JP2001212643A - Micro alloying steel and micro alloying forging - Google Patents

Micro alloying steel and micro alloying forging

Info

Publication number
JP2001212643A
JP2001212643A JP2000022367A JP2000022367A JP2001212643A JP 2001212643 A JP2001212643 A JP 2001212643A JP 2000022367 A JP2000022367 A JP 2000022367A JP 2000022367 A JP2000022367 A JP 2000022367A JP 2001212643 A JP2001212643 A JP 2001212643A
Authority
JP
Japan
Prior art keywords
steel
fatigue
micro alloying
forging
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000022367A
Other languages
Japanese (ja)
Inventor
Masato Kurita
真人 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000022367A priority Critical patent/JP2001212643A/en
Publication of JP2001212643A publication Critical patent/JP2001212643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a micro alloying steel and a micro alloying forging using the micro alloying steel which can obtain a higher fatigue limit through residual stress generated by processing the fatigue risk section after forging is finished. SOLUTION: The micro alloying steel has a characteristic whose mechanical characteristic parameter fRX represented by the following formula is more than 500 MPa and the micro alloying forging performs plastic forming by generating compressed residual stress to the fatigue risk section of the forging made from the micro alloying steel: fRX=31+0.6542YS+9.931/uE1-TS-0.8049 YS-59.29/3.075+64.70uE1 (1) Here are factors involved: YS:0.2% proof stress (unit: MPa), TS: tensile strength (unit: MPa), uE1: uniform elongation (unit: nondimensional).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非調質鋼およびこ
の非調質鋼を用いた非調質鍛造品に関し、さらに詳しく
は、鍛造後の製品の疲労危険部に十分な量の圧縮の残留
応力を発生させる加工を施すことによって、高い疲労限
度が得られる非調質鋼およびこの非調質鋼を用いた非調
質鍛造品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-heat-treated steel and a non-heat-treated forged product using the non-heat-treated steel. The present invention relates to a non-heat treated steel capable of obtaining a high fatigue limit by performing processing for generating a residual stress, and a non-heat treated forged product using the non-heat treated steel.

【0002】[0002]

【従来の技術】自動車用のクランク軸等を鍛造法により
製造する場合には、通常つぎのような製造方法が採用さ
れている。まず、素材である機械構造用炭素鋼などの鋼
片を熱間鍛造し、ほぼ製品の形状に成形する。つぎに焼
入れ焼戻しまたは焼ならし処理などの調質処理を行い、
さらに機械加工を施して所定の寸法に仕上げる。
2. Description of the Related Art When a crankshaft or the like for an automobile is manufactured by a forging method, the following manufacturing method is usually employed. First, a steel slab such as carbon steel for machine structure, which is a raw material, is hot forged and formed into a substantially product shape. Next, perform tempering treatment such as quenching and tempering or normalizing treatment,
Further, it is machined and finished to a predetermined size.

【0003】この調質処理は、鍛造品の疲労破壊を防止
することを目的とした処理である。すなわち、金属組織
は、焼ならしを行なうと微細なオ−ステナイトから変態
した微細なフェライトとパ−ライトの混合組織となり、
焼入れ焼戻しを行なうと微細なオーステナイトから変態
した極めて微細なラス状フェライトと炭化物とからなる
マルテンサイトまたはベイナイト組織となる。このよう
な金属組織とすることによって、疲労限度(疲労破壊が
起こる限界の応力)を向上させることができる。しかし
ながら、この調質処理は処理コストが高いという欠点が
ある。
[0003] This refining treatment is a treatment for the purpose of preventing fatigue fracture of a forged product. That is, the metal structure becomes a mixed structure of fine ferrite and pearlite transformed from fine austenite after normalizing,
When quenching and tempering are performed, a martensite or bainite structure composed of carbide and extremely fine lath-like ferrite transformed from fine austenite is obtained. With such a metal structure, the fatigue limit (the limit stress at which fatigue fracture occurs) can be improved. However, this refining process has a disadvantage that the processing cost is high.

【0004】このため、より低いコストで疲労限度を向
上させる方法が検討されており、調質処理を省略するプ
ロセスが注目されている。すなわち、非調質鋼を用いる
鍛造品の製造方法である。特に、自動車用の鍛造品につ
いて、積極的に非調質鋼の採用が進められている。
[0004] For this reason, a method of improving the fatigue limit at a lower cost has been studied, and a process of omitting the refining process has attracted attention. That is, this is a method for manufacturing a forged product using non-heat treated steel. In particular, the use of non-heat treated steel has been actively promoted in forgings for automobiles.

【0005】一般に鍛造工程では、1100℃以上に加
熱した鋼片を鍛造し、1000℃以上の温度で鍛造を終
了して、放冷する処理が採られる。このため、調質処理
を行うことを前提とした鋼を鍛造し、鍛造後の調質処理
を省略した場合、得られる製品の金属組織は、巨大な旧
オ−ステナイト粒界に沿った薄いネット状フェライトと
その残りの部分のパ−ライト相で構成された組織とな
る。したがって、金属組織が粗い。また、フェライト相
の体積率は、同じ鋼の素材を鍛造し、焼入れ焼戻しまた
は焼ならし処理する調質品に比べると低い傾向がある。
非調質鋼のフェライト相の体積率が低いのは、鍛造後オ
−ステナイト粒径が大きい状態から冷却されるので焼入
れが起こりやすく、フェライト変態が抑制されることに
起因している。このような金属組織の場合、十分に高い
疲労限度を得ることができない。
Generally, in the forging process, a steel slab heated to 1100 ° C. or more is forged, the forging is finished at a temperature of 1000 ° C. or more, and the steel is allowed to cool. For this reason, when forging steel on the premise of performing temper treatment and omitting temper treatment after forging, the metal structure of the obtained product is a thin net along the huge old austenite grain boundaries. It is a structure composed of ferrite and the rest of the pearlite phase. Therefore, the metal structure is coarse. Further, the volume ratio of the ferrite phase tends to be lower than that of a refined product in which the same steel material is forged and quenched and tempered or normalized.
The low volume fraction of the ferrite phase of the non-heat treated steel is due to the fact that after forging, the steel is cooled from a large austenite grain size, so that quenching is likely to occur and the ferrite transformation is suppressed. In the case of such a metal structure, a sufficiently high fatigue limit cannot be obtained.

【0006】このように、例えば自動車部品用鋼として
広く使われているJIS S43CないしS53C機械
構造用鋼などの素材を基に、鍛造後の調質処理を省略す
る方法で製造した製品は、同じ素材を基に鍛造後、調質
処理を施す方法で製造した製品に比べて、疲労限度が低
いのが実状である。
As described above, products manufactured by a method of omitting tempering treatment after forging based on materials such as JIS S43C to S53C mechanical structural steel widely used as steel for automobile parts are the same. The reality is that the fatigue limit is lower than that of products manufactured by a method of performing forging and tempering based on the raw material.

【0007】非調質鋼からなる鍛造品の疲労限度を向上
させる対策も検討されている。例えば特開平7−102
340号公報には、強力な析出硬化元素であるV(バナ
ジウム)を0.2〜0.7重量%含む鋼を熱間鍛造した
後放冷し、金属組織の90%以上がフェライトとパーラ
イト相となるようにした後、さらに時効処理を行うこと
により、非調質鋼製品を製造する方法が開示されてい
る。
[0007] Measures for improving the fatigue limit of a forged product made of non-heat treated steel have been studied. For example, JP-A-7-102
No. 340 discloses that a steel containing 0.2 to 0.7% by weight of V (vanadium), which is a strong precipitation hardening element, is hot forged and then allowed to cool, and 90% or more of the metal structure has a ferrite and pearlite phase. A method of manufacturing a non-heat-treated steel product by further performing an aging treatment after the aging treatment is disclosed.

【0008】[0008]

【発明が解決しようとする課題】特開平7−10234
0号公報に開示されている発明は、表面に加工を加えな
い母材の疲労限度の向上を狙ったものであり、ロール加
工やショットピーニング等の加工を行った塑性加工材の
疲労限度については考慮されていない。
Problems to be Solved by the Invention Japanese Patent Laid-Open No. 7-10234
The invention disclosed in Japanese Patent Publication No. 0 is aimed at improving the fatigue limit of a base material that is not subjected to surface processing, and the fatigue limit of a plastically processed material that has been subjected to processing such as roll processing or shot peening. Not considered.

【0009】母材の疲労限度と塑性加工材の疲労限度に
及ぼす因子は、その破壊のメカニズムが相違するため全
く異なるものである。したがって、特開平7−1023
40号公報に開示されている方法では、本発明が目的と
する塑性加工材の疲労限度に優れる非調質鋼が得られな
い。これは、母材の疲労限度を高めるには、疲労による
亀裂の発生を抑制することが重要であるのに対し、塑性
加工材の疲労限度を高めるには、疲労による亀裂の進展
を抑制することが重要となるからである。
Factors that affect the fatigue limit of the base metal and the fatigue limit of the plastically worked material are completely different due to different fracture mechanisms. Therefore, Japanese Patent Application Laid-Open No. 7-1023
According to the method disclosed in Japanese Patent Publication No. 40, non-heat treated steel excellent in fatigue limit of a plastically worked material aimed at by the present invention cannot be obtained. In order to increase the fatigue limit of the base material, it is important to suppress the generation of cracks due to fatigue. On the other hand, to increase the fatigue limit of plastically processed materials, it is necessary to suppress the growth of cracks due to fatigue. Is important.

【0010】母材においては、圧縮残留応力による亀裂
の進展を抑制する効果が小さいため、表面に一旦亀裂が
生じると、亀裂は容易に進展し破壊に至る。したがっ
て、亀裂の起点となる軟質なフェライトを強化するSi
やVを添加することにより、疲労による亀裂の発生を抑
制することが疲労限度向上に有効である。
In the base material, since the effect of suppressing the growth of the crack due to the residual compressive stress is small, once the crack is generated on the surface, the crack easily grows and leads to breakage. Therefore, Si which strengthens the soft ferrite which is the starting point of the crack
It is effective to suppress the generation of cracks due to fatigue by adding V and V to improve the fatigue limit.

【0011】一方、塑性加工材においては、塑性加工に
より表面に高い圧縮残留応力が付与されるため、塑性加
工材表面に亀裂が発生しても、亀裂の進展は抑えられ破
壊に至るのが抑制される。したがって、塑性加工により
付与される圧縮残留応力の程度をより高くすることが、
疲労による亀裂の進展を抑制するのに有効となるのであ
る。
On the other hand, in a plastically processed material, a high compressive residual stress is applied to the surface by plastic working. Therefore, even if a crack is generated on the surface of the plastically processed material, the propagation of the crack is suppressed and the fracture is prevented. Is done. Therefore, to increase the degree of compressive residual stress imparted by plastic working,
This is effective in suppressing the growth of cracks due to fatigue.

【0012】ここで、圧縮残留応力の程度は塑性加工条
件に当然依存するが、同一の塑性加工条件であっても付
与し得る圧縮残留応力は材料によって顕著に異なる。し
かし、塑性加工材の疲労限度を高めるために好適な機械
特性についてはこれまで全く検討されなかった。
Here, the degree of the compressive residual stress naturally depends on the plastic working conditions, but even under the same plastic working conditions, the compressive residual stress that can be applied is significantly different depending on the material. However, there has been no study on mechanical properties suitable for increasing the fatigue limit of a plastically processed material.

【0013】本発明は、高い疲労限度が得られる非調質
鋼およびこの非調質鋼を用いた非調質鍛造品を提供する
ことを目的としている。
An object of the present invention is to provide a non-heat treated steel from which a high fatigue limit can be obtained and a non-heat treated forged product using the non-heat treated steel.

【0014】[0014]

【課題を解決するための手段】本発明者は、鍛造後の製
品の疲労危険部(疲労亀裂が発生しやすい応力集中部、
例えば切欠き底)の表層部に残留応力を発生させる加工
を施すことに着目し、塑性加工により付与される圧縮残
留応力と母材の機械特性との関係についてFEM弾塑性
解析を行い、現在広く使用されている調質鋼の疲労限度
と様々な機械特性を有する非調質鋼の塑性加工材の疲労
限度との関係を求めて疲労試験を行うことにより、塑性
加工材の疲労限度に及ぼす母材の機械特性の影響を詳細
に検討した。その結果、以下の知見を得た。ここで、表
層部とは、加工の種類及び程度によって異なるが、ロー
ル加工においては表面から1mmの深さまでのことをい
う。
SUMMARY OF THE INVENTION The present inventor has proposed a fatigue-risk portion of a forged product (a stress concentration portion where fatigue cracks are likely to occur,
Focusing on the processing to generate residual stress on the surface layer (for example, the notch bottom), FEM elasto-plastic analysis was performed on the relationship between the compressive residual stress applied by plastic working and the mechanical properties of the base material, By performing a fatigue test to determine the relationship between the fatigue limit of the tempered steel used and the fatigue limit of the plastic processed material of non-heat treated steel having various mechanical properties, the effect of the mother limit on the fatigue limit of the plastic processed material The effect of the mechanical properties of the material was studied in detail. As a result, the following findings were obtained. Here, the surface layer portion varies depending on the type and degree of processing, but refers to a depth of 1 mm from the surface in roll processing.

【0015】塑性加工材の疲労限度は、母材の0.2%
耐力YS(単位:MPa、以下YSともいう)、引張強
度TS(単位:MPa、以下TSともいう)、一様伸び
uEl(単位:無次元、以下uElともいう)により下
記(1)式で規定されるパラメータfRX(以下、fR
Xともいう)と相関があり、fRXを500MPa超と
することにより、塑性加工材の疲労限度を調質鋼と同等
以上とすることができる。
[0015] The fatigue limit of the plastic material is 0.2% of the base metal.
The proof stress YS (unit: MPa, hereinafter also referred to as YS), tensile strength TS (unit: MPa, hereinafter also referred to as TS), uniform elongation uEl (unit: non-dimensional, hereinafter also referred to as uEl) are defined by the following formula (1). Parameter fRX (hereinafter, fR
X), and by setting fRX to more than 500 MPa, the fatigue limit of the plastically processed material can be equal to or higher than that of the tempered steel.

【0016】[0016]

【数2】 (Equation 2)

【0017】本発明は、上記知見に基づいて完成させた
ものであり、その要旨は以下の(A)及び(B)にあ
る。
The present invention has been completed based on the above findings, and the gist of the invention lies in the following (A) and (B).

【0018】(A)下記(1)式で規定される機械特性
パラメータfRXが500MPa超であることを特徴と
する非調質鋼。
(A) A non-heat treated steel characterized by having a mechanical property parameter fRX defined by the following equation (1) exceeding 500 MPa.

【0019】[0019]

【数3】 (Equation 3)

【0020】ここで、 YS :0.2%耐力 (単位:MPa) TS :引張強度 (単位:MPa) uEl:一様伸び (単位:無次元) である。Here, YS: 0.2% proof stress (unit: MPa) TS: tensile strength (unit: MPa) uEl: uniform elongation (unit: non-dimensional).

【0021】(B)(A)に記載の非調質鋼からなる鍛
造品であって、疲労危険部の表層部に加工により圧縮の
残留応力を発生させたことを特徴とする非調質鍛造品。
(B) A forged product made of the non-heat-treated steel according to (A), wherein a compressive residual stress is generated in the surface layer of the fatigue-risk portion by processing. Goods.

【0022】[0022]

【発明の実施の形態】以下、本発明者が行った解析及び
試験方法について詳述し、併せて本発明の非調質鋼及び
非調質鍛造品について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the analysis and test methods performed by the present inventors will be described in detail, and the non-heat treated steel and the non-heat treated forged product of the present invention will be described.

【0023】本発明者は、塑性加工により付与される圧
縮残留応力と母材の機械特性との関係を調査するため
に、塑性加工方法として最も実用的なロール加工をシミ
ュレートしたFEM弾塑性解析を行った。以下、その条
件を詳細に述べる。
In order to investigate the relationship between the compressive residual stress imparted by plastic working and the mechanical properties of the base material, the present inventor has conducted an FEM elasto-plastic analysis simulating the most practical roll working as a plastic working method. Was done. Hereinafter, the conditions will be described in detail.

【0024】図2は、ロール加工の一実施態様とそれを
FEM弾塑性解析用にモデル化したモデルを示し、図2
(a)は実際のロール加工の一実施態様を示す概要図で
あり、図2(b)はロール加工をロールの加圧負荷と加
圧除荷との繰り返しと等価であるとみなしてモデル化し
たFEM弾塑性解析用モデルを示す模式図である。
FIG. 2 shows an embodiment of the roll working and a model obtained by modeling it for FEM elasto-plastic analysis.
FIG. 2A is a schematic view showing one embodiment of actual roll processing, and FIG. 2B is modeled on the assumption that roll processing is equivalent to repetition of pressing and unloading of rolls. It is a schematic diagram which shows the model for FEM elastic-plastic analysis.

【0025】同図(a)に示すように、実際のロール加
工の一実施態様においては、バックアップロール3によ
り支持された試験片1の疲労危険部である切欠き底6に
ロール2を押圧し、試験片1とロール2とを転がり接触
させることにより表層部にロール加工が行われる。
As shown in FIG. 2A, in one embodiment of the actual roll processing, the roll 2 is pressed against the notch bottom 6 which is a fatigue-risk part of the test piece 1 supported by the backup roll 3. Then, the rolling process is performed on the surface layer portion by bringing the test piece 1 and the roll 2 into rolling contact.

【0026】このように、ロール加工は実際には2物体
間の転がり接触となるが、これを計算でシミュレートす
るのは困難である。そこで、試験材のロール加工部の一
部に着目すると、ロール加工は試験片1へのロール2の
加圧負荷と加圧除荷との繰り返しと等価であるとみなす
ことができるので、軸対称である試験片1とロール2と
の転がり接触を、同図(b)に示すように、曲率の異な
る試験片モデル4とロールモデル5との加圧負荷と加圧
除荷との繰り返し接触モデルとしてFEM弾塑性解析を
行った。
As described above, the roll processing is actually rolling contact between two objects, but it is difficult to simulate this by calculation. Therefore, focusing on a part of the roll processing portion of the test material, the roll processing can be regarded as being equivalent to the repetition of the pressing load of the roll 2 on the test piece 1 and the pressing unloading. The rolling contact between the test piece 1 and the roll 2 is a repetitive contact model of pressurizing and unloading the test piece model 4 and the roll model 5 having different curvatures as shown in FIG. And FEM elasto-plastic analysis was performed.

【0027】試験片1及びロール2は平面歪要素とし、
要素数を661、節点数を744と仮定した。また、ロ
ール1は完全弾性体、試験材2は弾塑性体とし、ヤング
率を205.8GPa、ポアソン比を0.3とした。試
験片とロールの接触については、接触対を定義して摩擦
係数を0.3とした。
The test piece 1 and the roll 2 are plane strain elements,
It was assumed that the number of elements was 661 and the number of nodes was 744. The roll 1 was a completely elastic body, the test material 2 was an elasto-plastic body, the Young's modulus was 205.8 GPa, and the Poisson's ratio was 0.3. Regarding the contact between the test piece and the roll, a contact pair was defined and the coefficient of friction was set to 0.3.

【0028】次に、母材の機械特性の影響を確認するた
めに、試験片の機械特性として、YP、TS、uElに
ついて、YP:248〜529MPa、TS:515〜
1141MPa、uEl:0.078〜0.238の範
囲でYP、TS、uElの組み合わせを変えた20種類
のモデルを設定した。
Next, in order to confirm the effect of the mechanical properties of the base material, YP, TS, and uEl were used as the mechanical properties of the test piece, YP: 248 to 529 MPa, TS: 515 to 515 MPa.
1141 MPa, uEl: Twenty types of models in which the combination of YP, TS, and uEl were changed in the range of 0.078 to 0.238 were set.

【0029】解析のステップとして、実際のロール加工
を模して、ロールの加圧負荷と加圧除荷とを10回繰り
返した。1回目の加圧負荷条件は、加圧力を2.94k
Nとし、2回目以降の加圧負荷条件は、加圧負荷時のロ
ール荷重点の変位量が、1回目の加圧負荷時の変位量と
同一となるようにした。
As an analysis step, a pressurizing load and a pressurizing unloading of the roll were repeated 10 times to simulate actual roll processing. The first pressurizing load condition is as follows:
N and the second and subsequent pressurizing load conditions were such that the displacement amount at the roll load point under the pressurizing load was the same as the displacement amount under the first pressurizing load.

【0030】FEM弾塑性解析の結果、図2に示す切欠
き底6の表層部に試験片軸方向の圧縮残留応力が発生す
ることが判明した。このピーク値をモデルにおける最大
圧縮残留応力σRmax(単位:MPa)とすると、最小自
乗法により近似した結果、σRmaxは下記(2)式で表さ
れた。
As a result of the FEM elastic-plastic analysis, it was found that a compressive residual stress was generated in the axial direction of the test piece in the surface layer of the notch bottom 6 shown in FIG. Assuming that this peak value is the maximum compressive residual stress σRmax (unit: MPa) in the model, as a result of approximation by the least square method, σRmax was expressed by the following equation (2).

【0031】[0031]

【数4】 (Equation 4)

【0032】ここで、疲労限度向上に有効な圧縮残留応
力は負であるので、符号を反転したものを機械特性パラ
メータfRX(単位:MPa)として下記(1)式に示
すように定義した。
Here, since the compressive residual stress effective for improving the fatigue limit is negative, the one whose sign is inverted is defined as the mechanical characteristic parameter fRX (unit: MPa) as shown in the following equation (1).

【0033】[0033]

【数5】 (Equation 5)

【0034】次に、前記加工硬化特性パラメータfRX
と塑性加工材の疲労限度との関係を調査するために、種
々の化学組成を有する供試鋼を用いて、母材の引張試験
とロール加工による塑性加工材の疲労試験を行った。ま
た、比較のために、クランク軸用途に一般に適用されて
いるS48C機械構造用鋼についても同様の試験を行っ
た。
Next, the work hardening characteristic parameter fRX
In order to investigate the relationship between the steel and the fatigue limit of the plastically worked material, a tensile test of the base metal and a fatigue test of the plastically worked material by roll working were performed using test steels having various chemical compositions. For comparison, a similar test was also performed on S48C steel for machine structural use generally applied to crankshaft applications.

【0035】表1に、試験に用いた供試鋼及びS48C
機械構造用鋼の代表成分の化学組成を示す。
Table 1 shows the test steels and S48C used in the test.
The chemical composition of the representative component of the steel for machine structural use is shown.

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示す供試鋼(番号:X1〜X10)
及びS48C機械構造用鋼(番号:S48C−QT)
を、50kg大気中溶解炉で溶製して鋳造した後に、1
250℃まで加熱し、900℃以上の温度域で直径30
mmの丸棒に熱間鍛造後放冷した。S48C機械構造用
鋼については、その後、860℃水焼入れ、560℃焼
戻しのQT処理(焼入れ焼戻し処理)を行った。
Test steels shown in Table 1 (Nos .: X1 to X10)
And S48C steel for machine structural use (No .: S48C-QT)
Is cast in a 50 kg air melting furnace and cast.
Heated to 250 ° C, with a diameter of 30
It was left to cool after hot forging into a round bar of mm. Thereafter, the S48C steel for machine structural use was subjected to QT treatment (quenching and tempering treatment) of 860 ° C. water quenching and 560 ° C. tempering.

【0038】これらの丸棒から、JIS14A号試験片
を採取して引張試験を行い、得られた機械特性値から前
記(1)式により機械特性パラメータfRXを求めた。
From these round bars, JIS No. 14A test pieces were sampled and subjected to a tensile test. From the obtained mechanical property values, a mechanical property parameter fRX was obtained from the above equation (1).

【0039】表2に、供試鋼及びS48C機械構造用鋼
の機械特性YS、TS、uEl及び機械特性パラメータ
fRXを示す。
Table 2 shows mechanical properties YS, TS, uEl and mechanical property parameters fRX of the test steel and the S48C mechanical structural steel.

【0040】[0040]

【表2】 [Table 2]

【0041】また、前記丸棒から、切欠き小野式回転曲
げ疲労試験片を採取して疲労試験を行った。
A notched Ono-type rotating bending fatigue test piece was sampled from the round bar and subjected to a fatigue test.

【0042】図3は、切欠き小野式回転曲げ疲労試験片
の形状を示す図であり、図3(a)は疲労試験片の形状
を示す平面図、図3(b)は(a)に示すA部(切欠き
部)の形状を示す拡大図である。
FIG. 3 is a diagram showing the shape of a notched Ono-type rotating bending fatigue test piece. FIG. 3 (a) is a plan view showing the shape of the fatigue test piece, and FIG. It is an enlarged view which shows the shape of the A section (notch part) shown.

【0043】供試鋼については、疲労試験に先立ち疲労
危険部である切欠き部の表層部にロール加工を施した。
ロール加工条件は、ロール荷重:4.9kN、ヘルツ面
圧:4.4GPa、ロール回数:10回とした。疲労試
験方法は、小野式回転曲げ疲労試験とし、大気中室温
下、繰り返し速度50Hzで行った。そして、破断繰り
返し数が107回となる公称応力振幅を疲労限度とし
た。
For the test steel, the surface layer of the notch, which is a fatigue-risk part, was rolled prior to the fatigue test.
Roll processing conditions were as follows: roll load: 4.9 kN, Hertzian surface pressure: 4.4 GPa, number of rolls: 10 times. The fatigue test method was the Ono-type rotary bending fatigue test, which was performed at room temperature in the atmosphere at a repetition rate of 50 Hz. Then, the nominal stress amplitude breaking number of repetitions of 10 7 times was the fatigue limit.

【0044】図1は、機械特性パラメータfRXと疲労
限度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the mechanical characteristic parameter fRX and the fatigue limit.

【0045】同図に示すように、機械特性パラメータf
RXと疲労限度とは良好な相関があり、fRXを500
MPa超とすることにより調質鋼であるS48C機械構
造用鋼のQT処理材と同等以上の疲労限度が得られた。
As shown in FIG.
There is a good correlation between RX and fatigue limit, and fRX is 500
By exceeding MPa, a fatigue limit equal to or higher than that of the QT treated material of S48C mechanical structural steel, which is a tempered steel, was obtained.

【0046】供試鋼X1〜X3は、表2に示すように、
fRXが500MPa超であり、調質鋼であるS48C
機械構造用鋼のQT処理材と同等以上の高い疲労限度を
示している。
As shown in Table 2, the test steels X1 to X3
S48C which has a fRX exceeding 500 MPa and is a tempered steel
It shows a high fatigue limit equal to or higher than that of the QT treated material for machine structural steel.

【0047】なお、疲労危険部の表層部に施す加工は、
残留応力を発生させることができる加工であれば、如何
なる加工方法でもよい。例えば、ロール加工、ショット
ブラスト加工である。これらの加工方法のなかでも、ロ
ール加工がもっとも実用的であり好ましい。
The processing to be performed on the surface layer of the fatigue-risk part is as follows:
Any processing method may be used as long as it can generate residual stress. For example, roll processing and shot blast processing. Among these processing methods, roll processing is the most practical and preferable.

【0048】[0048]

【発明の効果】本発明の非調質鋼からなる鍛造品であっ
て、少なくとも疲労危険部の表層部に残留応力を発生さ
せるための加工を施した本発明の非調質鍛造品は、疲労
危険部の疲労限度が高いので、クランクシャフトなどの
鍛造品の耐久性を高めることができる。また、調質処理
を必要としないので、製造コストが安く、製造工程も簡
素化できる。
The forged product made of the non-heat treated steel of the present invention, which has been subjected to processing for generating residual stress at least on the surface layer of the fatigue-risk portion, has a high fatigue strength. Since the danger zone has a high fatigue limit, the durability of a forged product such as a crankshaft can be enhanced. Further, since no refining treatment is required, the manufacturing cost is low and the manufacturing process can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】機械特性パラメータfRXと疲労限度との関係
を示すグラフである。
FIG. 1 is a graph showing a relationship between a mechanical characteristic parameter fRX and a fatigue limit.

【図2】ロール加工の実態様をFEM弾塑性解析用にモ
デル化した内容を説明する説明図であり、(a)はロー
ル加工の実態様を示す概要図であり、(b)はFEM弾
塑性解析を行うために(a)のロール加工の実態様をモ
デル化したモデル図である。
FIGS. 2A and 2B are explanatory diagrams for explaining the contents of modeling the actual mode of roll processing for FEM elasto-plastic analysis, wherein FIG. 2A is a schematic diagram illustrating the actual mode of roll processing, and FIG. It is a model figure which modeled a real mode of roll processing of (a) for performing plastic analysis.

【図3】切欠き小野式回転曲げ疲労試験片の形状を示す
図であり、(a)は疲労試験片の形状を示す平面図であ
り、(b)は(a)に示すA部(切欠き部)の形状を示
す拡大図である。
3A and 3B are diagrams showing the shape of a notched Ono-type rotating bending fatigue test piece, in which FIG. 3A is a plan view showing the shape of the fatigue test piece, and FIG. It is an enlarged view which shows the shape of a (missing part).

【符号の説明】[Explanation of symbols]

1:試験片 2:ロール 3:バックアップロール 4:試験片モデル 5:ロールモデル 6:切欠き底 1: Test piece 2: Roll 3: Backup roll 4: Test piece model 5: Roll model 6: Notch bottom

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記(1)式で規定される機械特性パラ
メータfRXが500MPa超であることを特徴とする
非調質鋼。 【数1】 ここで、 YS :0.2%耐力 (単位:MPa) TS :引張強度 (単位:MPa) uEl:一様伸び (単位:無次元) である。
1. A non-heat treated steel characterized by having a mechanical property parameter fRX defined by the following equation (1) exceeding 500 MPa. (Equation 1) Here, YS: 0.2% proof stress (unit: MPa) TS: tensile strength (unit: MPa) uEl: uniform elongation (unit: non-dimensional).
【請求項2】 請求項1に記載の非調質鋼からなる鍛造
品であって、疲労危険部の表層部に加工により圧縮の残
留応力を発生させたことを特徴とする非調質鍛造品。
2. A forged product made of the non-heat treated steel according to claim 1, wherein a residual stress of compression is generated in a surface portion of the fatigue-risk portion by processing. .
JP2000022367A 2000-01-31 2000-01-31 Micro alloying steel and micro alloying forging Pending JP2001212643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000022367A JP2001212643A (en) 2000-01-31 2000-01-31 Micro alloying steel and micro alloying forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000022367A JP2001212643A (en) 2000-01-31 2000-01-31 Micro alloying steel and micro alloying forging

Publications (1)

Publication Number Publication Date
JP2001212643A true JP2001212643A (en) 2001-08-07

Family

ID=18548680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000022367A Pending JP2001212643A (en) 2000-01-31 2000-01-31 Micro alloying steel and micro alloying forging

Country Status (1)

Country Link
JP (1) JP2001212643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104552A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp Automotive undercarriage parts with excellent fatigue characteristic, and method for improving fatigue characteristic thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104552A (en) * 2004-10-08 2006-04-20 Nippon Steel Corp Automotive undercarriage parts with excellent fatigue characteristic, and method for improving fatigue characteristic thereof

Similar Documents

Publication Publication Date Title
JP5693126B2 (en) Coil spring and manufacturing method thereof
JPWO2004085685A1 (en) Manufacturing method of high strength spring
JP2001062639A (en) High strength bolt excellent in delayed fracture resistance and manufacture thereof
JP6053746B2 (en) Stabilizer
JP4299758B2 (en) High strength bolt with excellent delayed fracture resistance and method for improving delayed fracture resistance
US6752880B2 (en) Quenched and tempered steel wire with excellent cold forging properties
JP2012214859A (en) Spring, and method for producing the same
JP2001254143A (en) Soft-nitriding non-thermally refined crank shaft and its producing method
JP5597115B2 (en) Hard drawn wire, spring, and method of manufacturing hard drawn wire
JP2007146233A (en) Method for manufacturing structural parts for automobile made from steel
JPS5967365A (en) Production of machine parts
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JP2012020298A (en) Method for manufacturing forging
JP2001212643A (en) Micro alloying steel and micro alloying forging
JP2005505689A (en) Iron products with high hardness and high deformability
JP3502744B2 (en) Method of manufacturing shaft-shaped parts for machine structure with excellent fatigue characteristics
Adetunji et al. Effect of normalizing and hardening on mechanical properties of spring
JP2001214243A (en) Non-heattreated steel and non-heattreated forming
JP2004323912A (en) High strength coil spring, and method for manufacturing the same
US20080257460A1 (en) Method of producing forgings having excellent tensile strength and elongation from steel wire rods
JP3149681B2 (en) Machine structural steel with excellent cold forgeability
JP2795800B2 (en) Manufacturing method of high strength bolts with excellent delayed fracture resistance
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JPH02213422A (en) Production of high strength spring
JP2954216B2 (en) Steel for high strength parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110