体特性値が向上することが分か
った。これは粉砕の効果として、高純度化処理直後に存
在する鱗片状粒子の形状が粉砕工程中に角がとれた、よ
り球状に近く変化することによる。この粉砕工程におい
て、鱗片状粒子の大部分の形状が変化し曲面形状粒子に
ならしめることが上記要件(3)の根幹をなすものであ
る。粉砕現象そのものは粒子が割れたり欠けたりするも
のであるが、粉砕機内部において粒子同士が接触、衝
突、摩耗を繰り返すことにより、本発明の効果である燐
片状黒鉛粒子が曲面形状粒子に変化してリチウム二次電
池負極用黒鉛としての性能向上が得られる。
Next, a method for producing the graphite for a negative electrode of a lithium secondary battery of the present invention will be described. In the method for producing graphite satisfying the above constitutional requirements (1) and (2), the treatment of carbon precipitated during the cooling process in the molten state of metal and carbon is performed by purifying carbon until the carbon content reaches 90% by mass or more. And then performing pulverization using a pulverizer selected from an impeller mill, a jet mill, a Raymond mill, or a ball mill and air classification, to produce graphite for a negative electrode for a lithium secondary battery. This requirement is referred to as requirement (3) in the following description. That is, the above requirement (3) is obtained by performing an impeller after performing a high-purification treatment for the purpose of easily and industrially producing the graphite for a negative electrode of a lithium secondary battery as defined in the above requirements (1) and (2). The carbon content is adjusted to 90% by mass or more by performing pulverization using a pulverizer selected from a mill, a jet mill, a Raymond mill, and a ball mill and air classification. Although various processes for producing graphite for a negative electrode of a lithium secondary battery described in the above requirements (1) and (2) are conceivable, a product can be easily obtained with a high process yield by the production method of the present invention. It is possible. The term "high purification" as used herein refers to a treatment for increasing the carbon content of carbon precipitated during the cooling process of the molten state of metal and carbon to 90% by mass or more, such as flotation, acid treatment, and high-temperature heat treatment. A commonly used purification process is used alone or in combination. If the particle size is adjusted before performing the high-purification treatment, it is difficult to control the final average particle size due to a change in particle size caused by the fact that most of the metal particles are desorbed in the high-purification treatment. is there. In addition, a product having a predetermined average particle size cannot be obtained at a high yield unless grinding is performed after high purification. Further, it was found that the use of a pulverizer selected from an impeller mill, a jet mill, a Raymond mill, and a ball mill improved powder characteristic values such as bulk density and tap density as compared with the case without pulverization. This is because, as an effect of the pulverization, the shape of the flaky particles existing immediately after the high-purification treatment changes to a more spherical shape with corners removed during the pulverization step. In the pulverizing step, the fact that the shape of most of the flake-like particles changes and the particles become curved-shaped particles is the basis of the above requirement (3). The crushing phenomenon itself is that the particles are cracked or chipped, but by repeating contact, collision, and abrasion of the particles inside the crusher, the flake shaped graphite particles, which is the effect of the present invention, are transformed into curved particles. As a result, the performance as graphite for a negative electrode of a lithium secondary battery is improved.

【0024】また、本発明では、前記金属が、鉄、ニッ
ケル、シリコンまたはコバルトより選ばれた1種または
2種以上の金属であるリチウム二次電池負極用黒鉛の製
造方法であることが好ましい。
In the present invention, it is preferable that the metal is one or two or more metals selected from iron, nickel, silicon and cobalt.

【0025】炭素は高温において多くの金属と溶融状態
をとる。一般にこれを冷却すると炭素の溶解限界濃度が
減少することから黒鉛として析出する。その析出の温度
や量は用いる金属種により大きく異なり、例えば、ニッ
ケルは2000℃において、約20原子%の炭素を含む
溶融状態を取り得、これを1500℃まで冷却した際に
前記20原子%の内、約7原子%に相当する炭素が黒鉛
として析出する。金属種によっては高温において、液体
状態になっても炭素をほとんど溶解しないものや、また
溶解しても黒鉛として析出しないものがあり、これら
は、本発明の金属として用いるに適さない。即ち、少な
くとも鉄、ニッケル、シリコン、コバルトと炭素を所定
量混合した試料を、不活性雰囲気下で高温加熱し、冷却
することにより得られる黒鉛を処理して上記要件(3)
を満たす製造を行うことにより得られる材料は、リチウ
ム二次電池負極として優れた特性を有する。
Carbon is in a molten state with many metals at high temperatures. In general, when this is cooled, it precipitates as graphite because the solubility limit concentration of carbon decreases. The temperature and amount of the precipitation vary greatly depending on the type of metal used. For example, nickel can take a molten state containing about 20 atomic% of carbon at 2000 ° C. , About 7 atomic% of carbon precipitate as graphite. Some metal species hardly dissolve carbon even in a liquid state at high temperature, and others do not precipitate as graphite when dissolved, and these are not suitable for use as the metal of the present invention. That is, at least a sample obtained by mixing at least a predetermined amount of iron, nickel, silicon, cobalt and carbon is heated at a high temperature in an inert atmosphere and cooled to obtain graphite, and the above-mentioned requirement (3) is treated.
A material obtained by performing the production satisfying the above condition has excellent characteristics as a negative electrode for a lithium secondary battery.

【0026】また、本発明は、前記金属と炭素の溶融状
態が、製鉄プロセスの溶融銑鉄における鉄と炭素の溶融
状態であることを特徴とするリチウム二次電池負極用黒
鉛の製造方法であっても良い。鉄は、2500℃におい
て、約25原子%の炭素を含む溶融状態を取り得、これ
を冷却した場合にその溶融限界量は低下し、これを超え
た炭素が黒鉛として析出する。製鉄プロセスにおいては
製銑工程にて炭素を含んだ高温溶融反応物が得られ、そ
の反応物の運搬及び精製等の工程にて、反応物温度が下
がり炭素が析出し、その多くが製銑ダスト及び製鋼ダス
トとして回収されている。該ダスト中の炭素濃度は、回
収段階で40〜60質量%程度である。上記要件(2)
のリチウム二次電池負極用黒鉛の製造方法において、原
料として該ダストを用いることが、その生成原理から見
て可能である。また、現実の工業プロセスから大量に産
出する原料を得ることができ、該プロセスで原料を得る
ことがその物性安定化や経済性の点で優れた方法であ
る。即ち、該ダストを処理して上記要件(3)を満たす
製造を行うことにより得られる材料は、リチウム二次電
池負極用黒鉛として優れた特性を有する。
The present invention also provides a method for producing graphite for a negative electrode of a lithium secondary battery, wherein the molten state of the metal and carbon is a molten state of iron and carbon in molten pig iron in an iron making process. Is also good. Iron can assume a molten state containing about 25 atomic% of carbon at 2500 ° C., and when cooled, its melting limit decreases, and carbon exceeding this amount is deposited as graphite. In the iron making process, a high-temperature molten reactant containing carbon is obtained in the iron making process, and the temperature of the reactant drops in the process of transporting and refining the reactant, and carbon is precipitated, and most of the iron dust is generated. And steelmaking dust. The carbon concentration in the dust is about 40 to 60% by mass at the recovery stage. The above requirement (2)
In the method for producing graphite for a negative electrode of a lithium secondary battery described above, the dust can be used as a raw material in view of the generation principle. In addition, raw materials produced in large quantities from an actual industrial process can be obtained, and obtaining a raw material by the process is an excellent method in terms of stabilization of physical properties and economic efficiency. That is, a material obtained by treating the dust to satisfy the requirement (3) has excellent characteristics as graphite for a negative electrode of a lithium secondary battery.

【0027】さらに、本発明は、正極活物質、負極活物
質及び非水系電解質を含有するリチウム二次電池におい
て、上記要件(1)または上記要件(2)を満たす黒鉛
を負極活物質に用いてなることを特徴とするリチウム二
次電池である。上記要件(1)及び上記要件(2)の黒
鉛はリチウム二次電池負極用黒鉛として優れた特性を持
ち、これを負極活物質として用いてリチウム二次電池を
製造した場合、負極活物質が従来材料の負極活物質に比
べて高容量等優れた性質を有するため、より高性能のリ
チウム二次電池が得られる。
Further, the present invention provides a lithium secondary battery containing a positive electrode active material, a negative electrode active material and a non-aqueous electrolyte, wherein graphite satisfying the above requirement (1) or the above requirement (2) is used as the negative electrode active material. A lithium secondary battery characterized in that: The graphite of the above requirements (1) and (2) has excellent properties as graphite for a negative electrode of a lithium secondary battery, and when a lithium secondary battery is manufactured using this as a negative electrode active material, the negative electrode active material is Since it has excellent properties such as high capacity compared to the negative electrode active material of the material, a higher performance lithium secondary battery can be obtained.

【0028】本発明のリチウム二次電池負極用黒鉛を活
物質に用いて負極を形成する方法としては、本発明のリ
チウム二次電池負極用黒鉛の性能を充分に引き出し且
つ、賦形性が高く、化学的、電気化学的に安定であれ
ば、何らこれに制限されるものではない。例示すると、
本発明のリチウム二次電池負極用黒鉛にポリテトラフル
オロエチレン等フッ素系樹脂の粉末あるいはディスパー
ジョン溶液を添加後、混合、混練する方法がある。ま
た、本発明のリチウム二次電池負極用黒鉛にポリフッ化
ビニリデン(PVdF)等のフッ素系樹脂粉末あるいは
カルボキシルメチルセルロース等の水溶性粘結剤をバイ
ンダーにして、N−メチルピロリドン(NMP)、ジメ
チルホルムアミドあるいは水、アルコール等の溶媒を用
いて混合することによりスラリーを作成し、集電体上に
塗布、乾燥する事により成型することもできる。
As a method for forming a negative electrode by using the graphite for a negative electrode of a lithium secondary battery of the present invention as an active material, the performance of the graphite for a negative electrode of a lithium secondary battery of the present invention is sufficiently brought out and the shapeability is high. However, the present invention is not limited thereto as long as it is chemically and electrochemically stable. To illustrate,
There is a method of adding a powder or dispersion solution of a fluororesin such as polytetrafluoroethylene to the graphite for a negative electrode of a lithium secondary battery of the present invention, followed by mixing and kneading. Further, N-methylpyrrolidone (NMP), dimethylformamide and the like are used as a binder for the graphite for a negative electrode of a lithium secondary battery of the present invention, using a fluorine-based resin powder such as polyvinylidene fluoride (PVdF) or a water-soluble binder such as carboxymethyl cellulose as a binder. Alternatively, a slurry can be formed by mixing with a solvent such as water or alcohol, and applied to a current collector and dried to form a slurry.

【0029】本発明の負極活物質は、正極活物質と非水
系電解質(例えば、有機溶媒系電解質)と適宜に組み合
わせて用いることができるが、これらの非水系電解質
(例えば、有機溶媒系電解質)や正極活物質は、リチウ
ム二次電池に通常用いることのできるものであれば、特
にこれを制限するものではない。
The negative electrode active material of the present invention can be appropriately used in combination with a positive electrode active material and a non-aqueous electrolyte (for example, an organic solvent-based electrolyte). These non-aqueous electrolytes (for example, an organic solvent-based electrolyte) can be used. The positive electrode active material is not particularly limited as long as it can be generally used for a lithium secondary battery.

【0030】正極活物質としては、例えば、リチウム含
有遷移金属酸化物LiM(1)x2(式中、xは0≦x
≦1の範囲の数値であり、式中、M(1)は遷移金属を
表し、Co、Ni、Mn、Ti、Cr、V、Fe、Z
n、Al、SnまたはInの少なくとも1種類からな
る)、或いはLiM(1)yM(2)2-y4(式中、y
は0≦y≦1の範囲の数値であり、式中、M(1)、M
(2)は遷移金属を表し、Co、Ni、Mn、Ti、C
r、V、Fe、Zn、Al、SnまたはInの少なくと
も1種類からなる)、遷移金属カルコゲン化物(TiS
2、NbSe3、等)、バナジウム酸化物(V25、V6
13、V24、V38、等)及びそのリチウム化合物、
一般式MxMo6Ch8-y(式中、xは0≦x≦4、yは
0≦y≦1の範囲の数値であり、式中、Mは遷移金属を
はじめとする金属、Chはカルコゲン元素を表す)で表
されるシュブレル相化合物、或いは活性炭、活性炭素繊
維、等を用いることができる。
As the positive electrode active material, for example, a lithium-containing transition metal oxide LiM (1) x O 2 (where x is 0 ≦ x
≦ 1 where M (1) represents a transition metal and Co, Ni, Mn, Ti, Cr, V, Fe, Z
n, Al, Sn or In) or LiM (1) y M (2) 2-y O 4 (wherein y
Is a numerical value in the range of 0 ≦ y ≦ 1, where M (1), M
(2) represents a transition metal, Co, Ni, Mn, Ti, C
r, V, Fe, Zn, Al, Sn or In), transition metal chalcogenides (TiS
2 , NbSe 3 , etc.), vanadium oxides (V 2 O 5 , V 6
O 13 , V 2 O 4 , V 3 O 8 , etc.) and lithium compounds thereof,
General formula M x Mo 6 Ch 8-y (where x is a numerical value in the range of 0 ≦ x ≦ 4, y is a numerical value in the range of 0 ≦ y ≦ 1, where M is a metal including transition metals, Ch Represents a chalcogen element), activated carbon, activated carbon fiber, or the like.

【0031】非水系電解質(例えば、有機溶媒系電解
質)における有機溶媒としては、特に制限されるもので
はないが、例えば、プロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート、クロロエチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、エチルメチルカーボネート、1,1−ジメトキ
シエタン、1,2−ジメトキシエタン、1,2−ジエト
キシエタン、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1,3−ジオキソ
ラン、4−メチル−1,3−ジオキソラン、アニソー
ル、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、クロロニトリル、プロピオニトリ
ル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメ
タン、ジメチルホルムアミド、N-メチルピロリドン、
酢酸エチル、トリメチルオルトホルメート、ニトロベン
ゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロ
チオフェン、ジメチルスルホキシド、3−メチル−2−
オキサゾリドン、エチレングリコール、サルファイト、
ジメチルサルファイト、等の単独もしくは2種類以上の
混合溶媒が使用できる。
The organic solvent in the non-aqueous electrolyte (for example, an organic solvent-based electrolyte) is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, Ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3 -Dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide , N- methylpyrrolidone,
Ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-
Oxazolidone, ethylene glycol, sulfite,
A single solvent such as dimethyl sulfite or a mixture of two or more solvents can be used.

【0032】電解質としては、従来より公知のものを何
れも使用することができ、例えば、LiClO4、Li
BF4、LiPF6、LiAsF6、LiB(C65)、
LiCl、LiBr、LiCF3SO3、Li(CF3
22N、Li(CF3SO23C、Li(CF3CH2
OSO22N、Li(CF3CF2CH2OSO22N、
Li(HCF2CF2CH2OSO22N、Li((C
32CHOSO22N、LiB[C63(CF32
4、等の1種または2種以上の混合物を挙げることがで
きる。
As the electrolyte, any of conventionally known electrolytes can be used. For example, LiClO 4 , Li
BF 4 , LiPF 6 , LiAsF 6 , LiB (C 6 H 5 ),
LiCl, LiBr, LiCF 3 SO 3 , Li (CF 3 S
O 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li (CF 3 CH 2
OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N,
Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((C
F 3) 2 CHOSO 2) 2 N, LiB [C 6 H 3 (CF 3) 2]
And the like, or a mixture of two or more kinds.

【0033】以上の様に、本発明により、リチウム二次
電池負極用炭素材料として、天然黒鉛等の鱗片状黒鉛の
最高水準の放電容量もしくは黒鉛構造から決定される理
論容量と同程度の放電容量を持つと共に、かつ充電初期
における副反応に起因する不可逆容量が小さく、大きな
充放電電流下で使用した場合でも高い放電容量が得られ
る等の優れた特性を示し、鱗片状黒鉛の問題を解決した
リチウム二次電池用負極材料とその製造方法並びにこれ
を用いたリチウム二次電池が工業的に提供できるに至っ
た。
As described above, according to the present invention, as a carbon material for a negative electrode of a lithium secondary battery, the highest level discharge capacity of flaky graphite such as natural graphite or the same discharge capacity as the theoretical capacity determined from the graphite structure is used. The irreversible capacity due to side reactions in the early stage of charging is small, and excellent characteristics such as a high discharge capacity are obtained even when used under a large charge / discharge current, thus solving the problem of flake graphite. A negative electrode material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same have been industrially provided.

【0034】[0034]

【実施例】以下に本発明において、リチウム二次電池用
負極材料の構造、製造法の規定に用いた各種物性値の表
現方法、測定方法を示す。 (1) 黒鉛化度(d002、Lc) 単色のX線を平行ビームにコリメートし、高純度シリコ
ンを内部標準として加えた炭素粉末に照射し、黒鉛の0
02面に対応するピークを測定する。そのピークの位置
及び半値幅を内部標準のシリコンのピークを標準として
補正することにより層面間の間隔d002及び結晶子のC
軸方向の大きさLcを算出する。さらに具体的な評価方
法は、例えば、炭素繊維、近代編集社、昭和61年3月
発行、p733〜p742に記載されている。
EXAMPLES The structure of the negative electrode material for a lithium secondary battery, the method of expressing various physical properties used in the regulation of the manufacturing method, and the measuring method in the present invention are described below. (1) Degree of graphitization (d 002 , Lc) Monochromatic X-rays are collimated into a parallel beam, and irradiated to carbon powder to which high-purity silicon is added as an internal standard, to obtain a graphite 0
The peak corresponding to the 02 plane is measured. By correcting the peak position and half-value width with the internal standard silicon peak as a standard, the distance d 002 between the layer planes and the C
The size Lc in the axial direction is calculated. A more specific evaluation method is described in, for example, pages 733 to 742, published in March 1986, by Carbon Fiber, Kindai Kyoikusha.

【0035】実施例1 コークス粉末2kgと鉄粉末8kgを混合した後、黒鉛
容器に入れ、これをタンマン炉でアルゴン気流中で20
00℃に昇温加熱し冷却した。反応後に固形反応物を得
た後、その表面部に析出した粒状化合物約500gを回
収した。これを濃塩酸10リットルに入れ、室温で10
時間保持した後に濾過し、さらにこれを多量の水で洗浄
濾過した後、20時間乾燥して中間生成物300gを得
た。得られた中間生成物である粉末をジェットミルにて
粉砕し、空気分級機にて分級して、平均粒径37μmの
粉末生成物200gを得た。この生成物の化学分析によ
る金属不純物の総計は1.2質量%であった。また、こ
の生成物を走査型電子顕微鏡にて500倍に拡大して写
真撮影し、4μm以上200μm未満の全粒子に対する
鱗片状粒子の数を数えて、その割合を求めたところ、3
0%であった。
Example 1 After mixing 2 kg of coke powder and 8 kg of iron powder, the mixture was placed in a graphite container, and this was placed in a Tamman furnace in an argon gas stream for 20 minutes.
The temperature was raised to 00 ° C. and the mixture was cooled. After obtaining a solid reactant after the reaction, about 500 g of a granular compound precipitated on the surface thereof was recovered. Put this in 10 liters of concentrated hydrochloric acid,
After holding for a period of time, the mixture was filtered, washed and filtered with a large amount of water, and then dried for 20 hours to obtain 300 g of an intermediate product. The obtained powder as an intermediate product was pulverized by a jet mill and classified by an air classifier to obtain 200 g of a powder product having an average particle size of 37 μm. The total amount of metal impurities by chemical analysis of the product was 1.2% by mass. The product was photographed at a magnification of 500 times with a scanning electron microscope, photographed, and the number of flaky particles with respect to all particles of 4 μm or more and less than 200 μm was counted.
It was 0%.

【0036】このようにして調製した生成物粉末を、ポ
リフッ化ビニリデンのNMP(N−メチル−2−ピロリ
ドン)溶液に、生成物粉末とポリフッ化ビニリデンが質
量比で95:5となる様加えて混練し、これを厚さ20
μmの銅箔に塗布して負極電極箔を得た。この負極電極
箔を、80℃で乾燥してNMPを蒸発させた後、10m
m角に切り出して負極電極を作成した。この負極電極単
極での電極特性を評価するために、対極、参照極にリチ
ウム金属を用いた三極式セルを用いた。電解液には、エ
チレンカーボネートとジエチルカーボネートの混合溶媒
(体積比で1:1混合)にLiClO4を1mol/l
の割合で溶解したものを用いた。充放電試験に関して
は、電位規制の下、充電、放電共に定電流(0.1mA
/cm2)で行なった。電位範囲は0Vから1.5V
(リチウム金属基準)とした。初回充電容量が410m
Ah/g、初回放電容量が370mAh/gで、初期充
放電効率は90%という結果が得られた。また、2回目
以後の充放電においても放電容量はほとんど変わらず、
優れたサイクル特性を示すなど高い電極性能を有してい
た。
The product powder thus prepared is added to an NMP (N-methyl-2-pyrrolidone) solution of polyvinylidene fluoride so that the mass ratio of the product powder to polyvinylidene fluoride is 95: 5. And knead it to a thickness of 20
A negative electrode foil was obtained by coating on a μm copper foil. After drying the negative electrode foil at 80 ° C. to evaporate NMP, 10 m
A negative electrode was formed by cutting out the m-side. In order to evaluate the electrode characteristics of the single electrode of the negative electrode, a three-electrode cell using lithium metal for the counter electrode and the reference electrode was used. LiClO 4 in a mixed solvent of ethylene carbonate and diethyl carbonate (mixed at a volume ratio of 1: 1) was 1 mol / l in the electrolytic solution.
Used at a ratio of 1. Regarding the charge / discharge test, constant current (0.1 mA
/ Cm 2 ). Potential range is 0V to 1.5V
(Based on lithium metal). Initial charge capacity is 410m
Ah / g, the initial discharge capacity was 370 mAh / g, and the initial charge / discharge efficiency was 90%. In addition, the discharge capacity hardly changes even after the second charge and discharge.
It had high electrode performance such as excellent cycle characteristics.

【0037】実施例2 コークス粉末200gとニッケル粉末800gを混合し
た後、黒鉛容器に入れ、これをタンマン炉でアルゴン気
流中で2200℃に昇温加熱し冷却した。反応後に固形
反応物を得た後、その表面部に析出した粒状化合物約5
0gを回収した。これを濃塩酸とフッ酸の1:1混合溶
液1リットルに入れ、室温で12時間保持した後に濾過
し、さらにこれを多量の水で洗浄濾過した後、120℃
12時間乾燥した。得られた中間生成物である粉末をジ
ェットミルにて粉砕し、空気分級機にて分級して平均粒
径38μmの粉末生成物20gを得た。この生成物の化
学分析による金属不純物の総計は1.9質量%であっ
た。また、この生成物について、実施例1と同様の方法
にて、4μm以上200μm未満の全粒子の数における
鱗片状粒子の割合を求めたところ、20%であった。
Example 2 After mixing 200 g of coke powder and 800 g of nickel powder, the mixture was placed in a graphite container, and this was heated to 2200 ° C. in an argon stream in a Tamman furnace and cooled. After obtaining a solid reactant after the reaction, about 5 granular compounds precipitated on the surface thereof
0 g was recovered. This was put into 1 liter of a 1: 1 mixed solution of concentrated hydrochloric acid and hydrofluoric acid, kept at room temperature for 12 hours, filtered, washed with a large amount of water, filtered, and then cooled to 120 ° C.
Dry for 12 hours. The obtained intermediate product powder was pulverized by a jet mill and classified by an air classifier to obtain 20 g of a powder product having an average particle size of 38 μm. The total amount of metal impurities by chemical analysis of this product was 1.9% by mass. Further, for this product, the proportion of flaky particles in the total number of particles of 4 μm or more and less than 200 μm was determined in the same manner as in Example 1, and it was 20%.

【0038】このようにして調製した炭素材料を実施例
1と同様の手法により、電極特性を評価した。その結
果、初回充電容量が400mAh/g、初回放電容量が
360mAh/gで、初期充放電効率は90%という結
果が得られた。また、2回目以後の充放電においても放
電容量はほとんど変わらず、優れたサイクル特性を示す
など高い電極性能を有していた。
The electrode properties of the carbon material thus prepared were evaluated in the same manner as in Example 1. As a result, the initial charging capacity was 400 mAh / g, the initial discharging capacity was 360 mAh / g, and the initial charging and discharging efficiency was 90%. Further, the discharge capacity was hardly changed even after the second charge and discharge, and the electrode exhibited high cycle performance and high electrode performance.

【0039】実施例3 製鉄プロセスの製鋼ダストとして粉末2000gを回収
した。これを濃塩酸10リットルに入れ、室温で12時
間保持した後に濾過し、さらにこれを多量の水で洗浄濾
過した後、120℃12時間乾燥した。得られた中間生
成物粉末をジェットミルにて粉砕し、空気分級機にて分
級して平均粒径40μmの粉末生成物800gを得た。
この生成物の化学分析による金属不純物の総計は2.1
質量%であった。また、この生成物について、実施例1
と同様の方法にて、4μm以上200μm未満の全粒子
の数における鱗片状粒子の割合を求めたところ、10%
であった。
Example 3 2000 g of powder was collected as steelmaking dust in the iron making process. This was put into 10 liters of concentrated hydrochloric acid, kept at room temperature for 12 hours, filtered, washed with a large amount of water, filtered and dried at 120 ° C. for 12 hours. The obtained intermediate product powder was pulverized by a jet mill and classified by an air classifier to obtain 800 g of a powder product having an average particle size of 40 μm.
The total amount of metal impurities by chemical analysis of this product was 2.1.
% By mass. In addition, this product was prepared in Example 1
The ratio of the flaky particles in the total number of particles of 4 μm or more and less than 200 μm was determined by the same method as described above.
Met.

【0040】このようにして調製した炭素材料を実施例
1と同様の手法により、電極特性を評価した。その結
果、初回充電容量が422mAh/g、初回放電容量が
370mAh/gで、初期充放電効率は89%という結
果が得られた。また、2回目以後の充放電においても放
電容量はほとんど変わらず、優れたサイクル特性を示す
など高い電極性能を有していた。
The electrode characteristics of the carbon material thus prepared were evaluated in the same manner as in Example 1. As a result, the initial charge capacity was 422 mAh / g, the initial discharge capacity was 370 mAh / g, and the initial charge / discharge efficiency was 89%. Further, the discharge capacity was hardly changed even after the second charge and discharge, and the electrode exhibited high cycle performance and high electrode performance.

【0041】実施例4 製鉄プロセスの製鋼ダストとして粉末10kgを回収し
た。これを濃塩酸50リットルに入れ、室温で12時間
保持した後に濾過し、さらにこれを多量の水で洗浄濾過
した後、120℃12時間乾燥した。得られた粉末をジ
ェットミルで粉砕した後に空気分級を行って、平均粒径
34μmの粉末生成物3.6kgを得た。この生成物の
化学分析による金属不純物の総計は2.1質量%であっ
た。また、この生成物について、実施例1と同様の方法
にて、4μm以上200μm未満の全粒子の数における
鱗片状粒子の割合を求めたところ、10%であった。
Example 4 10 kg of powder was recovered as steelmaking dust in the iron making process. This was put in 50 liters of concentrated hydrochloric acid, kept at room temperature for 12 hours, filtered, further washed and filtered with a large amount of water, and dried at 120 ° C. for 12 hours. The obtained powder was pulverized with a jet mill and then subjected to air classification to obtain 3.6 kg of a powder product having an average particle diameter of 34 μm. The total amount of metal impurities by chemical analysis of the product was 2.1% by mass. Further, for this product, the proportion of flaky particles in the total number of particles of 4 μm or more and less than 200 μm was determined in the same manner as in Example 1, and it was 10%.

【0042】このようにして調製した炭素材料を実施例
1と同様の手法により、電極特性を評価した。その結
果、初回充電容量が422mAh/g、初回放電容量が
378mAh/gで、初期充放電効率は90%という結
果が得られた。また、2回目以後の充放電においても放
電容量はほとんど変わらず、優れたサイクル特性を示す
など高い電極性能を有していた。
The electrode properties of the carbon material thus prepared were evaluated in the same manner as in Example 1. As a result, the initial charging capacity was 422 mAh / g, the initial discharging capacity was 378 mAh / g, and the initial charging and discharging efficiency was 90%. Further, the discharge capacity was hardly changed even after the second charge and discharge, and the electrode exhibited high cycle performance and high electrode performance.

【0043】比較例1 天然黒鉛をボールミルにて粉砕した後篩分級し、平均粒
径30μmの粉末を得た。この黒鉛の金属不純物の総計
は0.4質量%であった。また、この生成物について、
実施例1と同様の方法にて、4μm以上200μm未満
の全粒子の数における鱗片状粒子の割合を求めたとこ
ろ、100%であった。
Comparative Example 1 Natural graphite was pulverized by a ball mill and classified by sieving to obtain a powder having an average particle diameter of 30 μm. The total amount of metal impurities in the graphite was 0.4% by mass. Also, for this product:
The proportion of the flaky particles in the total number of particles of 4 μm or more and less than 200 μm was determined by the same method as in Example 1, and was found to be 100%.

【0044】この天然黒鉛を実施例1と同様の手法によ
り、電極特性を評価した。その結果、初回充電容量が4
10mAh/g、初回放電容量が349mAh/gで、
初期充放電効率は85%という結果が得られた。また、
2回目以後の充放電において、放電容量が徐々に減少
し、100回の充放電後の放電容量は実施例1〜4の場
合の半分程度になっていた。
The electrode characteristics of this natural graphite were evaluated in the same manner as in Example 1. As a result, the initial charge capacity is 4
10 mAh / g, the initial discharge capacity is 349 mAh / g,
The result was that the initial charge / discharge efficiency was 85%. Also,
In the charge and discharge after the second time, the discharge capacity gradually decreased, and the discharge capacity after 100 times of charge and discharge was about half of that in Examples 1 to 4.

【0045】比較例2 製鉄プロセスの製鋼ダストとして粉末1000gを回収
した。これを濃塩酸1リットルに入れ、室温で12時間
保持した後に濾過し、さらにこれを多量の水で洗浄濾過
した後、120℃12時間乾燥した。さらにこの粉末を
濃塩酸とフッ酸の1:1混合溶液1リットルに入れ、室
温で12時間保持した後に濾過し、これを多量の水で洗
浄濾過した後、120℃12時間乾燥した。得られた粉
末を乳鉢で粉砕した後、篩分級して平均粒径40μmの
粉末生成物20gを得た。この生成物の化学分析による
金属不純物の総計は0.5質量%であった。また、この
生成物について、実施例1と同様の方法にて、4μm以
上200μm未満の全粒子の数における鱗片状粒子の割
合を求めたところ、90%であった。
Comparative Example 2 1000 g of powder was collected as steelmaking dust in the iron making process. This was placed in 1 liter of concentrated hydrochloric acid, kept at room temperature for 12 hours, filtered, further washed and filtered with a large amount of water, and dried at 120 ° C. for 12 hours. Further, this powder was added to 1 liter of a 1: 1 mixed solution of concentrated hydrochloric acid and hydrofluoric acid, kept at room temperature for 12 hours, filtered, washed with a large amount of water, filtered and dried at 120 ° C. for 12 hours. The obtained powder was pulverized in a mortar and then sieved to obtain 20 g of a powder product having an average particle size of 40 μm. The total amount of metal impurities by chemical analysis of this product was 0.5% by mass. Further, with respect to this product, the proportion of flaky particles in the total number of particles having a size of 4 μm or more and less than 200 μm was determined in the same manner as in Example 1, and was found to be 90%.

【0046】このようにして調製した炭素材料を実施例
1と同様の手法により、電極特性を評価した。その結
果、初回充電容量が421mAh/g、初回放電容量が
355mAh/gで、初期充放電効率は84%という結
果が得られた。2回目以後の充放電においては、放電容
量はほとんど変わらないサイクル特性を示していた。
The electrode characteristics of the carbon material thus prepared were evaluated in the same manner as in Example 1. As a result, it was found that the initial charge capacity was 421 mAh / g, the initial discharge capacity was 355 mAh / g, and the initial charge / discharge efficiency was 84%. In the second and subsequent charging and discharging, the cycle capacity showed almost no change in the discharge capacity.

【0047】本実施例1〜4で得られた黒鉛材の性能を
比較例1〜2と比較すると、本発明の黒鉛材の方が、放
電容量、初期充放電効率、サイクル特性の電極特性は優
れていることが分かる。
Comparing the performance of the graphite materials obtained in Examples 1 to 4 with those of Comparative Examples 1 and 2, the graphite material of the present invention has better electrode characteristics such as discharge capacity, initial charge / discharge efficiency and cycle characteristics. It turns out that it is excellent.

【0048】[0048]

【発明の効果】本発明により、リチウム二次電池負極用
炭素材料として、天然黒鉛等の鱗片状黒鉛の最高水準の
放電容量もしくは黒鉛構造から決定される理論容量と同
程度の放電容量を持つと共に、かつ充電初期における副
反応に起因する不可逆容量が大きく、大きな充放電電流
下で使用した場合に高い放電容量が得られない等の鱗片
状黒鉛の問題を解決したリチウム二次電池用負極材料と
その製造方法並びにこれを用いたリチウム二次電池が工
業的に提供できる。
According to the present invention, a carbon material for a negative electrode of a lithium secondary battery has the highest discharge capacity of flaky graphite such as natural graphite or a discharge capacity similar to the theoretical capacity determined from the graphite structure. A negative electrode material for a lithium secondary battery that solves the problem of flaky graphite, such as having a large irreversible capacity due to a side reaction in the initial stage of charging and not being able to obtain a high discharge capacity when used under a large charge / discharge current. The manufacturing method and a lithium secondary battery using the same can be industrially provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の黒鉛の走査型電子顕微鏡写真であ
る。
FIG. 1 is a scanning electron micrograph of the graphite of the present invention.

【図2】 本発明の他の黒鉛の走査型電子顕微鏡写真で
ある。
FIG. 2 is a scanning electron micrograph of another graphite of the present invention.

【図3】 天然黒鉛の走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of natural graphite.

【図4】 図1の粒子形状の判定方法を説明するための
写真である。
FIG. 4 is a photograph for explaining a method of determining a particle shape in FIG. 1;

【図5】 図2の粒子形状の判定方法を説明するための
写真である。
FIG. 5 is a photograph for explaining a method of determining a particle shape in FIG. 2;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱田 健 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 莊司 浩雅 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G046 EA01 EA06 EB02 EB09 EC02 EC05 EC06 5H029 AJ03 AK03 AL07 AM03 AM04 AM05 AM07 CJ00 CJ30 HJ01 HJ05 HJ07 HJ08 5H050 AA08 AA19 BA17 CA08 CA09 CB08 DA03 FA19 GA00 GA05 GA29 HA05 HA07 HA08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ken Hamada 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Hiromasa Soji 20-1 Shintomi, Futtsu City, Chiba Prefecture New Japan 4G046 EA01 EA06 EB02 EB09 EC02 EC05 EC06 5H029 AJ03 AK03 AL07 AM03 AM04 AM05 AM07 CJ00 CJ30 HJ01 HJ05 HJ07 HJ08 5H050 AA08 AA19 BA17 CA08 CA05 GA05 GA03 GA03 GA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属と炭素の溶融状態の冷却過程に析出
した炭素を処理して得られる黒鉛であって、粒径4μm
以上200μm未満の鱗片状粒子の数が粒径4μm以上
200μm未満の全粒子の数に占める割合が80%以
下、かつ炭素含有量が90質量%以上、BET法による
比表面積が7m2/g以下、平均粒径が4μm以上20
0μm未満の黒鉛からなるリチウム二次電池負極用黒
鉛。
1. A graphite obtained by treating carbon precipitated in a cooling process in a molten state of metal and carbon, and having a particle diameter of 4 μm.
The ratio of the number of flaky particles having a particle size of not less than 200 μm to the total number of particles having a particle size of not less than 4 μm and less than 200 μm is 80% or less, the carbon content is 90% by mass or more, and the specific surface area by the BET method is 7 m 2 / g or less. Having an average particle size of 4 μm or more and 20
Graphite for a negative electrode of a lithium secondary battery comprising graphite having a size of less than 0 μm.
【請求項2】 20回タップ時のタップ密度が0.40
g/cm3以上、かつ300回タップ時のタップ密度が
0.55g/cm3以上である請求項1に記載のリチウ
ム二次電池負極用黒鉛。
2. The tap density at the time of 20 taps is 0.40.
2. The graphite for a negative electrode of a lithium secondary battery according to claim 1, wherein the graphite has a tap density of 0.5 g / cm 3 or more and a tap density at the time of 300 taps of 0.55 g / cm 3 or more.
【請求項3】 請求項1または2に記載のリチウム二次
電池負極用黒鉛の製造方法であって、金属と炭素の溶融
状態の冷却過程に析出した炭素を、炭素含有量が90質
量%以上に達するまで高純度化処理を行った後に、イン
ペラーミル、ジェットミル、レイモンドミルまたはボー
ルミルより選ばれた粉砕機を用いた粉砕と空気分級を行
うことを特徴とするリチウム二次電池用負極用黒鉛の製
造方法。
3. The method for producing graphite for a negative electrode of a lithium secondary battery according to claim 1, wherein the carbon deposited in the cooling process of the molten state of metal and carbon has a carbon content of 90% by mass or more. , And then pulverization using a pulverizer selected from an impeller mill, a jet mill, a Raymond mill or a ball mill, and air classification, the graphite for a negative electrode for a lithium secondary battery. Manufacturing method.
【請求項4】 前記金属が、シリコン、鉄、ニッケルま
たはコバルトより選ばれた1種または2種以上の金属で
ある請求項3に記載のリチウム二次電池負極用黒鉛の製
造方法。
4. The method for producing graphite for a negative electrode of a lithium secondary battery according to claim 3, wherein the metal is at least one metal selected from silicon, iron, nickel and cobalt.
【請求項5】 前記金属と炭素の溶融状態が、製鉄プロ
セスの溶融銑鉄における鉄と炭素の固溶状態であること
を特徴とする請求項3に記載のリチウム二次電池負極用
黒鉛の製造方法。
5. The method for producing graphite for a negative electrode of a lithium secondary battery according to claim 3, wherein the molten state of the metal and carbon is a solid solution state of iron and carbon in molten pig iron in an iron making process. .
【請求項6】 正極活物質、負極活物質及び非水系電解
質を含有するリチウム二次電池において、請求項1また
は2に記載の黒鉛を負極活物質として用いてなることを
特徴とするリチウム二次電池。
6. A lithium secondary battery containing a positive electrode active material, a negative electrode active material and a non-aqueous electrolyte, wherein the graphite according to claim 1 or 2 is used as a negative electrode active material. battery.
JP2000024180A 2000-02-01 2000-02-01 Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery Withdrawn JP2001216964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024180A JP2001216964A (en) 2000-02-01 2000-02-01 Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024180A JP2001216964A (en) 2000-02-01 2000-02-01 Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001216964A true JP2001216964A (en) 2001-08-10

Family

ID=18550218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024180A Withdrawn JP2001216964A (en) 2000-02-01 2000-02-01 Graphite for lithium secondary battery negative electrode and its manufacturing method as well as lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001216964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol

Similar Documents

Publication Publication Date Title
EP2104163B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
EP2492243B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
KR101858763B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP4945029B2 (en) Material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
EP2477258B1 (en) Cathode active material, cathode and lithium battery including cathode active material, and method of preparing the cathode active material
WO2017038320A1 (en) Li-CONTAINING SILICON OXIDE POWER AND METHOD FOR PRODUCING SAME
US9837658B2 (en) Silicon-containing particle, negative-electrode material for use in non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN107408689B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and secondary battery
KR20170048210A (en) Negative electrode active material and lithium secondary battery comprising the same
US11050055B2 (en) Lithium-ion batteries
US9406933B2 (en) Negative active material, negative electrode and lithium battery including negative active material, and method of manufacturing negative active material
EP1026765B1 (en) Positive active material for lithium secondary battery and method of manufacturing the same
US20160181601A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP2000182617A (en) Carbon material for lithium secondary battery electrode and its manufacture, and lithium secondary battery
KR102237949B1 (en) Negative electrode active material particle and method of preparing for the same
JP2012079470A (en) Nonaqueous electrolyte secondary battery
WO2014038698A1 (en) Active substance for use in negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery and lithium ion secondary battery using same
KR20150107674A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JPH08339806A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP2004063411A (en) Complex graphite material, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2001357849A (en) Negative electrode material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2004214055A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery
EP4181236A1 (en) Negative electrode active material, and negative electrode and secondary battery comprising same
JPH07326356A (en) Lithium transition metal composite oxide powder and manufacture thereof, lithium secondary battery positive electrode and lithium secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403