JP2001196980A - Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control - Google Patents

Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control

Info

Publication number
JP2001196980A
JP2001196980A JP2000005372A JP2000005372A JP2001196980A JP 2001196980 A JP2001196980 A JP 2001196980A JP 2000005372 A JP2000005372 A JP 2000005372A JP 2000005372 A JP2000005372 A JP 2000005372A JP 2001196980 A JP2001196980 A JP 2001196980A
Authority
JP
Japan
Prior art keywords
signal
fault
point
monitoring
communication cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000005372A
Other languages
Japanese (ja)
Other versions
JP4301353B2 (en
Inventor
Isao Moriyama
勲夫 森山
Tatsumi Kono
辰己 幸野
Hiroshi Yanaga
博史 弥永
Hiroshi Iida
洋 飯田
Yuji Watanabe
裕二 渡邊
Akira Sasabuchi
晃 笹渕
Hironori Kanda
洋典 神田
Yasuyuki Ariyoshi
恭幸 有吉
Tomoumi Ishihara
智海 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUKI KK
Kyushu Electric Power Co Inc
Kyuki KK
Original Assignee
KYUKI KK
Kyushu Electric Power Co Inc
Kyuki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUKI KK, Kyushu Electric Power Co Inc, Kyuki KK filed Critical KYUKI KK
Priority to JP2000005372A priority Critical patent/JP4301353B2/en
Publication of JP2001196980A publication Critical patent/JP2001196980A/en
Application granted granted Critical
Publication of JP4301353B2 publication Critical patent/JP4301353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a system for quickly retrieving and locating a permanent fault, or an intermittent fault or an irregular fault or the like where opening/reconnection of a cable is not required for retrieval and location of the fault point of a remote control cable adopting the 1:n system. SOLUTION: A supervisory signal is injected to an optional part 3c of the communication cable, the supervisory signal is detected from other part 3d, at least either of the magnitude of the voltage and current of the signal is compared with each reference value predicted at the detected part 3d, a fault location F1 is retrieved on the basis of the comparison result, and the fault point is located within a scheduled distance range. Furthermore, if required, the supervisory signal is injected and detected, a pulse signal is transmitted toward the fault scheduled distance range, the distance up to the fault location F1 is measured according to the pulse radar method to locate the faulty point F1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配電系統の営業所
に通常は設置された親局と配電線に対応する適当箇所に
設置された複数の子局とを結ぶように敷設され、当該配
電系統の遠隔監視および制御を行なうために用いられる
有線式配電線遠方監視制御用通信ケーブルの障害点探査
方法および装置に関し、特に親局と複数の子局間の通信
媒体として使用される遠方監視制御用通信ケーブルに生
ずる地絡、短絡、混触、断線などの各種障害の発生地点
を探査する方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power distribution system, which is laid to connect a master station normally installed in a sales office of a distribution system and a plurality of slave stations installed at appropriate locations corresponding to distribution lines. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for detecting a fault in a communication cable for remote monitoring and control of a wired distribution line used for remote monitoring and control of a power system, and more particularly to remote monitoring control used as a communication medium between a master station and a plurality of slave stations TECHNICAL FIELD The present invention relates to a method and an apparatus for searching for a point of occurrence of various obstacles such as a ground fault, a short circuit, a contact, and a disconnection occurring in a communication cable for communication.

【0002】また本発明は、前記通信ケーブルに、前述
のような各種障害が発生したことを検出したときに、障
害発生位置をさらに精細に標定する方法および装置に関
し、特に前記障害が間欠的である場合にも確実に障害発
生位置を標定できる障害発生位置標定方法および装置に
関する。
[0002] The present invention also relates to a method and an apparatus for more precisely locating the fault occurrence position when detecting the occurrence of the above-described various faults in the communication cable. The present invention relates to a method and an apparatus for locating a fault location that can reliably locate a fault location even in some cases.

【0003】[0003]

【従来の技術】配電系統の営業所に設置された親局と配
電線の適当箇所に設置された複数の子局とを1対n方式
で結ぶように通信ケーブルを敷設しておき、相互間で各
種制御信号や情報を授受して当該配電系統の監視および
制御を行なうこことが行なわれている。
2. Description of the Related Art A communication cable is laid so as to connect a master station installed in a sales office of a distribution system and a plurality of slave stations installed in appropriate places of a distribution line in a one-to-n manner. In order to monitor and control the power distribution system by transmitting and receiving various control signals and information.

【0004】図5は従来の代表的な有線式配電線遠方監
視制御系統の1例を示す概略図である。配電系統の営業
所内に設置された親局1と配電線の適当箇所に設置され
た複数(1親局当たり、例えば最大230局程度)の子
局5とは、2対4線式遠方監視制御用通信ケーブル(以
下、「遠制ケーブル」と略する)2によって1対n方式
で接続される。遠制ケーブル2の適所には通信ポット3
a、3b、3c…が設けられ、そこから子局5への遠制
ケーブルが分岐される。各子局5は配電線7に設置され
た高圧開閉器6に対応して設けられ、遠制ケーブル2を
介して親局から送信される制御信号にしたがって前記開
閉器6の開閉を制御し、またその開閉状態を監視して必
要な情報を親局1へ伝送する。このようにして、親局1
すなわち営業所ではその管轄下にある各子局5や高圧開
閉器6の状態を常時把握することができる。
FIG. 5 is a schematic diagram showing one example of a conventional typical wired distribution line remote monitoring control system. Two-to-four-wire remote monitoring and control is performed between a master station 1 installed in a distribution system sales office and a plurality of slave stations 5 (eg, up to about 230 stations per master station) installed at appropriate locations in a distribution line. Communication cables (hereinafter abbreviated as “remote control cables”) 2 in a one-to-n manner. Communication pot 3 in the right place of remote control cable 2
a, 3b, 3c... are provided, from which a remote control cable to the slave station 5 is branched. Each slave station 5 is provided corresponding to the high-voltage switch 6 installed on the distribution line 7 and controls opening and closing of the switch 6 according to a control signal transmitted from the master station via the remote control cable 2. Further, it monitors the open / closed state and transmits necessary information to the master station 1. In this way, the master station 1
That is, the sales office can always grasp the status of each slave station 5 and the high-voltage switch 6 under its jurisdiction.

【0005】いまF1の箇所で遠制ケーブル2に障害が
生じた場合は、例えば次のような手順で障害箇所の特定
が行なわれる。 a.子局5からの返信状態に基づき、障害箇所のおおま
かな絞り込みを行なう。 b.絞り込んだ領域内のx印2a〜2dで示した地点
で、遠制ケーブル2を開放(遮断)して独立の検出区間
を形成する。 c.各検出区間の絶縁抵抗を測定し、障害点F1を含む
区間を特定する。 d.障害箇所を復旧した後、x地点で遠制ケーブル2を
それぞれ接続する。 e.通信が正常に行なわれることを確認する。
If a fault occurs in the remote control cable 2 at the location F1, the fault location is specified, for example, in the following procedure. a. Based on the reply status from the slave station 5, the location of the fault is roughly narrowed down. b. At the points indicated by x marks 2a to 2d in the narrowed-down area, the remote control cable 2 is opened (cut off) to form an independent detection section. c. The insulation resistance of each detection section is measured, and the section including the fault point F1 is specified. d. After restoring the fault location, the remote control cable 2 is connected at each point x. e. Check that communication is performed normally.

【0006】[0006]

【発明が解決しようとする課題】前述のような1対n方
式の遠制ケーブルでは、ケーブルが樹枝状に分岐してお
り、また障害地点の特定のために分割形成した検出区間
には分岐点が含まれないようにしなければならないの
で、障害地点特定のためには多くの要員と長時間を要す
るのみならず、長い経験と熟練を必要とするという問題
があった。また、開放したケーブルを、障害復旧後に再
接続する際に誤接続や接続不良を生ずる恐れもあった。
In the one-to-n type remote control cable as described above, the cable branches in a tree shape, and a branch point is formed in a detection section divided and formed in order to specify a failure point. Therefore, there is a problem in that not only a large number of personnel and a long time are required to specify the failure point, but also a long experience and skill are required. In addition, when an open cable is reconnected after recovery from a failure, erroneous connection or poor connection may occur.

【0007】さらに、障害が間欠的に発生するような場
合には、障害地点の特定が事実上不可能と言えるほど困
難であり、また長時間を要するために、迅速な障害復旧
ができないという問題があった。
Further, when a failure occurs intermittently, it is difficult to specify the location of the failure, which is practically impossible, and it takes a long time, so that it is not possible to quickly recover from the failure. was there.

【0008】本発明の第1の目的は、障害地点の特定に
際して遠制ケーブルの開放、切離し、再接続が不要であ
り、しかも間欠的障害地点も容易に探査・標定できる遠
制ケーブル障害点探査・標定方法および装置を提供する
ことにある。
A first object of the present invention is to locate a faulty point, which does not require opening, disconnecting and reconnecting a remote control cable, and which can easily detect and locate an intermittent fault point. -To provide a location method and apparatus.

【0009】本発明の他の目的は、検出された遠制ケー
ブルの障害が間欠的、不規則である場合にも確実かつ可
及的迅速に障害点を標定でき、遠制ケーブルの張り替え
量の最少化と事故復旧の迅速化とを両立させることので
きる遠制ケーブルの障害点標定方法および装置を提供す
ることにある。
Another object of the present invention is to be able to locate a fault point reliably and as quickly as possible even when a detected fault in a remote control cable is intermittent or irregular, and to reduce the amount of replacement of the remote control cable. It is an object of the present invention to provide a method and an apparatus for locating a fault point of a remote control cable which can achieve both minimization and quick recovery from an accident.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、既知特性の監視信号を生成する発信回
路、および前記監視信号を、配電線に対応して、親局と
複数の子局とを接続するように敷設され、当該配電系統
の監視および制御を行なうための有線式配電線遠方監視
制御用通信ケーブルの任意箇所に結合させて注入する結
合手段を具備した監視信号注入装置と、前記ケーブルに
結合してその電流および電圧、ならびにデ−タエラーの
少なくとも一つを検出するための結合手段、検出された
前記電流および電圧の少なくとも一方から、前記監視信
号の電流および電圧成分の少なくとも一方を抽出するフ
ィルタ手段、前記監視信号の注入地点において予測され
る前記監視信号の電圧、電流の少なくとも一方の基準値
を記憶する手段、および抽出された前記監視信号の電
圧、電流の少なくとも一方の大きさを、前記基準値と比
較し、比較結果にしたがって、前記通信ケーブルの障害
箇所が、監視信号検出地点を起点として前記信号注入地
点の側にあるか否かを判定する処理回路を含む検出装置
との組合わせを具備する。
In order to achieve the above object, the present invention provides a transmitting circuit for generating a monitoring signal having a known characteristic, and a method for transmitting the monitoring signal to a master station in correspondence with a distribution line. A monitoring signal injection device laid down to connect to a slave station, and provided with a coupling means for coupling and injecting into a desired position of a communication cable for remote monitoring and control of a wired distribution line for monitoring and controlling the distribution system. Coupling means for coupling to the cable to detect at least one of its current and voltage, and at least one of data errors; and from at least one of the detected current and voltage, the current and voltage components of the monitoring signal Filter means for extracting at least one, means for storing at least one reference value of the voltage and current of the monitoring signal predicted at the injection point of the monitoring signal, and The magnitude of at least one of the voltage and the current of the extracted monitoring signal is compared with the reference value, and according to the comparison result, the fault location of the communication cable is the signal injection point starting from the monitoring signal detection point. In combination with a detection device that includes a processing circuit for determining whether or not it is on the side of

【0011】さらに本発明の前記検出装置は、抽出され
た監視信号の電圧、電流の大きさ、および前記通信ケー
ブルの障害箇所が、監視信号検出地点を起点として前記
信号注入地点の側にあるか否かの判定結果の少なくとも
1つを、予定時間の間記憶するメモリをさらに有するこ
とができる。
Further, in the detection device according to the present invention, the voltage and the current of the extracted monitor signal and the fault location of the communication cable are located at the signal injection point side from the monitor signal detection point. The information processing apparatus may further include a memory for storing at least one of the determination results during the predetermined time period.

【0012】本発明においては、配電線に対応して、親
局と複数の子局とを接続するように敷設され、当該配電
系統の監視および制御を行なうための有線式配電線遠方
監視制御用通信ケーブルの任意箇所から既知周波数の監
視信号を注入し、前記通信ケーブルの別の箇所で前記監
視信号を検出し、検出された監視信号の電圧、電流の少
なくとも一方の大きさを、例えば、前記監視信号の注入
箇所から親局側をみたインピーダンスおよび負荷側をみ
たインピーダンスに基づいて予測される電圧、電流基準
値と比較し、比較結果にしたがって、前記通信ケーブル
の障害箇所が、監視信号検出地点を起点として前記信号
注入地点の側にあるか否かを判定する。また必要に応じ
ては、前記別の箇所でデ−タエラー0を検出し、エラー
の有無をも勘案して障害方向を判別する。さらにこれら
の検出デ−タを記憶し、障害発生の状態(頻度、時間、
回数など)に基づいて間欠的に発生する障害を検知する
こともできる。
According to the present invention, a wired distribution line distant monitoring and control is provided to connect a master station and a plurality of slave stations corresponding to a distribution line, and to monitor and control the distribution system. Inject a monitoring signal of a known frequency from an arbitrary point of the communication cable, detect the monitoring signal at another point of the communication cable, and detect at least one of the voltage and the current of the detected monitoring signal, for example, Compared with the voltage and current reference values predicted based on the impedance seen from the injection point of the monitoring signal and the impedance seen from the load side, and according to the comparison result, the fault location of the communication cable is the monitoring signal detection point. It is determined whether or not it is on the side of the signal injection point from the starting point. If necessary, a data error 0 is detected at the other location, and the direction of the fault is determined in consideration of the presence / absence of an error. Further, these detected data are stored, and the state of occurrence of the failure (frequency, time,
, Etc.), it is also possible to detect a fault that occurs intermittently.

【0013】また本発明は、配電線に対応して、親局と
複数の子局とを接続するように敷設され、当該配電系統
の監視および制御を行なうための有線式配電線遠方監視
制御用通信ケーブルの障害点標定のために、前記通信ケ
ーブルの任意箇所から既知特性の監視信号を注入し、前
記通信ケーブルの別の箇所で、前記監視信号を検出する
段階と、検出された監視信号の電圧、電流の少なくとも
一方の大きさを、前記監視信号の検出箇所において予測
される電圧、電流基準値と比較する段階と、前記比較の
結果にしたがって、前記通信ケーブルの障害箇所が、監
視信号検出地点を起点として前記信号注入地点の側にあ
るか否かを判定し、これに基づいて障害箇所を予定の距
離範囲内に絞り込む段階と、その後さらに、前記監視信
号の注入および検出を行ない、前記障害の検出を示す出
力信号に応答して、前記通信ケーブル上の予定のパルス
信号送信位置から前記絞り込まれた予定距離範囲に向け
てパルス信号を送信し、パルスレーダ方式にしたがって
パルス信号送信位置から前記障害箇所までの距離を測定
し、障害点の位置を標定する段階とを具備した方法に特
徴がある。
[0013] The present invention also relates to a remote monitoring and control system for a wired distribution line laid to connect a master station and a plurality of slave stations corresponding to a distribution line, and for monitoring and controlling the distribution system. Injecting a monitoring signal of a known characteristic from an arbitrary point of the communication cable for fault point locating of the communication cable, and detecting the monitoring signal at another point of the communication cable; and Comparing the magnitude of at least one of the voltage and the current with a voltage and a current reference value predicted at the detection point of the monitoring signal; and, according to a result of the comparison, a failure point of the communication cable detects a monitoring signal detection value. It is determined whether or not the point is a starting point, and it is determined whether or not it is on the side of the signal injection point, and based on this, a failure point is narrowed down to a predetermined distance range, and thereafter, the injection and detection of the monitoring signal are further performed. In response to the output signal indicating the detection of the failure, a pulse signal is transmitted from the predetermined pulse signal transmission position on the communication cable toward the narrowed predetermined distance range, and the pulse is transmitted according to the pulse radar method. Measuring the distance from the signal transmission position to the failure location and locating the location of the failure point.

【0014】本発明はさらに、既知特性の監視信号を生
成する発信回路、および前記監視信号を、配電線に対応
して、親局と複数の子局とを接続するように敷設され、
当該配電系統の監視および制御を行なうための有線式配
電線遠方監視制御用通信ケーブルの任意箇所に結合させ
て注入する結合手段を具備した監視信号注入装置と、前
記ケーブルに結合してその電流および電圧の少なくとも
一方を検出するための結合手段、検出された前記電流お
よび電圧の少なくとも一方から、前記監視信号の電流お
よび電圧成分の少なくとも一方を抽出するフィルタ手
段、前記監視信号の検出箇所において予測される前記監
視信号の電圧、電流の少なくとも一方の基準値を記憶す
る手段、および抽出された前記監視信号の電圧、電流の
少なくとも一方の大きさを、前記基準値と比較し、比較
結果にしたがって、前記通信ケーブルの障害箇所が、監
視信号検出地点を起点として前記信号注入地点の側にあ
るか否かを判定する処理回路を具備した障害検出装置
と、パルス信号を前記通信ケーブルに注入するパルス発
信回路、前記通信ケーブル上のパルス信号を取り込むフ
ィルタ回路、注入されたパルス信号からの取り込まれた
パルス信号の遅延時間に基づいて障害点までの距離を標
定する処理演算回路を具備し、前記障害検出装置からの
障害検出に応答して起動されるパルスレーダ方式障害点
標定装置との組合わせよりなる前記通信ケーブルの障害
点標定装置に特徴がある。
The present invention further provides a transmitting circuit for generating a monitoring signal having a known characteristic, and laying the monitoring signal so as to connect a master station and a plurality of slave stations in accordance with a distribution line;
A monitoring signal injection device having a coupling means for coupling and injecting into an arbitrary portion of a communication cable for remote monitoring and control of a wired distribution line for performing monitoring and control of the distribution system, and a current and Coupling means for detecting at least one of the voltages, filter means for extracting at least one of the current and voltage components of the monitor signal from at least one of the detected currents and voltages, the signal being predicted at a detection point of the monitor signal Means for storing at least one reference value of the monitor signal voltage and current, and comparing the magnitude of at least one of the extracted monitor signal voltage and current with the reference value, according to the comparison result, It is determined whether or not the fault location of the communication cable is on the side of the signal injection point starting from the monitoring signal detection point. Fault detection device having a logic circuit, a pulse transmission circuit for injecting a pulse signal into the communication cable, a filter circuit for capturing the pulse signal on the communication cable, and a delay time of a pulse signal captured from the injected pulse signal And a processing operation circuit for locating the distance to the fault point based on the fault, and the communication cable comprising a combination with a pulse radar type fault locating device activated in response to the fault detection from the fault detecting device. There is a feature in the fault point locating device.

【0015】[0015]

【発明の実施の形態】図1および図2を参照して本発明
の1実施例を詳細に説明する。図1は本発明の1実施例
の概要を示すブロック図、図2は監視信号注入装置(以
下、「注入装置」と略する)および障害点検出装置(以
下、「検出装置」と略する)の具体的構成例を示すブロ
ック図である。これらの図において、図5と同一の符号
は同一または同等部分を表わす。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 is a block diagram showing an outline of one embodiment of the present invention, and FIG. 2 is a monitoring signal injection device (hereinafter abbreviated as "injection device") and a fault point detection device (hereinafter abbreviated as "detection device"). 3 is a block diagram showing a specific configuration example of FIG. In these figures, the same reference numerals as those in FIG. 5 indicate the same or equivalent parts.

【0016】遠制ケーブル2に障害を生じたことが、子
局5との通信状態やそこからの返信状態などに基づいて
判定された場合は、障害発生箇所と想定される地点の近
傍に、遠制ケーブル2に特定の監視信号を重畳する注入
装置8および前記監視信号を受信するための検出装置9
を、図1、2に示すように取り付ける。この場合、注入
装置8は検出装置9よりも親局1側に配置するのが好ま
しい。その理由は、一般に親局は低インピーダンスであ
るために、親局側では監視信号の漏れ電流が生じ易く、
注入装置よりも親局側に検出装置を配置すると、上記漏
れ電流を検出して誤動作し易いからである。
When it is determined that a fault has occurred in the remote control cable 2 based on a communication state with the slave station 5 and a reply state from the slave station 5, the vicinity of the point where the fault is supposed to occur is determined. An injection device 8 for superimposing a specific monitoring signal on the remote control cable 2 and a detecting device 9 for receiving the monitoring signal
Is attached as shown in FIGS. In this case, it is preferable that the injection device 8 be disposed closer to the master station 1 than the detection device 9. The reason is that, generally, since the master station has a low impedance, a leakage current of the monitoring signal easily occurs on the master station side,
This is because, if the detection device is arranged closer to the master station than the injection device, the leakage current is detected and a malfunction easily occurs.

【0017】しかしながら、状況によっては、検出装置
を注入装置よりも親局側に配置してもよいことは明らか
である。また図示の例では、遠制ケーブルは上り回線2
Uと下り回線2Dを別個に敷設した2対4線式であるか
ら、予定の位相差を有する2種の監視信号をそれぞれの
回線に各別に注入する。
However, it is clear that, depending on the situation, the detection device may be located closer to the master station than the injection device. In the illustrated example, the remote control cable is connected to the upstream line 2.
Since it is a two-to-four-wire system in which U and the downstream line 2D are separately laid, two types of monitoring signals having a predetermined phase difference are separately injected into each line.

【0018】注入装置8は、図2に詳細を示すように、
予定特性(周波数)の監視信号を発生する発信回路1
8、前記監視信号を供給されて位相の異なる2種の信号
を生成する位相変調回路17、これらの信号を増幅する
増幅回路16、および前記信号を遠制ケーブル2U、2
Dにそれぞれ結合するPT(電圧変成器)14よりな
り、同一周波数で予定の位相差を有する2種の監視信号
を上り回線2U、および下り回線2D上にそれぞれ送出
し、親局1と各子局5間で送受される遠制(遠隔制御)
信号に重畳させる。なお15は、遠制ケーブル2に生ず
る雷サージなどを吸収して装置を保護する保安回路、1
9は電源回路である。
The injection device 8, as shown in detail in FIG.
Oscillation circuit 1 for generating a monitoring signal of a predetermined characteristic (frequency)
8, a phase modulation circuit 17 that receives the monitoring signal and generates two types of signals having different phases, an amplification circuit 16 that amplifies these signals, and a remote control cable 2U,
D, respectively, and transmits two types of monitoring signals having the same frequency and a predetermined phase difference to the upstream line 2U and the downstream line 2D, respectively. Remote control transmitted and received between stations 5 (remote control)
Superimposed on the signal. Reference numeral 15 denotes a security circuit that protects the device by absorbing a lightning surge or the like generated in the remote control cable 2.
9 is a power supply circuit.

【0019】検出装置9では、CT(電流変成器)21
およびPT22、ならびに保安回路23を介して遠制ケ
ーブル2上の信号が取り込まれ、さらに増幅回路24で
増幅された後、フィルタ回路25によって監視信号およ
び遠制信号が分離、抽出される。これら2つの信号はA
D変換回路26でデジタル化された後、処理回路27に
転送される。ある特定の通信ポットから親局側および反
対側(本明細書では「負荷側」という)をみたインピー
ダンス、および注入される監視信号の基準電圧は既知で
ある。
In the detecting device 9, a CT (current transformer) 21
Then, the signal on the remote control cable 2 is taken in through the PT 22 and the security circuit 23 and further amplified by the amplifier circuit 24, and then the monitoring signal and the remote control signal are separated and extracted by the filter circuit 25. These two signals are A
After being digitized by the D conversion circuit 26, it is transferred to the processing circuit 27. The impedance seen from the master station side and the opposite side (hereinafter, referred to as “load side”) from a certain communication pot, and the reference voltage of the injected monitoring signal are known.

【0020】また前記通信ポットに注入装置が取り付け
られた場合に、そこから親局側および負荷側へ伝送され
る監視信号の漏れ電流も演算できるので、これらの各値
を基準値として、他の通信ポットで検出された電流、電
圧値を対比すれば、前記検出装置が取り付けられた他の
通信ポットが注入装置8を基準として親局側にあるか負
荷側にあるかを判別することができる。なお、各通信ポ
ットや他の検出地点における電圧・電流基準は、実測な
どの適宜の手法によって予め収集しておくこともでき
る。
When an injection device is attached to the communication pot, the leakage current of the monitoring signal transmitted from the injection device to the master station and the load side can be calculated. By comparing the current and voltage values detected by the communication pot, it is possible to determine whether another communication pot to which the detection device is attached is located on the master station side or the load side with reference to the injection device 8. . Note that the voltage / current reference at each communication pot and other detection points can be collected in advance by an appropriate method such as actual measurement.

【0021】例えば図1のように、通信ポット3bに注
入装置8を取り付け、通信ポット3cに検出装置9を取
り付けた場合に、検出された電圧、電流値からは故障地
点が負荷側(すなわち、注入装置とは反対側)と判定さ
れ、次に検出装置9を通信ポット3dに移動した場合
に、故障地点が親局1側と判定されれば、故障地点F1
は図示のように通信ポット3cおよび3dの間にあると
決定することができる。
For example, as shown in FIG. 1, when the injection device 8 is attached to the communication pot 3b and the detection device 9 is attached to the communication pot 3c, the failure point is determined from the detected voltage and current values on the load side (ie, on the load side). If the failure point is determined to be the master station 1 side when the detection device 9 is next moved to the communication pot 3d, the failure point F1 is determined.
Can be determined to be between the communication pots 3c and 3d as shown.

【0022】実際の配電線系統では、図3に示すよう
に、親局1を起点とする遠制ケーブル2は樹枝状に複雑
に分岐され、その延長距離は数Km〜10数Kmにも及
び、同図において、丸印で表わしている通信ポット数は
数百またはそれ以上に達することがある。いま通信ポッ
トD、E間の地点F1に障害が発生し、点線で囲んだ地
域10に異常が発生したことが判定できたと仮定し、障
害地点よりも親局側の通信ポットAに注入装置8を取り
付けて監視信号を注入すると共に、通信ポットB、Cの
2点に検出装置9を取り付けたと仮定する。
In an actual distribution line system, as shown in FIG. 3, a remote control cable 2 starting from a master station 1 is complicatedly branched like a tree, and its extension distance ranges from several km to several tens km. In the figure, the number of communication pots indicated by circles may reach several hundreds or more. Now, it is assumed that a failure has occurred in the point F1 between the communication pots D and E, and that an abnormality has occurred in the area 10 surrounded by the dotted line. Is attached, a monitoring signal is injected, and the detection device 9 is attached to two points of the communication pots B and C.

【0023】以上の説明から容易に理解できるように、
B点の検出デ−タからは「障害地点は負荷側」と判定さ
れ、C点の検出デ−タからは「障害地点は注入装置側」
と判定されるので、「障害地点はB点よりも負荷側」と
決定することができる。つぎに、C点の検出装置を通信
ポットEに移動して測定を繰り返すと、E点の検出デ−
タからは「障害地点は注入装置側」となるので、「障害
地点はB点とE点の間」と最小の検出区間を決定するこ
とができる。このようにすれば、従来技術のように、遠
制ケーブルを開放して検出区間を生成し、各検出区間に
ついて絶縁抵抗を測定する場合に比べて、障害点検出作
業が格段に簡略化されることが分かる。また同時に使用
する検出装置の個数は、前述の例に限らず、1以上の任
意の個数に設定できる。
As can be easily understood from the above description,
From the detection data at point B, it is determined that "the failure point is on the load side", and from the detection data at point C, "the failure point is on the injection device side".
Therefore, it can be determined that “the failure point is on the load side of point B”. Next, when the detection device for the point C is moved to the communication pot E and the measurement is repeated, the detection data for the point E is obtained.
From the data, the "failure point is on the injection device side", so that the minimum detection section can be determined as "the failure point is between point B and point E". In this way, the fault point detection operation is significantly simplified as compared with the case where the remote control cable is opened to generate the detection sections and the insulation resistance is measured for each detection section as in the related art. You can see that. Further, the number of detection devices used at the same time is not limited to the example described above, and can be set to any number of one or more.

【0024】以上のようにして判別された障害点の方向
情報は、対応の通信ポット情報、検出された電圧、電流
値や、デ−タエラーの有無、障害発生時刻、回数などと
共にメモリ30に蓄積し、また(液晶)表示器28およ
びターゲット表示器29に表示することができる。ター
ゲット表示器29は障害点の方向判定、検出が完了した
ことや判定結果を表示するものであり、特に、検出装置
が電柱の上などに取付けられたときでも、前記の表示を
地上から容易に識別できるような大きさと明瞭度で表示
部が構成されるのが望ましい。このような情報を連続し
て予定時間蓄積し、総合判断すれば、特にその発生回数
や頻度に基づいて、間欠的にしか発生せず、従来技術で
は検出が極めて難しかった障害も検出、確認することが
できる。
The direction information of the fault point determined as described above is stored in the memory 30 together with the corresponding communication pot information, the detected voltage and current values, the presence / absence of a data error, the fault occurrence time, the number of times, and the like. The data can be displayed on the (liquid crystal) display 28 and the target display 29. The target indicator 29 displays the direction of the fault point, the completion of the detection, and the result of the determination. In particular, even when the detection device is mounted on a telephone pole or the like, the display can be easily performed from the ground. It is desirable that the display unit be configured with a size and clarity that can be identified. If such information is continuously accumulated for a scheduled time and comprehensively determined, failures that occur only intermittently, particularly based on the number and frequency of occurrence, and that are extremely difficult to detect with the conventional technology are detected and confirmed. be able to.

【0025】図4は各種障害の場合の本発明の検出動作
を、さらに具体的に説明するための概念図である。この
図において、前述のようにある程度絞り込まれた障害地
点よりも親局1側の遠制ケーブル2の通信ポットには注
入装置8を取り付け、下り回線2Dおよび上り回線2U
のそれぞれに、予定の位相差を有する監視信号SG1、
SG2を注入する。一方注入装置8よりも負荷側であっ
て、前記障害地点を挟む2つの相異なる通信ポットには
検出装置9a、9bをそれぞれ取り付けて下り回線の電
圧V1a、V1bおよび電流A1a、A2a、A1b、
A2b、ならびに上り回線の電圧V2a、V2bおよび
電流A3a、A4a、A3b、A4bを測定する。この
場合、2つの検出装置は別個のものを設置して同時に作
動させても良いが、単一の検出装置を1つの設置位置か
ら他の位置へ移動して測定しても良いことは勿論であ
る。なお、注入装置を前記の位置に取り付ければ、障害
地点の判定を効率よく行なうことができるので好ましい
が、他の任意の位置に取り付けても障害地点の判定を行
なうことは可能である。
FIG. 4 is a conceptual diagram for more specifically explaining the detection operation of the present invention in the case of various failures. In this figure, an injection device 8 is attached to the communication pot of the remote control cable 2 on the master station 1 side from the fault point narrowed down to some extent as described above, and the down line 2D and the up line 2U
, A monitoring signal SG1 having a predetermined phase difference,
Inject SG2. On the other hand, detectors 9a and 9b are attached to two different communication pots, which are on the load side of the injection device 8 and sandwich the failure point, respectively.
A2b, as well as uplink voltages V2a, V2b and currents A3a, A4a, A3b, A4b are measured. In this case, the two detectors may be installed separately and operated at the same time, but it goes without saying that a single detector may be moved from one installation position to another position for measurement. is there. It should be noted that it is preferable to mount the injection device at the above-mentioned position, because it is possible to efficiently determine a troubled point. However, it is also possible to determine the troubled point even if it is mounted at any other position.

【0026】障害がなく、正常ならば、以上の説明から
明らかなように、2つの位置で検出される監視信号の前
記電圧V1a、V1b、V2a、V2bはすべて基準値
以上であり、一方その電流A1a、A2a、A1b、A
2b、A3a、A4a、A3b、A4bはすべて基準値
以下(基準範囲内)である。ここで「基準値」は、前述
のように、注入装置8が取り付けられた通信ポットから
みた親局側および負荷側のインピーダンスおよび監視信
号の電圧に基づいて、検出装置の各設置位置に対して予
め演算できる値、または実測によって得られる値に基づ
いて決められるものである。
If there is no fault and it is normal, as is clear from the above description, the voltages V1a, V1b, V2a and V2b of the monitoring signals detected at the two positions are all higher than the reference value, and A1a, A2a, A1b, A
2b, A3a, A4a, A3b, and A4b are all below the reference value (within the reference range). Here, the “reference value” is, as described above, based on the impedance on the master station side and the load side as viewed from the communication pot to which the injection device 8 is attached, and the voltage of the monitoring signal, for each installation position of the detection device. It is determined based on a value that can be calculated in advance or a value obtained by actual measurement.

【0027】図4において、x印で示す断線障害F4の
場合は、障害地点よりも親局側の検出装置9aでは「正
常」な検出値V1a、V2aが得られるが、負荷側の検
出装置9bでは電圧V1b、V2bが基準値以下とな
る。また電流A1a、A2a、A1b、A2b、A3
a、A4a、A3b、A4bはすべてほぼ零である。し
たがって、これらの検出値に基づいて2つの検出装置9
a、9b間で断線事故を生じていると判定できる。
In FIG. 4, in the case of the disconnection fault F4 indicated by the mark x, the detection devices 9a on the master station side from the fault point can obtain "normal" detection values V1a and V2a, but the detection devices 9b on the load side. In this case, the voltages V1b and V2b fall below the reference value. The currents A1a, A2a, A1b, A2b, A3
a, A4a, A3b, and A4b are all substantially zero. Therefore, based on these detection values, two detection devices 9
It can be determined that a disconnection accident has occurred between a and 9b.

【0028】F5で示す地絡障害の場合は、検出電圧V
1a、V1bが基準値以下、電流A1aが基準値以上、
電流A1bが基準値以下であり、さらに負荷側の検出装
置9bでは遠制信号のデータエラーが検出されることが
多い。これらの情報に基づいて2つの検出装置9a、9
b間の地絡事故を判別できる。
In the case of a ground fault indicated by F5, the detection voltage V
1a and V1b are equal to or less than the reference value, the current A1a is equal to or more than the reference value,
The current A1b is equal to or less than the reference value, and the detection device 9b on the load side often detects a data error of the remote control signal. Based on these information, the two detection devices 9a, 9
The ground fault between b can be determined.

【0029】F6で示す短絡障害の場合は、検出装置9
aでは電圧V1aが基準値以下、電流A1aおよびA2
aが基準値以上となる。また検出装置9bでは電圧V1
bが基準値以下、電流A1bおよびA2bも基準値以下
となる。
In the case of a short-circuit fault indicated by F6, the detecting device 9
a, the voltage V1a is lower than the reference value, and the currents A1a and A2
a becomes equal to or more than the reference value. In the detection device 9b, the voltage V1
b is equal to or less than the reference value, and the currents A1b and A2b are also equal to or less than the reference value.

【0030】F7で示すような混触障害(1つの信号線
対から他の信号線対に跨がるような短絡)の場合は、検
出装置9aで測定した電流A1a,A3aが基準値以上
となることに基づいて障害検出が可能である。また検出
装置9bにおいては、遠制信号のデータエラーが検出さ
れる。これにより、2つの検出装置9a、9b間におけ
る2つの信号線対2D、2U間の混触事故を判別でき
る。なおこの場合、上り回線2Uと下り回線2Dに注入
される監視信号の周波数は等しくされているので、両回
線に注入された監視信号が同位相であると、混触箇所に
は監視電流が流れず、混触検出ができなくなる。したが
って、この場合は、2つの回線2U、2Dに注入される
監視信号は、両方の監視電流の位相差が、両者間に検出
可能な電流が流れる程度に大きくなければならない。
In the case of a contact fault (a short circuit that extends from one signal line pair to another signal line pair) as indicated by F7, the currents A1a and A3a measured by the detection device 9a become equal to or larger than the reference value. Based on this, failure detection is possible. In the detection device 9b, a data error of the remote control signal is detected. This makes it possible to determine a touch accident between the two signal line pairs 2D and 2U between the two detection devices 9a and 9b. In this case, since the frequencies of the monitoring signals injected into the upstream line 2U and the downstream line 2D are made equal, if the monitoring signals injected into both lines have the same phase, the monitoring current does not flow through the contact point. , The touch detection cannot be performed. Therefore, in this case, the monitoring signal injected into the two lines 2U and 2D must have a phase difference between both monitoring currents large enough to allow a detectable current to flow between the two.

【0031】なお以上では、注入装置及び検出装置は通
信ポットに取り付けるものとしたが、原理的には遠制ケ
ーブルのどこに取り付けても同様の障害検知ができるこ
とは明らかである。また注入する監視信号は、波形、周
波数、変調形式などの特性の面で遠制信号と区別できる
ものであれば、どのようなものでもよい。
In the above description, the injection device and the detection device are mounted on the communication pot. However, it is apparent that the same fault detection can be performed in principle regardless of where the remote control cable is mounted. The monitoring signal to be injected may be any signal as long as it can be distinguished from a remote control signal in terms of characteristics such as waveform, frequency, and modulation format.

【0032】以上のようにして、障害区間を最小(すな
わち、隣接する2つの)通信ポット間にまで絞り込んだ
後に、その間の遠制ケーブルを張り替えて障害点を復旧
する。その後、通信状態が正常に復帰したことを確認す
る。
As described above, after the faulty section is narrowed down to the minimum (that is, between two adjacent communication pots), the remote control cable between them is replaced to restore the faulty point. After that, it is confirmed that the communication state has returned to normal.

【0033】上述の実施例によれば、遠制ケーブルを開
放したり再接続したりすることなしに、障害箇所を短時
間で、容易に、かつ特別の経験や熟練を要せずに検出区
間単位で特定することができるので、障害発生から復旧
までの時間を大幅に短縮でき、さらにそのための要員数
を減らすことができる。また動作状態での連続監視がで
きるので、従来は事実上不可能であった間欠性の障害の
検出もできるようになる。
According to the above-described embodiment, the fault location can be detected in a short time, easily and without any special experience or skill without opening or reconnecting the remote control cable. Since it can be specified in units, the time from the occurrence of a failure to the recovery can be greatly reduced, and the number of personnel for that can be reduced. In addition, since continuous monitoring can be performed in the operating state, it is possible to detect intermittent failures that were practically impossible in the past.

【0034】しかしながら、障害点復旧のための遠制ケ
ーブル張り替えを、上記のように、最小の隣接通信ポッ
ト間で行なうと、張り替える遠制ケーブルの量が多く、
その区間内で正常なケーブル部分も捨てることになるこ
とから、資源の無駄が生じるのみならず、張り替えの作
業量や時間も多くなってコストも高くなるという問題が
ある。
However, when the remote control cable is switched between the minimum adjacent communication pots as described above, the remote control cable needs to be replaced in a large amount.
Since a normal cable portion is also discarded in the section, not only resources are wasted, but also the work and time required for replacement are increased, resulting in an increase in cost.

【0035】このような無駄なコストを削減するために
は、前記最小通信ポット間内での障害点の位置をさらに
可及的狭い区間または地点まで絞り込み、張替え区間を
最短に抑えることが望ましい。障害点のより精細な標定
手法としては、パルスレーダ方式が知られている。障害
が永久的なものであるときは、前述のようにして障害点
をより狭い区間または地点にまで絞り込んだ後に、前記
最小通信ポット間の1方端のポットにパルスレーダ方式
障害点標定装置を取り付けて手動操作で起動することに
より、障害点位置の標定ができる。
In order to reduce such wasteful costs, it is desirable to narrow the position of the fault point within the minimum communication pot to a narrower section or point as much as possible, and to minimize the reassignment section. A pulse radar method is known as a finer method for locating a fault point. When the fault is permanent, after narrowing the fault point to a narrower section or point as described above, the pulse radar type fault point locating device is placed at one end between the minimum communication pots. By mounting and manually starting, the location of the fault point can be located.

【0036】しかし、障害が間欠的、不規則で、その発
生タイミングが予測できないときは、上記のような手動
操作による障害点位置標定は極めて困難であり、事実上
不可能に近いので、障害点の標定に長時間を要し、事故
復旧が遅れてしまうことになり易い。事故復旧の迅速化
を優先するためには、最小通信ポット間での遠制ケーブ
ル張り替えを行なわざるを得ないので、遠制ケーブルの
張り替え量や作業量、コストの最少化と事故復旧の迅速
化を両立させることが困難であるという問題があった。
However, when the fault is intermittent or irregular and its occurrence timing cannot be predicted, the fault location by manual operation as described above is extremely difficult and practically impossible. It takes a long time to locate the target, and the accident recovery is likely to be delayed. In order to prioritize quick recovery from accidents, it is necessary to replace the remote control cable between the minimum communication pots. There is a problem that it is difficult to achieve both.

【0037】本発明の第2実施例は、前述の問題を解決
し、検出された遠制ケーブルの障害が間欠的、不規則で
ある場合にも確実かつ可及的迅速に障害点を標定でき、
遠制ケーブルの張り替え量の最少化と事故復旧の迅速化
とを両立させることを可能にするものである。
The second embodiment of the present invention solves the above-mentioned problem, and can locate a fault point reliably and as quickly as possible even when the fault of the detected remote control cable is intermittent or irregular. ,
This makes it possible to achieve both the minimization of the replacement of the remote control cable and the quick recovery of the accident.

【0038】以下に図面を参照して、本発明の第2実施
例を詳細に説明する。後述の各図において、図1〜5と
同一の符号は同一または同等部分を表わす。
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. In each of the drawings described later, the same reference numerals as those in FIGS. 1 to 5 indicate the same or equivalent parts.

【0039】図6は、本実施例に好適な監視信号注入装
置8、障害点検出装置9およびパルスレーダ方式障害点
標定装置40の詳細ブロック図である。なお、当業者に
は自明なように、第1実施例に関して前述した障害箇所
の絞り込みの段階では、パルスレーダ方式障害点標定装
置(以下、「パルスレーダ装置」と略する)は必ずしも
接続される必要はない。また図6では、障害点検出装置
9が接続されている通信ポットに、パルスレーダ装置4
0も共通に接続されるように示されているが、このこと
は必要では無く、別の箇所や障害点検出装置9と共通の
通信ポットに接続されても良い。
FIG. 6 is a detailed block diagram of the monitoring signal injection device 8, the fault point detecting device 9, and the pulse radar type fault point locating device 40 suitable for this embodiment. As will be apparent to those skilled in the art, a pulse radar type fault locating device (hereinafter abbreviated as "pulse radar device") is always connected in the stage of narrowing down the fault location described above with respect to the first embodiment. No need. In FIG. 6, a pulse radar device 4 is connected to a communication pot to which the fault point detection device 9 is connected.
0 is also shown to be connected in common, but this is not necessary, and it may be connected to another location or a common communication pot with the fault point detection device 9.

【0040】第1実施例に関して前述したようにして隣
接する2つの最小通信ポット間(以下、「障害区間」と
略する)まで障害点F1の絞込みが行なわれた後、例え
ば図7に示すように、障害点検出装置9が接続されたポ
ットにパルスレーダ装置40を接続する。そしてパルス
レーダ装置から、パルス信号を注入して障害点からの反
射信号を受信し、その遅れ時間を計測すれば、既知の手
法により、パルスレーダ装置40から障害点F1までの
距離を演算することができる。その際、障害区間の外側
からの反射信号を遮断するために、パルス信号注入点の
障害区間とは反対側の遠制ケーブル2の各線にブロッキ
ングコイル4を直列に接続するのが望ましい。
As described above with reference to the first embodiment, after the fault point F1 is narrowed down to between the two adjacent minimum communication pots (hereinafter, abbreviated as "failure section"), for example, as shown in FIG. Then, the pulse radar device 40 is connected to the pot to which the fault point detection device 9 is connected. If a pulse signal is injected from the pulse radar device to receive a reflected signal from the fault point and the delay time is measured, the distance from the pulse radar device 40 to the fault point F1 can be calculated by a known method. Can be. At this time, in order to cut off a reflected signal from outside the faulty section, it is desirable to connect a blocking coil 4 in series to each line of the remote control cable 2 on the opposite side of the pulse signal injection point from the faulty section.

【0041】図8は、通信ポット3内で、ブロッキング
コイル4を直列に挿入したり、取り外したりする手法を
説明するための図である。直列挿入のためには、初めに
ブロッキングコイル4を通信線に並列に接続した後、×
印の点で通信線を開放すればよい。また前記コイルを取
り除くときは、×印の点の通信線2を接続した後で、前
記コイルを外せば良い。
FIG. 8 is a diagram for explaining a method of inserting and removing the blocking coil 4 in series in the communication pot 3. For serial insertion, after connecting the blocking coil 4 to the communication line in parallel,
The communication line may be opened at the point indicated by the mark. When removing the coil, the coil may be removed after connecting the communication line 2 indicated by the mark x.

【0042】障害が恒久的であるときは、上述のように
パルスレーダ装置を接続して手動で起動させ、通信線2
U、2Dに単パルスを注入してその反射パルスを検出す
れば障害点の標定ができる。しかし、障害が間欠的であ
ると、その障害の発生が不規則で、発生タイミングの予
測も困難であるから、パルスレーダ装置を手動で起動さ
せる方法による障害点標定は極めて困難であり、事実上
不可能に近い。これに対処するために、本実施例では、
障害検出を示す障害点検出装置9からの出力信号でパル
スレーダ装置40からのパルス送信を自動的にトリガ
し、障害点標定動作を開始させ、得られた結果(障害点
までの距離および/または送信パルスに対する反射パル
ス受信の遅れ時間)をメモリに記憶する。
When the fault is permanent, the pulse radar device is connected and activated manually as described above, and the communication line 2 is activated.
If a single pulse is injected into U and 2D and its reflected pulse is detected, the fault point can be located. However, if the failure is intermittent, the occurrence of the failure is irregular, and it is difficult to predict the occurrence timing. Therefore, it is extremely difficult to locate the failure point by manually activating the pulse radar device. Near impossible. To deal with this, in the present embodiment,
The pulse transmission from the pulse radar device 40 is automatically triggered by the output signal from the fault point detection device 9 indicating the fault detection, the fault point locating operation is started, and the obtained result (distance to the fault point and / or The delay time of the reflected pulse reception with respect to the transmission pulse) is stored in the memory.

【0043】以下に、図6、9を参照して本実施例の要
点をさらに詳細に説明する。図6は、隣接する2つの通
信ポット間にまで障害点を絞り込んだ後における、監視
信号注入装置8と障害点検出装置9、パルスレーダ装置
40およびブロッキングコイル4の配置例を示すブロッ
ク図であり、図9は前記パルス送信を起動するトリガ信
号および送出されるパルス信号を示す。
Hereinafter, the main points of the present embodiment will be described in more detail with reference to FIGS. FIG. 6 is a block diagram showing an example of the arrangement of the monitoring signal injection device 8, the fault point detection device 9, the pulse radar device 40, and the blocking coil 4 after narrowing the fault point between two adjacent communication pots. FIG. 9 shows a trigger signal for starting the pulse transmission and a transmitted pulse signal.

【0044】図6において、パルスレーダ装置40は、
障害点検出装置9が間欠的障害を検出したことを示す出
力信号を外部トリガ信号として受信する。これに応答し
て、パルス発信回路34は、予め設定された電圧・幅の
パルス信号を生成し、結合トランス33を介して、遠制
ケーブル2に注入する。
In FIG. 6, the pulse radar device 40 is
An output signal indicating that the fault point detection device 9 has detected an intermittent fault is received as an external trigger signal. In response to this, the pulse transmission circuit 34 generates a pulse signal of a preset voltage and width and injects it into the remote control cable 2 via the coupling transformer 33.

【0045】それと同時に、遠制ケーブル2から取り込
まれた信号がフィルタ回路35に供給され、そこで遠制
信号が取り除かれ、送信パルス信号と遠制ケーブル2の
障害点F1からの反射パルス信号だけがA/D変換回路
36でデジタル化され、その信号波形データがメモリカ
ード(一般的には、メモリ)38に一時保存される。信
号測定完了後に保存された信号波形データから、または
リアルタイムで、処理回路37に搭載されているCPU
を用いて遅延時間を演算し、さらに通信線上の既知のパ
ルス伝搬速度を用いて距離変換を行なうことができる。
At the same time, the signal received from the remote control cable 2 is supplied to the filter circuit 35, where the remote control signal is removed, and only the transmission pulse signal and the reflected pulse signal from the fault point F1 of the remote control cable 2 are output. The signal is digitized by the A / D conversion circuit 36, and the signal waveform data is temporarily stored in a memory card (generally, a memory) 38. The CPU mounted on the processing circuit 37 from the signal waveform data stored after the signal measurement is completed or in real time.
To calculate the delay time, and furthermore, distance conversion can be performed using a known pulse propagation velocity on the communication line.

【0046】さらに、前記信号波形データを(液晶タッ
チパネル)表示器39に出力し、その測定波形から障害
点の位置標定を行なうこともできる。これら装置の動作
電源は直流電源でも交流電源でも適宜に選択できる。ま
た直流電源(バッテリ)でなるべく長期間測定できるよ
うに、前記電源回路の投入を外部トリガ信号によって制
御し、常時は前記電源がオフに保持されるようにするこ
ともできる。
Further, the signal waveform data can be output to a (liquid crystal touch panel) display 39 to determine the position of a fault point from the measured waveform. The operation power supply of these devices can be appropriately selected from a DC power supply and an AC power supply. In addition, the input of the power supply circuit is controlled by an external trigger signal so that the measurement can be performed by a DC power supply (battery) for as long as possible.

【0047】図9は、通信線に注入されるパルス信号の
1例を示すタイムチャートである。遠制ケーブル2の各
線間に、障害点検出装置9からの障害検出出力信号に応
答して自動的にパルス信号を注入し、障害点からの反射
信号が受信されるまでの時間遅れを測定すれば、既知の
演算式にしたがって障害点の位置を標定できる。しか
し、間欠的障害が発生する時刻や間隔はランダムである
ために、単一のパルスを注入する場合は、注入の瞬間に
たまたま間欠障害が発生していなければ、障害点からの
反射信号が得られず、障害点の標定ができないことにな
る。
FIG. 9 is a time chart showing an example of a pulse signal injected into the communication line. A pulse signal is automatically injected between each line of the remote control cable 2 in response to a fault detection output signal from the fault point detection device 9 to measure a time delay until a reflected signal from the fault point is received. For example, the position of the fault point can be located according to a known arithmetic expression. However, since the time and interval at which an intermittent fault occurs are random, if a single pulse is injected, a reflected signal from the fault point will be obtained if no intermittent fault occurs at the moment of injection. This means that the fault point cannot be located.

【0048】この対策として、本実施例では、各線間に
単パルス信号または複数個(図の例では、3個)の連続
パルス信号を注入する。こうすれば、間欠障害発生地点
を高い確率で標定することができる。なお、消費電力量
の節減のためには、連続パルスの個数は少なくした方が
望ましい。また各回線へのパルス注入は、上り回線2U
および下り回線2Dに交互に行なうのが望ましい。この
ように、パルス信号を交互に注入すれば、同相での混触
障害の時、上り・下り両回線にパルスを同タイミングで
注入した場合に、混触障害点で対をなす相手通信線から
流入してくるパルス信号と互いに打ち消し合って、反射
信号が得られなくなり、このために、位置の標定が不可
能になるという不都合が解消される。
As a countermeasure against this, in this embodiment, a single pulse signal or a plurality (three in the example in the figure) of continuous pulse signals is injected between the respective lines. In this way, the intermittent fault occurrence point can be located with a high probability. In order to reduce power consumption, it is desirable to reduce the number of continuous pulses. In addition, pulse injection into each line is performed using the up line 2U.
It is desirable to alternately perform the operation on the downlink 2D. In this way, if the pulse signal is injected alternately, if a pulse is injected into both uplink and downlink lines at the same timing in the case of a touch fault in the same phase, the pulse will flow from the partner communication line that forms a pair at the touch fault point. The inconvenience that the reflected pulse signal cannot be obtained by canceling each other with the incoming pulse signal and thus the position cannot be located is solved.

【0049】上述のように、どちらか一方の回線のみに
パルス信号を注入して、両回線の反射信号を測定した後
に、残りの回線にパルス信号を注入して、両回線の反射
信号を測定すれば、混触点からの反射信号を確実に捕捉
することができ、障害位置の標定が可能となる。
As described above, after injecting a pulse signal into only one of the lines and measuring the reflected signals of both lines, injecting a pulse signal into the remaining lines and measuring the reflected signals of both lines Then, the reflected signal from the touch point can be reliably captured, and the fault position can be located.

【0050】図10は、障害点検出装置9およびパルス
レーダ装置40を監視信号注入装置8と障害点F1との
間に接続した例であり、障害が地絡または混触であっ
て、特に通信線の電流を監視して障害を検知する場合に
有効である。なお図7の接続は障害が断線または短絡で
あって、通信線の電圧を監視して障害を検知する場合に
有効である。
FIG. 10 shows an example in which the fault point detecting device 9 and the pulse radar device 40 are connected between the monitoring signal injecting device 8 and the fault point F1. This is effective when detecting a failure by monitoring the current of the power supply. The connection in FIG. 7 is effective when the failure is a disconnection or a short circuit and the voltage of the communication line is monitored to detect the failure.

【0051】本発明者らの実験によれば、注入するパル
スの幅の選定が距離標定の精度に影響することが分かっ
た。パルス幅が広いと、障害点からの反射レベルが大き
く計測可能距離は伸びるが、一方、パルス幅内に位置す
る障害点からの反射波形は認識できないために、計測不
能領域が広がる欠点がある。すなわち、距離測定精度を
上げるためにはパルス幅は狭いほうが望ましいが、障害
点までの距離が長いときは、測定精度を犠牲にしてもパ
ルス幅を広くして測定範囲を伸ばさなければならない。
実験では、隣接通信ポット間の距離が400m以下のと
きはパルス幅を30n秒、距離が400〜800mのと
きはパルス幅を70n秒、800〜1200mのときは
パルス幅を500n秒に設定したとき、好ましい結果が
得られた。
According to the experiments of the present inventors, it was found that the selection of the pulse width to be injected affects the accuracy of the distance locating. When the pulse width is large, the reflection level from the fault point is large and the measurable distance is extended. On the other hand, since the reflection waveform from the fault point located within the pulse width cannot be recognized, there is a disadvantage that the unmeasurable area is widened. That is, to increase the distance measurement accuracy, it is desirable that the pulse width is narrow. However, when the distance to the fault point is long, the pulse width must be widened to extend the measurement range even if the measurement accuracy is sacrificed.
In the experiment, the pulse width was set to 30 ns when the distance between adjacent communication pots was 400 m or less, the pulse width was set to 70 ns when the distance was 400 to 800 m, and the pulse width was set to 500 ns when the distance was 800 to 1200 m. Preferred results were obtained.

【0052】以上では、パルスレーダ装置40は障害点
検出装置9と同じ通信ポットに接続されるものとした。
このように接続すれば、障害検出を示す信号をトリガ信
号として容易にパルスレーダ装置に供給することができ
る点で有利である。しかし、本発明はこれに限定される
ものではなく、前記障害検出信号をトリガ信号として供
給する手段(例えば、無線通信手段)を準備すれば、他
の適当な任意の箇所にパルスレーダ装置40を接続でき
ることは当然である。
In the above description, the pulse radar device 40 is connected to the same communication pot as the fault point detection device 9.
This connection is advantageous in that a signal indicating failure detection can be easily supplied to the pulse radar device as a trigger signal. However, the present invention is not limited to this. If a means (for example, wireless communication means) for supplying the failure detection signal as a trigger signal is prepared, the pulse radar device 40 can be placed at any other appropriate place. Of course, you can connect.

【0053】以上の説明から明らかなように、第2実施
例によれば、検出された遠制ケーブルの障害が永久的で
あるときはもちろん、間欠的、不規則である場合にも正
確かつ可及的迅速に障害点を標定でき、遠制ケーブルの
張り替え量の最少化と事故復旧の迅速化とを両立させる
ことができる。
As can be seen from the above description, according to the second embodiment, accurate and correct operation is possible not only when the detected fault of the remote control cable is permanent but also intermittently or irregularly. The fault point can be located as quickly as possible, and both the minimization of the replacement of the remote control cable and the quick recovery from the accident can be achieved at the same time.

【0054】[0054]

【発明の効果】本発明によれば、遠制ケーブルを開放し
たり再接続したりすることなしに、障害箇所を短時間
で、容易に、かつ特別の経験や熟練を要せずに検出区間
単位で特定することができるので、障害発生から復旧ま
での時間を大幅に短縮でき、さらにそのための要員数を
減らすことができる。また動作状態での連続監視ができ
るので、従来は事実上不可能であった間欠性の障害の検
出もできるようになる。
According to the present invention, a fault location can be detected in a short time, easily and without any special experience or skill without opening or reconnecting a remote control cable. Since it can be specified in units, the time from the occurrence of a failure to the recovery can be greatly reduced, and the number of personnel for that can be reduced. In addition, since continuous monitoring can be performed in the operating state, it is possible to detect intermittent failures that were practically impossible in the past.

【0055】また検出された遠制ケーブルの障害が永久
的であるときはもちろん、間欠的、不規則である場合に
も正確かつ可及的迅速に障害点を標定でき、遠制ケーブ
ルの張り替え量の最少化と事故復旧の迅速化とを両立さ
せることができる。
Further, even when the detected fault of the remote control cable is permanent or intermittent or irregular, the fault point can be located accurately and as quickly as possible. Minimization of accidents and quick recovery of accidents can be achieved at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の概要を示すブロック図であ
る。
FIG. 1 is a block diagram showing an outline of one embodiment of the present invention.

【図2】図1に示した監視信号注入装置および障害点検
出装置の詳細を示すブロック図である。
FIG. 2 is a block diagram showing details of a monitoring signal injection device and a fault point detection device shown in FIG. 1;

【図3】実際の配電線系統に本発明を適用した場合の動
作を説明するための概念図である。
FIG. 3 is a conceptual diagram for explaining an operation when the present invention is applied to an actual distribution line system.

【図4】各種障害の場合の本発明の検出動作を説明する
ための概念図である。
FIG. 4 is a conceptual diagram for explaining a detection operation of the present invention in the case of various failures.

【図5】従来の代表的な有線式配電線遠方監視制御系統
の1例を示す概略図である。
FIG. 5 is a schematic diagram showing an example of a conventional typical wired distribution line remote monitoring control system.

【図6】本発明の第2実施例に好適な監視信号注入装
置、障害点検出装置およびパルスレーダ方式障害点標定
装置の詳細ブロック図である。
FIG. 6 is a detailed block diagram of a monitoring signal injection device, a fault point detecting device, and a pulse radar type fault point locating device suitable for the second embodiment of the present invention.

【図7】本発明の第2実施例を示す概略ブロック図であ
る。
FIG. 7 is a schematic block diagram showing a second embodiment of the present invention.

【図8】ブロッキングコイルの接続、取り外しを説明す
るための回路図である。
FIG. 8 is a circuit diagram for explaining connection and removal of a blocking coil.

【図9】パルスレーダ方式障害点標定装置の外部トリガ
信号および注入パルスの1例を示す波形図である。
FIG. 9 is a waveform diagram showing an example of an external trigger signal and an injection pulse of the pulse radar type fault locating device.

【図10】本発明のさらに他の実施態様を示す概略ブロ
ック図である。
FIG. 10 is a schematic block diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1は配電線遠方監視制御親局装置、2は遠制ケーブル、
3、3a〜3dは通信ポット、4はブロッキングコイ
ル、5は配電線遠方監視制御子局装置、6は高圧開閉
器、7は高圧配電線、8は監視信号注入装置、9は障害
点検出装置、17は位相変調回路、18は発信回路、2
7は処理回路、40はパルスレーダ方式障害点標定装置
である。
1 is a distribution line remote monitoring control master station device, 2 is a remote control cable,
3, 3a to 3d are communication pots, 4 is a blocking coil, 5 is a distribution line remote monitoring and control slave station device, 6 is a high voltage switch, 7 is a high voltage distribution line, 8 is a monitoring signal injection device, and 9 is a fault point detection device. , 17 is a phase modulation circuit, 18 is a transmission circuit, 2
Reference numeral 7 denotes a processing circuit, and reference numeral 40 denotes a pulse radar type fault locating device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 幸野 辰己 大分県臼杵市大字臼杵字洲崎72番地32 九 州電力株式会社臼杵営業所内 (72)発明者 弥永 博史 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 飯田 洋 福岡県福岡市中央区渡辺通二丁目1番82号 九州電力株式会社内 (72)発明者 渡邊 裕二 大分県大分市金池町二丁目3番4号 九州 電力株式会社大分営業所内 (72)発明者 笹渕 晃 福岡県福岡市南区清水四丁目19番18号 九 州電機製造株式会社内 (72)発明者 神田 洋典 福岡県福岡市南区清水四丁目19番18号 九 州電機製造株式会社内 (72)発明者 有吉 恭幸 福岡県福岡市南区清水四丁目19番18号 九 州電機製造株式会社内 (72)発明者 石原 智海 福岡県福岡市南区清水四丁目19番18号 九 州電機製造株式会社内 Fターム(参考) 5K042 AA08 CA06 DA15 DA27 DA33 DA35 EA05 EA06 EA07 FA06 FA15 FA29 GA02 GA06 GA12 HA01 HA07 JA01 JA03 JA08 LA01 LA11 MA01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsumi Kono 72-32 Suzaki, Usuki-shi, Usuki-shi, Oita Prefecture Inside Usuki Office, Kyushu Electric Power Co., Inc. No. 1-82 Kyushu Electric Power Co., Inc. No. 3-4 Kyushu Electric Power Co., Inc.Oita Sales Office 4-19-18 Shimizu-ku, Kyushu Electric Manufacturing Co., Ltd. (72) Inventor Yasuyuki Ariyoshi 4-19-18 Shimizu Minami-ku, Fukuoka City, Fukuoka Prefecture Kyushu Electric Manufacturing Co., Ltd. (72) Akiha Tomiumi Ishihara 4-18-18 Shimizu, Minami-ku, Fukuoka City, Fukuoka Prefecture F-term (reference) 5K042 AA08 CA06 DA15 DA27 DA33 DA35 EA05 EA06 EA07 FA06 FA15 FA29 GA02 GA06 GA12 HA01 HA07 JA01 JA08 JA08 JA08 LA01 LA11 MA01

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】配電線に対応して、親局と複数の子局とを
接続するように敷設され、当該配電系統の監視および制
御を行なうための有線式配電線遠方監視制御用通信ケー
ブルの障害点探査方法であって、 前記通信ケーブルの任意箇所から既知特性の監視信号を
注入する段階と、 前記通信ケーブルの別の箇所で、前記監視信号を検出す
る段階と、 検出された監視信号の電圧、電流の少なくとも一方の大
きさを、前記監視信号の検出地点において予測される電
圧、電流基準値の少なくとも一方と比較し、比較結果に
したがって、前記通信ケーブルの障害箇所が、監視信号
検出地点を起点として前記信号注入地点の側にあるか否
かを判定する段階とよりなることを特徴とする有線式配
電線遠方監視制御用通信ケーブルの障害点探査方法。
1. A communication cable for distant monitoring and control of a wired distribution line, which is laid so as to connect a master station and a plurality of slave stations corresponding to a distribution line, and performs monitoring and control of the distribution system. A method of locating a fault, comprising: injecting a monitoring signal having a known characteristic from an arbitrary portion of the communication cable; detecting the monitoring signal at another portion of the communication cable; The magnitude of at least one of the voltage and the current is compared with at least one of the voltage and the current reference value predicted at the detection point of the monitoring signal, and according to the comparison result, the fault location of the communication cable is changed to the monitoring signal detection point. And determining whether or not it is on the side of the signal injection point from the starting point of the signal transmission point.
【請求項2】前記通信ケーブルの前記別の箇所で、前記
通信ケーブル上を伝送される遠方監視制御用信号のデー
タエラーを検出する段階をさらに含み、 前記比較結果の外に、前記データエラーの有無をも勘案
して、前記通信ケーブルの障害箇所が、監視信号検出地
点を起点として前記信号注入地点の側にあるか否かを判
定することを特徴とする請求項1に記載の有線式配電線
遠方監視制御用通信ケーブルの障害点探査方法。
2. The method according to claim 2, further comprising the step of detecting a data error of the remote monitoring control signal transmitted on the communication cable at the another portion of the communication cable, 2. The wired distribution system according to claim 1, wherein it is determined whether or not the fault location of the communication cable is on the side of the signal injection point starting from a monitoring signal detection point in consideration of presence / absence. Fault detection method for communication cables for remote monitoring and control of electric wires.
【請求項3】検出された監視信号の電圧、電流の大き
さ、遠方監視制御用信号のデータエラー、および前記通
信ケーブルの障害箇所が、監視信号検出地点を起点とし
て前記信号注入地点の側にあるか否かの判定結果の少な
くとも1つを記憶する段階をさらに含み、 記憶されたデータに基づいて、前記通信ケーブルの障害
箇所が、監視信号検出地点を起点として前記信号注入地
点の側にあるか否かを判定することを特徴とする請求項
2に記載の有線式配電線遠方監視制御用通信ケーブルの
障害点探査方法。
3. The detected monitoring signal voltage and current magnitude, a remote monitoring control signal data error, and a fault location of the communication cable are located on the signal injection point side from the monitoring signal detection point. Storing at least one of the determination results as to whether or not there is a fault location of the communication cable on the side of the signal injection point starting from a monitoring signal detection point based on the stored data. 3. The method according to claim 2, wherein it is determined whether or not the fault is detected.
【請求項4】配電線に対応して、親局と複数の子局とを
接続するように敷設され、当該配電系統の監視および制
御を行なうための有線式配電線遠方監視制御用通信ケー
ブルの障害点標定方法であって、 前記通信ケーブルの任意箇所から既知特性の監視信号を
注入し、前記通信ケーブルの別の箇所で、前記監視信号
を検出する段階と、 検出された監視信号の電圧、電流の少なくとも一方の大
きさを、前記監視信号の検出箇所において予測される電
圧、電流基準値と比較する段階と、 前記比較の結果にしたがって、前記通信ケーブルの障害
箇所が、監視信号検出地点を起点として前記信号注入地
点の側にあるか否かを判定し、これに基づいて障害箇所
を予定の距離範囲内に絞り込む段階と、 その後さらに、前記監視信号の注入および検出を行な
い、前記障害の検出を示す出力信号に応答して、前記通
信ケーブルの前記絞り込まれた予定距離範囲に向けてパ
ルス信号を送信し、パルスレーダ方式にしたがってパル
ス信号送信位置から前記障害箇所までの距離を測定し、
障害点の位置を標定する段階とよりなることを特徴とす
る有線式配電線遠方監視制御用通信ケーブルの障害点標
定方法。
4. A communication cable for distant monitoring and control of a wired distribution line laid to connect a master station and a plurality of slave stations corresponding to a distribution line and for monitoring and controlling the distribution system. A fault point locating method, wherein a monitoring signal having a known characteristic is injected from an arbitrary portion of the communication cable, and the monitoring signal is detected at another portion of the communication cable; and a voltage of the detected monitoring signal, Comparing the magnitude of at least one of the currents with a voltage predicted at the detection point of the monitoring signal, a current reference value, and, according to a result of the comparison, a failure point of the communication cable determines a monitoring signal detection point. Determining whether or not it is on the side of the signal injection point as a starting point, and narrowing down the fault location within a predetermined distance range based on the determination; and further, injection and detection of the monitoring signal are performed. In response to the output signal indicating the detection of the fault, a pulse signal is transmitted toward the narrowed scheduled distance range of the communication cable, and a pulse signal is transmitted from the pulse signal transmission position to the fault location according to a pulse radar method. Measure the distance,
A method of locating a point of failure, the method comprising: locating a point of a failure;
【請求項5】前記監視信号検出位置および予定のパルス
信号送信位置は、前記通信ケーブル上の実質上同一点で
あることを特徴とする請求項4に記載の有線式配電線遠
方監視制御用通信ケーブルの障害点標定方法。
5. The communication for remote monitoring control of a wired distribution line according to claim 4, wherein the monitoring signal detection position and the predetermined pulse signal transmission position are substantially the same point on the communication cable. Fault location method for cable.
【請求項6】パルス信号送信の間、パルス信号送信位置
の障害点とは反対側の通信ケーブルに、前記パルス信号
の通過を阻止するブロッキングコイルを直列に接続する
ことを特徴とする請求項4または5に記載の有線式配電
線遠方監視制御用通信ケーブルの障害点標定方法。
6. The communication system according to claim 4, wherein, during transmission of the pulse signal, a blocking coil for blocking passage of the pulse signal is connected in series to a communication cable on the opposite side of the pulse signal transmission position from the fault point. Or the fault locating method of the communication cable for remote monitoring control of the wired distribution line according to 5.
【請求項7】前記ブロッキングコイルは、通常の通信信
号は通過させることを特徴とする請求項6に記載の有線
式配電線遠方監視制御用通信ケーブルの障害点標定方
法。
7. The method according to claim 6, wherein the blocking coil allows a normal communication signal to pass therethrough.
【請求項8】前記パルス信号の送信は前記障害検出を示
す出力信号によってトリガされることを特徴とする請求
項4ないし7のいずれかに記載の有線式配電線遠方監視
制御用通信ケーブルの障害点標定方法。
8. The communication cable for remote monitoring and control of a wired distribution line according to claim 4, wherein the transmission of the pulse signal is triggered by an output signal indicating the detection of the failure. Point location method.
【請求項9】パルス信号送信位置から前記障害箇所まで
の距離の測定値を記憶する段階をさらに含む請求項4な
いし8のいずれかに記載の有線式配電線遠方監視制御用
通信ケーブルの障害点標定方法。
9. The fault point of the communication cable for remote monitoring and control of a wired distribution line according to claim 4, further comprising a step of storing a measured value of a distance from a pulse signal transmission position to the fault location. Orientation method.
【請求項10】前記パルス信号のパルス幅が、前記パル
ス信号送信位置から前記障害箇所までの距離レンジに応
じて、距離が長いほど広く設定される請求項4ないし9
のいずれかに記載の有線式配電線遠方監視制御用通信ケ
ーブルの障害点標定方法。
10. The pulse width of the pulse signal is set wider as the distance is longer, according to a distance range from the pulse signal transmission position to the fault location.
The method for locating a fault of a communication cable for remote monitoring and control of a wired distribution line according to any one of the above.
【請求項11】前記任意箇所および別の箇所の少なくと
も一方は、前記通信ケーブルに予め設けられた通信ポッ
トであることを特徴とする請求項1〜10のいずれかに
記載の有線式配電線遠方監視制御用通信ケーブルの障害
点探査・標定方法。
11. The distant wired distribution line according to claim 1, wherein at least one of said arbitrary location and another location is a communication pot provided on said communication cable in advance. Fault detection and locating method for communication cables for monitoring and control.
【請求項12】既知特性の監視信号を生成する発信回
路、および前記監視信号を、配電線に対応して、親局と
複数の子局とを接続するように敷設され、当該配電系統
の監視および制御を行なうための有線式配電線遠方監視
制御用通信ケーブルの任意箇所に結合させて注入する結
合手段を具備した監視信号注入装置と、 前記ケーブルに結合してその電流および電圧の少なくと
も一方を検出するための結合手段、検出された前記電流
および電圧の少なくとも一方から、前記監視信号の電流
および電圧成分の少なくとも一方を抽出するフィルタ手
段、前記監視信号の注入地点において予測される前記監
視信号の電圧、電流の少なくとも一方の基準値を記憶す
る手段、および抽出された前記監視信号の電圧、電流の
少なくとも一方の大きさを、前記基準値と比較し、比較
結果にしたがって、前記通信ケーブルの障害箇所が、監
視信号検出地点を起点として前記信号注入地点の側にあ
るか否かを判定する処理回路を具備した検出装置との組
合わせよりなることを特徴とする有線式配電線遠方監視
制御用通信ケーブルの障害点探査装置。
12. A transmission circuit for generating a monitoring signal having a known characteristic, and the monitoring signal is laid to connect a master station and a plurality of slave stations corresponding to a distribution line, and monitors the distribution system. And a monitoring signal injection device having a coupling means for coupling and injecting into an arbitrary portion of a communication cable for remote monitoring and control of a wired distribution line for performing control, and at least one of the current and the voltage by coupling to the cable. Coupling means for detecting, filter means for extracting at least one of a current and a voltage component of the monitor signal from at least one of the detected current and voltage, and a filter means for extracting the monitor signal predicted at an injection point of the monitor signal Means for storing a reference value of at least one of a voltage and a current, and a magnitude of at least one of a voltage and a current of the extracted monitoring signal, A pair with a detection device including a processing circuit that determines whether or not the fault location of the communication cable is on the side of the signal injection point starting from the monitoring signal detection point according to the comparison result. A fault locating device for a communication cable for remote monitoring and control of a wired distribution line, which is characterized by combining.
【請求項13】前記検出装置が、前記ケーブル上を伝送
される遠方監視制御用信号のデータエラーを検出する手
段をさらに含み、前記処理回路は前記比較結果の外に、
前記データエラーの有無をも勘案して、前記通信ケーブ
ルの障害箇所が、監視信号検出地点を起点として前記信
号注入地点の側にあるか否かを判定することを特徴とす
る請求項12に記載の有線式配電線遠方監視制御用通信
ケーブルの障害点探査装置。
13. The processing apparatus according to claim 13, wherein said detecting device further includes means for detecting a data error of a remote monitoring control signal transmitted on said cable, and wherein said processing circuit outputs:
13. The method according to claim 12, further comprising determining whether or not the failure point of the communication cable is on the side of the signal injection point starting from a monitoring signal detection point in consideration of the presence or absence of the data error. Locating equipment for communication cables for remote monitoring and control of wired distribution lines.
【請求項14】前記検出装置が、抽出された監視信号の
電圧、電流の大きさ、および前記通信ケーブルの障害箇
所が、監視信号検出地点を起点として前記信号注入地点
の側にあるか否かの判定結果の少なくとも1つを記憶す
るメモリをさらに含み、前記処理回路は記憶されたデー
タに基づいて、前記通信ケーブルの障害箇所が、監視信
号検出地点を起点として前記信号注入地点の側にあるか
否かを判定することを特徴とする請求項12に記載の有
線式配電線遠方監視制御用通信ケーブルの障害点探査装
置。
14. The detection apparatus according to claim 1, wherein a voltage and a current of the extracted monitor signal are detected, and whether or not a failure point of the communication cable is located on the side of the signal injection point from a monitor signal detection point. Further comprising a memory for storing at least one of the determination results of the above, wherein the processing circuit is configured such that, based on the stored data, the fault location of the communication cable is on the side of the signal injection point from a monitoring signal detection point. 13. The apparatus for locating a fault in a communication cable for remote monitoring and control of a wired distribution line according to claim 12, wherein it is determined whether or not the fault has occurred.
【請求項15】前記メモリはさらに、前記検出装置にお
いて受信された遠方監視制御用信号のデータエラーの有
無をも記憶することを特徴とする請求項13または14
に記載の有線式配電線遠方監視制御用通信ケーブルの障
害点探査装置。
15. The memory according to claim 13, wherein said memory further stores the presence / absence of a data error in the remote monitoring control signal received by said detection device.
Fault detecting device for a communication cable for remote monitoring and control of a wired distribution line according to [1].
【請求項16】前記発信回路は互いに異なる特性の複数
種の監視信号を発生し、監視信号注入装置は並設された
複数対の通信ケーブルのそれぞれに前記異なる特性の監
視信号を注入することを特徴とする請求項12〜15の
いずれかに記載の有線式配電線遠方監視制御用通信ケー
ブルの障害点探査装置。
16. The transmission circuit generates a plurality of types of monitoring signals having different characteristics from each other, and the monitoring signal injection device injects the monitoring signals having the different characteristics into each of a plurality of pairs of communication cables arranged in parallel. The fault locating device for a communication cable for remote monitoring and control of a wired distribution line according to any one of claims 12 to 15, characterized in that:
【請求項17】前記互いに異なる特性の複数種の監視信
号は、同一周波数で互いに位相を異にすることを特徴と
する請求項16に記載の有線式配電線遠方監視制御用通
信ケーブルの障害点探査装置。
17. The fault point of the communication cable for remote monitoring and control of a wired distribution line according to claim 16, wherein the plurality of types of monitoring signals having different characteristics have different phases at the same frequency. Exploration equipment.
【請求項18】既知特性の監視信号を生成する発信回
路、および前記監視信号を、配電線に対応して、親局と
複数の子局とを接続するように敷設され、当該配電系統
の監視および制御を行なうための有線式配電線遠方監視
制御用通信ケーブルの任意箇所に結合させて注入する結
合手段を具備した監視信号注入装置と、 前記ケーブルに結合してその電流および電圧の少なくと
も一方を検出するための結合手段、検出された前記電流
および電圧の少なくとも一方から、前記監視信号の電流
および電圧成分の少なくとも一方を抽出するフィルタ手
段、前記監視信号の検出箇所において予測される前記監
視信号の電圧、電流の少なくとも一方の基準値を記憶す
る手段、および抽出された前記監視信号の電圧、電流の
少なくとも一方の大きさを、前記基準値と比較し、比較
結果にしたがって、前記通信ケーブルの障害箇所が、監
視信号検出地点を起点として前記信号注入地点の側にあ
るか否かを判定する処理回路を具備した障害検出装置
と、 パルス信号を前記通信ケーブルに注入するパルス発信回
路、前記通信ケーブル上のパルス信号を取り込むフィル
タ回路、注入されたパルス信号からの取り込まれたパル
ス信号の遅延時間に基づいて障害点までの距離を標定す
る処理演算回路を具備し、前記障害検出装置からの障害
検出に応答して起動されるパルスレーダ方式障害点標定
装置との組合わせよりなることを特徴とする有線式配電
線遠方監視制御用通信ケーブルの障害点標定装置。
18. A transmission circuit for generating a monitoring signal having a known characteristic, and the monitoring signal is laid so as to connect a master station and a plurality of slave stations corresponding to a distribution line, and monitors the distribution system. And a monitoring signal injection device having a coupling means for coupling and injecting into an arbitrary portion of a communication cable for remote monitoring and control of a wired distribution line for performing control, and at least one of the current and the voltage by coupling to the cable. Coupling means for detecting, filter means for extracting at least one of a current and a voltage component of the monitor signal from at least one of the detected current and voltage, detection of the monitor signal predicted at a detection point of the monitor signal Means for storing a reference value of at least one of a voltage and a current, and a magnitude of at least one of a voltage and a current of the extracted monitoring signal, Compared with the quasi-value, according to the comparison result, a fault detection device including a processing circuit that determines whether the fault location of the communication cable is on the side of the signal injection point from a monitoring signal detection point, A pulse transmission circuit that injects a pulse signal into the communication cable, a filter circuit that captures the pulse signal on the communication cable, and a distance to a fault point based on a delay time of the pulse signal captured from the injected pulse signal Characterized in that it comprises a combination with a pulse radar type fault locating device which is started in response to a fault detection from the fault detecting device. Cable fault locator.
【請求項19】前記障害検出装置およびパルスレーダ方
式障害点標定装置が前記通信ケーブルの共通の通信ポッ
トに接続されることを特徴とする請求項18に記載の有
線式配電線遠方監視制御用通信ケーブルの障害点標定装
置。
19. The communication for remote monitoring and control of a wired distribution line according to claim 18, wherein the failure detection device and the pulse radar type failure point locating device are connected to a common communication pot of the communication cable. Cable fault locator.
【請求項20】前記通信ケーブルは複数回線よりなり、
各回線へのパルス注入タイミングがずらされることを特
徴とする請求項18または19に記載の有線式配電線遠
方監視制御用通信ケーブルの障害点標定装置。
20. The communication cable comprises a plurality of lines,
20. The fault locating device for a communication cable for remote monitoring and control of a wired distribution line according to claim 18, wherein the pulse injection timing to each line is shifted.
JP2000005372A 2000-01-14 2000-01-14 Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines Expired - Fee Related JP4301353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005372A JP4301353B2 (en) 2000-01-14 2000-01-14 Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005372A JP4301353B2 (en) 2000-01-14 2000-01-14 Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines

Publications (2)

Publication Number Publication Date
JP2001196980A true JP2001196980A (en) 2001-07-19
JP4301353B2 JP4301353B2 (en) 2009-07-22

Family

ID=18534048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005372A Expired - Fee Related JP4301353B2 (en) 2000-01-14 2000-01-14 Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines

Country Status (1)

Country Link
JP (1) JP4301353B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023105A (en) * 2004-07-06 2006-01-26 Hitachi Cable Ltd Method of detecting disconnection in electric wire
JP2009005140A (en) * 2007-06-22 2009-01-08 Eteitsuku:Kk Test equipment, and test method
JP2009273203A (en) * 2008-05-01 2009-11-19 Nishimu Electronics Industries Co Ltd Method and device for locating fault point or searching route of communication cable for wired remote supervisory control of distribution line
JP2012109716A (en) * 2010-11-16 2012-06-07 Kyuden Technosystems Corp Abnormality detection device of composite cable of wired paging system
CN111190075A (en) * 2020-02-06 2020-05-22 云南电网有限责任公司电力科学研究院 Distribution line fault positioning method based on pulse signal injection
CN113740777A (en) * 2021-09-07 2021-12-03 北京百度网讯科技有限公司 Line seeking equipment and line seeking method thereof, host and slave
CN114035107A (en) * 2021-10-21 2022-02-11 广西电网有限责任公司河池供电局 Intermittent earth fault detection system and method
US11435383B2 (en) 2017-02-08 2022-09-06 Mitsubishi Electric Corporation Information processing apparatus, information processing method, and computer readable medium
CN115833875A (en) * 2022-01-18 2023-03-21 宁德时代新能源科技股份有限公司 Daisy chain communication fault detection method, positioning detection method and circuit
WO2023221428A1 (en) * 2022-05-17 2023-11-23 云南电网有限责任公司临沧供电局 Split-phase switch-based fault search system and method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023105A (en) * 2004-07-06 2006-01-26 Hitachi Cable Ltd Method of detecting disconnection in electric wire
JP2009005140A (en) * 2007-06-22 2009-01-08 Eteitsuku:Kk Test equipment, and test method
JP4495750B2 (en) * 2007-06-22 2010-07-07 株式会社エティック Test apparatus and test method
JP2009273203A (en) * 2008-05-01 2009-11-19 Nishimu Electronics Industries Co Ltd Method and device for locating fault point or searching route of communication cable for wired remote supervisory control of distribution line
JP2012109716A (en) * 2010-11-16 2012-06-07 Kyuden Technosystems Corp Abnormality detection device of composite cable of wired paging system
US11435383B2 (en) 2017-02-08 2022-09-06 Mitsubishi Electric Corporation Information processing apparatus, information processing method, and computer readable medium
CN111190075A (en) * 2020-02-06 2020-05-22 云南电网有限责任公司电力科学研究院 Distribution line fault positioning method based on pulse signal injection
CN113740777A (en) * 2021-09-07 2021-12-03 北京百度网讯科技有限公司 Line seeking equipment and line seeking method thereof, host and slave
CN114035107A (en) * 2021-10-21 2022-02-11 广西电网有限责任公司河池供电局 Intermittent earth fault detection system and method
CN115833875A (en) * 2022-01-18 2023-03-21 宁德时代新能源科技股份有限公司 Daisy chain communication fault detection method, positioning detection method and circuit
CN115833875B (en) * 2022-01-18 2023-11-17 宁德时代新能源科技股份有限公司 Daisy chain communication fault detecting method, positioning detecting method and circuit
WO2023221428A1 (en) * 2022-05-17 2023-11-23 云南电网有限责任公司临沧供电局 Split-phase switch-based fault search system and method

Also Published As

Publication number Publication date
JP4301353B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
EP1606638B1 (en) Method of precisely determining the location of a fault on an electrical transmision system
EP2985613B1 (en) Method and system for detecting and locating single-phase ground fault on low current grounded power-distribution network
EP2437075B1 (en) Locating partial discharge in a power cable
JP2017515113A (en) Smart sensor network for power grid health monitoring
KR101519923B1 (en) A partial discharge detection system for a distributing board with the acoustic emission sensor
CN106415286A (en) System and method for pulsed ground fault detection and localization
CN102420420A (en) Single-phase grounding protection method and system
WO2006025870A2 (en) Method of precisely determining the location, and validity of a fault on an electrical transmission system
WO2008070766A2 (en) Fiber optic fault detection system and method for underground power lines
KR20200033536A (en) Apparatus for detecting fault location of underground cable and method thereof
JP2001196980A (en) Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control
EP2725367B1 (en) Method and device for monitoring partial discharges
CN102540009A (en) Fault locating system of power distribution network
US20230194580A1 (en) System and method for management of electric grid
EP1516194B1 (en) Method and system for transmitting an information signal over a power cable
EP3499252A1 (en) Single-phase-to-ground fault detection method and device based on electric field induction, and storage medium
CN101957421B (en) Method for detecting and monitoring high-resistance ground fault by online zero setting and test device thereof
US11619681B2 (en) Methods, devices and systems for detecting an isolation fault in an electrical installation
CN110794335A (en) Single-phase grounding detection system based on waveform difference and detection method thereof
EP4246154A1 (en) System and method for detecting faults in medium voltage circuits
EP3767314B1 (en) Fault location in an hvdc system
CN210835137U (en) Ship insulation monitoring and fault positioning system
CN108369254A (en) The method for positioning the failure in power transmission medium
KR100953684B1 (en) Distrtibuting board cabinet panel for tunnel lamp controlling with capability of detecting function loose contact and arc
JP3305815B2 (en) Power cable fault point detection method and device

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20000203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20000511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090318

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees