JP2001196191A - Organic thin film luminous display and its manufacturing method - Google Patents

Organic thin film luminous display and its manufacturing method

Info

Publication number
JP2001196191A
JP2001196191A JP2000006891A JP2000006891A JP2001196191A JP 2001196191 A JP2001196191 A JP 2001196191A JP 2000006891 A JP2000006891 A JP 2000006891A JP 2000006891 A JP2000006891 A JP 2000006891A JP 2001196191 A JP2001196191 A JP 2001196191A
Authority
JP
Japan
Prior art keywords
electrodes
pixel
electrode
current
organic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006891A
Other languages
Japanese (ja)
Inventor
Takatoshi Onoda
貴稔 小野田
Yotaro Shiraishi
洋太郎 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000006891A priority Critical patent/JP2001196191A/en
Publication of JP2001196191A publication Critical patent/JP2001196191A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To offer an organic thin film luminous display and its manufacturing method which is prevented from deteriorating in display image quality due to generating of a short circuit defect at the time of a long-term drive and is enabled to suppress a short-circuit current. SOLUTION: The organic thin film luminous display comprising a first electrode 7 of two or more rows configured on a transparent substrate 1 in a thin strip shape; a second electrode 8 of two or more rows configured in the thin strip shape in the direction which intersects perpendicularly with the first electrode 7; an organic emission layer sandwiched between the first electrode 7 and the second electrode 8 at least; and a pixel 10 constituted by intersection points of the electrodes 7 and 8 respectively; displays an information by taking out an electro-luminescence by impressing a voltage between the electrodes 7 and 8 which constitutes a desired pixel 10, wherein a plural of the first electrodes 7 have at least 3 functions which are an electricity supply function supplying current to the corresponding pixel 10, a transparent electrode function taking out electric luminescence in the pixel 10, and an interception function disconnecting wire by an over-current in the pixel 10 at the time of the short circuit between both the electrodes 7 and 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイとし
て用いられる有機発光素子に関し、詳しくは、長期にわ
たって駆動可能で、かつ、高い信頼性を有するパッシブ
マトリクス型有機発光ディスプレイおよびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic light emitting device used as a display, and more particularly, to a passive matrix organic light emitting display which can be driven for a long period of time and has high reliability, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】有機発光素子は、自己発光型素子である
ために視認性が高く、低電圧で駆動できるという特徴を
持つことから、実用化に関する研究が積極的になされて
いる(Appl.Phys.Lett.,51,913,1987)。かかる有機発
光素子としては、透明基板上に、陽極としての透明導電
性膜と、有機物からなる正孔輸送層および発光層と、陰
極としての金属膜とを形成した2層の有機層を有する構
造や、有機層が正孔輸送層、発光層および電子輸送層の
3層からなる構造のものが知られている。
2. Description of the Related Art Organic light-emitting devices are self-luminous devices and have high visibility and can be driven at a low voltage. Therefore, research on practical use has been actively conducted (Appl. Phys. .Lett., 51, 913, 1987). Such an organic light emitting device has a structure in which a transparent conductive film as an anode, a hole transport layer and a light emitting layer made of an organic substance, and a metal film as a cathode are formed on a transparent substrate. Also, a structure in which an organic layer has a three-layer structure of a hole transport layer, a light emitting layer, and an electron transport layer is known.

【0003】有機発光素子の発光機構は次のように考え
られている。陰極から注入された電子と、陽極から注入
された正孔とが、発光層中の蛍光性色素分子において励
起子を生成し、この励起子が輻射再結合する過程でエレ
クトロルミネッセンス(以下、「EL」とも称する)を
放つ。このエレクトロルミネッセンスが陽極である透明
導電性膜および透明基板を通して外部に放出され、発光
を生ずるのである。
The light emitting mechanism of an organic light emitting device is considered as follows. Electrons injected from the cathode and holes injected from the anode generate excitons in the fluorescent dye molecules in the light-emitting layer, and electroluminescence (hereinafter, referred to as “EL”) occurs in a process in which the excitons radiatively recombine. "). The electroluminescence is emitted to the outside through the transparent conductive film and the transparent substrate, which are the anode, and emits light.

【0004】有機発光素子を用いたディスプレイの一つ
に、図1に示すような、パッシブマトリクス型(単純マ
トリクス型)ディスプレイがある。かかるパッシブマト
リクス型有機発光ディスプレイは、透明基板1上の複数
列の陽極7(第一の電極、データライン)と、陽極と交
差する複数列の陰極8(第二の電極、アドレスライン)
と、これらに挟持された、有機発光層を含む有機層5と
から構成される。陽極7と陰極8との交差領域が一の画
素10を形成し、この画素10が複数個配列することに
より表示部分が形成されており、陽極および陰極を表示
部から基板周囲へ延長して形成した接続部を介して、外
部駆動回路と表示部とを接続することにより、ディスプ
レイ装置が構成される。
[0004] As one of displays using an organic light emitting element, there is a passive matrix type (simple matrix type) display as shown in FIG. Such a passive matrix type organic light emitting display comprises a plurality of rows of anodes 7 (first electrodes, data lines) on a transparent substrate 1 and a plurality of rows of cathodes 8 (second electrodes, address lines) crossing the anodes.
And an organic layer 5 including an organic light emitting layer sandwiched therebetween. The intersection area between the anode 7 and the cathode 8 forms one pixel 10, and a display portion is formed by arranging a plurality of pixels 10. The anode and the cathode extend from the display portion to the periphery of the substrate. The display device is configured by connecting the external drive circuit and the display unit via the connection unit.

【0005】最近では、有機発光素子の発光応答速度の
速さを活かした高精細なパッシブマトリクス型カラーデ
ィスプレイの研究が進んでおり、フルカラー表示や動画
表示といった情報機器用途での低コストの高品位ディス
プレイ実現への期待が高まってきている。
Recently, research on a high-definition passive matrix type color display utilizing the high light emission response speed of an organic light emitting device has been advanced, and low cost and high quality for information equipment applications such as full color display and moving image display. Expectations for the realization of displays are increasing.

【0006】前述したように、有機発光素子は電流注入
によりエレクトロルミネッセンスを得るデバイスであ
り、液晶ディスプレイ等の電界デバイスに比して大きな
電流を制御しうる駆動回路と、大きな電流を流し得る陽
極および陰極を必要とする。
As described above, the organic light emitting device is a device that obtains electroluminescence by injecting current, and includes a driving circuit capable of controlling a large current as compared with an electric field device such as a liquid crystal display, an anode capable of flowing a large current, and an anode. Requires a cathode.

【0007】パッシブマトリクス型有機発光ディスプレ
イに用いられる電極としては、陽極にはインジウム錫酸
化物(ITO)やインジウム亜鉛酸化物、酸化錫等の透
明導電性金属酸化物が挙げられ、また、陰極にはAlや
Al合金、Mg合金等の低仕事関数金属が挙げられる。
透明性金属酸化物の抵抗率は、金属配線材料として用い
られるAl等に比較して大きく、また、透明導電性膜と
してある程度の可視光透過性を保つ必要があるため、膜
厚が制限される。このため、陽極の配線抵抗が大きくな
る傾向がある。
As an electrode used for a passive matrix type organic light emitting display, a transparent conductive metal oxide such as indium tin oxide (ITO), indium zinc oxide, or tin oxide is used for an anode, and a cathode is used for a cathode. Is a low work function metal such as Al, an Al alloy, and an Mg alloy.
The resistivity of the transparent metal oxide is larger than that of Al or the like used as a metal wiring material, and the film thickness is limited because it is necessary to maintain a certain degree of visible light transmittance as a transparent conductive film. . For this reason, the wiring resistance of the anode tends to increase.

【0008】陽極の配線抵抗の大きさに起因する問題と
しては、配線抵抗に由来する電圧降下のためにパネル駆
動時に高い駆動電圧が必要となり、消費電力が大きくな
ることや、配線で発生するジュール熱が有機層を加熱す
る結果、パネルの特性を劣化させるなどといった点が挙
げられる。
Problems caused by the wiring resistance of the anode include a high driving voltage required for driving the panel due to a voltage drop caused by the wiring resistance, resulting in an increase in power consumption and a joule generated in the wiring. As a result of heat heating the organic layer, the characteristics of the panel are degraded.

【0009】この陽極の抵抗を低減させる方法として、
特開平4−82197号公報、特開平5−307997
号公報、特開平6−5369号公報中の実施例に示され
るように、透明導電性膜と金属膜とを積層する方法があ
る。即ち、かかる透明導電性膜と金属膜とを積層する方
法を用いた場合には、特開平5−307997号公報に
おいて「陽極及び正孔輸送層間の一部に積層された前記
陽極より仕事関数の小さい金属膜を有する」とあり、ま
た、特開平6−5369号公報において「前記陽極が透
明な第1陽極部と前記正孔輸送層に接する前記第1陽極
部より仕事関数の高い第2陽極部からなる」と記載され
ているように、金属膜を積層して配線抵抗を低減する効
果を得ることができる。
As a method of reducing the resistance of the anode,
JP-A-4-82197, JP-A-5-307997
As shown in the examples in Japanese Patent Application Laid-Open No. Hei. That is, when such a method of laminating a transparent conductive film and a metal film is used, in JP-A-5-307997, “the work function of the anode and the anode stacked partly between the hole transport layers is smaller than that of the anode. Japanese Patent Laid-Open Publication No. 6-5369 discloses that the second anode has a work function higher than that of the first anode portion in contact with the transparent first anode portion and the hole transport layer. As described above, the effect of reducing wiring resistance by laminating metal films can be obtained.

【0010】また、比較的低抵抗の金属膜を積層するこ
とで、発光電流は透明導電性膜よりも金属膜に集中して
流れるようになる。これにより、透明導電性膜について
は、導電性よりも透過率を優先して材料の選択および成
膜を行うことができ、発光素子としての発光効率を向上
させることが可能となる。
[0010] Further, by laminating a metal film having a relatively low resistance, the emission current flows more intensively in the metal film than in the transparent conductive film. Accordingly, for the transparent conductive film, the material can be selected and formed with priority given to the transmittance over the conductivity, and the luminous efficiency of the light emitting element can be improved.

【0011】以上のように、パッシブマトリクス型有機
発光ディスプレイの陽極、陰極等の配線を設計する上で
は、配線抵抗を低減し、併せて開口率と透過率とを向上
せしめることが重要とされてきた。この設計指針により
動作電圧および消費電力を低減することが可能であり、
また、ジュール熱による劣化などを抑制して駆動安定性
を向上せしめることも併せて実現されるからである。
As described above, when designing wiring such as the anode and cathode of a passive matrix type organic light emitting display, it is important to reduce the wiring resistance and to improve the aperture ratio and the transmittance at the same time. Was. The operating voltage and power consumption can be reduced by this design guideline.
In addition, it is also possible to improve the driving stability by suppressing the deterioration due to Joule heat and the like.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、実際の
パッシブマトリクス型有機発光ディスプレイには、未だ
重要な課題が存在する。それは、画素中の両電極間に、
プロセス上の構造欠陥に起因する電気的短絡が発生する
ことがあるという点である。
However, there are still important problems in the actual passive matrix type organic light emitting display. It is between the electrodes in the pixel,
The point is that an electrical short may occur due to a structural defect in the process.

【0013】例えば、画素ピッチ0.11mm×0.3
3mm、開口率70%、陽極をデータラインとしデータ
ライン数が240、陰極をアドレスラインとしアドレス
ライン数が60、両電極の交点で形成される画素数が1
4400である1.25型パッシブマトリクス型有機発
光ディスプレイを考える。簡単のために、データライン
電位を選択時H(正電位)で非選択時ゼロ(グラン
ド)、アドレスライン電位を選択時ゼロ(グランド)で
非選択時H(正電位:データ電位Hに同じ)、走査線1
アドレスラインの1電源定電圧駆動とする。
For example, a pixel pitch of 0.11 mm × 0.3
3 mm, an aperture ratio of 70%, the number of data lines is 240 using the anode as the data line, the number of address lines is 60 using the cathode as the address line, and the number of pixels formed at the intersection of both electrodes is 1
Consider a 4400 1.25-type passive matrix organic light emitting display. For simplicity, the data line potential is H (positive potential) when selected and zero (ground) when not selected, and the address line potential is zero (ground) when not selected and H (positive potential: same as data potential H). , Scanning line 1
The address line is driven by one power supply at a constant voltage.

【0014】電気的短絡欠陥のない状態では、電極配線
抵抗あるいは駆動回路内部インピーダンスは、有機発光
素子部を有する画素の抵抗に比して十分小さい。例示の
場合においては、選択時(発光状態、順バイアス)での
画素抵抗が数100kΩ、非選択時(消灯状態、順バイ
アス)あるいは逆バイアス時の画素抵抗が数10MΩ以
上であるのに対して、電極配線抵抗あるいは駆動回路内
部インピーダンスは高々数kΩである。パネルに印加さ
れる電圧の殆どは画素すなわち有機発光層への電荷注入
に必要な電界強度を得るために画素内の両電極間で電圧
降下しているため、配線構造設計の設計指針としては前
述したように配線抵抗と駆動回路の内部インピーダンス
を低減させることにより、低消費電力で画質の均質性に
優れたパネルを実現することが可能となる。
In a state where there is no electrical short-circuit defect, the electrode wiring resistance or the internal impedance of the driving circuit is sufficiently smaller than the resistance of the pixel having the organic light emitting element. In the illustrated example, the pixel resistance at the time of selection (light emitting state, forward bias) is several hundred kΩ, and the pixel resistance at the time of non-selection (light-off state, forward bias) or reverse bias is several tens MΩ or more. The electrode wiring resistance or the internal impedance of the driving circuit is at most several kΩ. Most of the voltage applied to the panel drops between both electrodes in the pixel in order to obtain the electric field strength necessary for injecting electric charge into the pixel, that is, the organic light emitting layer. As described above, by reducing the wiring resistance and the internal impedance of the driving circuit, it is possible to realize a panel with low power consumption and excellent image quality uniformity.

【0015】しかし、画素中に電気的な短絡が存在する
場合には、上述の画素抵抗が殆ど失われて高々数100
Ω程度となる。このため、欠陥画素を経由する電気径路
には、配線抵抗と駆動回路内部インピーダンスで決定さ
れる大電流(以下、「リーク電流」と称する)が流れる
という欠点がある。例示の場合では、正常動作時の画素
電流が高々100μAであるのに対して、リーク電流は
数mAから数10mAにも達する。
However, when an electric short circuit exists in a pixel, the above-mentioned pixel resistance is almost lost and several hundreds of pixels are lost at most.
About Ω. For this reason, there is a drawback that a large current (hereinafter, referred to as “leakage current”) determined by the wiring resistance and the internal impedance of the drive circuit flows through the electric path passing through the defective pixel. In the illustrated example, while the pixel current during normal operation is 100 μA at most, the leakage current reaches several mA to several tens mA.

【0016】このリーク電流は、消費電力を増大させる
ばかりでなく、熱的に比較的弱い有機薄膜層を変質せし
め、短絡画素内での電極短絡面積を増大させ、さらには
近隣画素へも伝播して、新たな電気的短絡画素を誘起す
ることになる。
This leakage current not only increases the power consumption, but also causes the organic thin film layer, which is relatively weak in heat, to deteriorate, to increase the electrode short-circuit area in the short-circuit pixel, and to propagate to the neighboring pixels. Thus, a new electrically shorted pixel is induced.

【0017】また、電気的短絡の存在する画素は、発光
に必要な電極間電位を得られなくなるために非点灯とな
り、表示中で黒点の表示欠陥となるばかりでなく、画像
を表示する場合に様々な画質欠陥を引き起こす。例え
ば、短絡画素を含むデータラインが明るい線状に点灯し
つづける、または、短絡画素を含むアドレスライン全体
が暗くなる、などの画質不良がよく知られている。
In addition, a pixel having an electrical short circuit is not lit because it is impossible to obtain a potential between electrodes required for light emission, which causes not only a black dot display defect during display but also an image display. Causes various image quality defects. For example, image quality defects such as a data line including a short-circuited pixel continuously lighting in a bright line or an entire address line including a short-circuited pixel are darkened.

【0018】作製直後のパッシブマトリクス型有機発光
ディスプレイの短絡画素を修復する方法としては、例え
ば、レーザーを用いて短絡電極を部分破壊して修復する
方法、発光電圧を超える高電圧を与えて短絡部の修復を
行う方法などがある。
As a method of repairing a short-circuited pixel of a passive matrix type organic light-emitting display immediately after fabrication, for example, a method of partially destroying and repairing a short-circuit electrode using a laser, or a method of applying a high voltage exceeding an emission voltage to a short-circuit portion There is a method of repairing.

【0019】しかしながら、パッシブマトリクス型有機
発光ディスプレイに用いられる有機層は膜厚が数100
nm程度以下と非常に薄いため、ダストの付着や成膜む
ら等による短絡欠陥を皆無とすることは工業的には困難
であり、上記方法等により修復が可能であるとはいえ、
長期の駆動に際して安定した画素を得るためには、発生
した短絡欠陥画素における短絡電流の抑制と、短絡に起
因する表示欠陥の解消が必要となる。
However, the organic layer used in the passive matrix type organic light emitting display has a thickness of several hundreds.
Since it is extremely thin, such as about nm or less, it is industrially difficult to eliminate short-circuit defects due to dust adhesion and film formation unevenness, and although it can be repaired by the above-described method and the like,
In order to obtain a stable pixel during long-term driving, it is necessary to suppress a short-circuit current in a generated short-circuit defective pixel and to eliminate a display defect caused by a short circuit.

【0020】そこで本発明の目的は、長期駆動時におけ
る短絡欠陥の発生による表示画質の低下を防止し、短絡
電流の抑制を可能とした有機薄膜発光ディスプレイおよ
びその製造方法を提供することにある。
It is therefore an object of the present invention to provide an organic thin-film light emitting display which can prevent a reduction in display image quality due to the occurrence of short-circuit defects during long-term driving and can suppress a short-circuit current, and a method of manufacturing the same.

【0021】[0021]

【課題を解決するための手段】上記課題を解決するため
に、本発明の有機薄膜発光ディスプレイは、透明性基板
上に、短冊状に配置された複数列の第一の電極と、該第
一の電極に直交する方向に短冊状に配置された複数列の
第二の電極とを有し、該第一の電極と第二の電極との間
に少なくとも有機発光層を挟持してなり、かつ、該両電
極の交点は各々画素を構成し、所望の画素を構成する該
両電極間に電圧を印加してエレクトロルミネッセンスを
取り出すことにより情報の表示を行う有機薄膜発光ディ
スプレイにおいて、前記複数列の第一の電極が夫々、対
応する前記画素に電流を供給する給電機能と、該画素に
おいてエレクトロルミネッセンスを取り出す透明電極機
能と、該画素において前記両電極間の短絡時に過電流制
限および電位調整を行う限流抵抗機能との3機能を少な
くとも備えることを特徴とするものである。
In order to solve the above-mentioned problems, an organic thin-film light emitting display according to the present invention comprises a plurality of rows of first electrodes arranged in a strip shape on a transparent substrate. Having a plurality of rows of second electrodes arranged in a strip shape in a direction orthogonal to the electrodes, comprising at least an organic light emitting layer sandwiched between the first electrode and the second electrode, and The intersection of the two electrodes constitutes a pixel, and in the organic thin-film light emitting display for displaying information by applying a voltage between the two electrodes constituting a desired pixel to take out electroluminescence, A first electrode for supplying a current to the corresponding pixel, a transparent electrode function for extracting electroluminescence in the pixel, and an overcurrent limit and potential adjustment when a short circuit occurs between the two electrodes in the pixel. It is characterized in further comprising at least three functions of the current limiting resistor function performed.

【0022】本発明においては、前記複数列の第一の電
極が、該電極に延在する電気的に連続した導電体からな
る給電部と、該給電部と電気的に接触することなく該電
極内の前記画素部分に配列された透明導電体からなる透
明電極部と、該給電部と該透明電極部との間を電気的に
接続するよう配置された高抵抗導電体からなる限流接続
部と、からなることが好ましく、また、該電極に延在す
る電気的に連続した導電体からなる給電部と、該給電部
と電気的に接触して該電極内の前記画素部分に配列され
た高抵抗透明導電体からなる限流透明電極部と、からな
ることも好ましい。
In the present invention, the plurality of rows of first electrodes may include a power supply portion extending from the plurality of first electrodes, the power supply portion being made of an electrically continuous conductor, and the electrode being provided without being in electrical contact with the power supply portion. A transparent electrode portion made of a transparent conductor arranged in the pixel portion, and a current-limiting connection portion made of a high-resistance conductor arranged to electrically connect between the power supply portion and the transparent electrode portion. And a power supply unit formed of an electrically continuous conductor extending to the electrode, and arranged in the pixel portion in the electrode in electrical contact with the power supply unit. And a current-limiting transparent electrode portion made of a high-resistance transparent conductor.

【0023】また、本発明の有機薄膜発光ディスプレイ
の製造方法は、前記限流接続部を、前記高抵抗導電体と
しての抵抗率1×10-3〜1×10+1Ωcmの金属酸化
物をスパッタ法により成膜して形成する本発明の前記有
機薄膜発光ディスプレイパネルの製造方法であって、タ
ーゲット中および/またはスパッタガス中の酸素濃度の
制御により抵抗率を制御することを特徴とするものであ
る。
Further, in the method for manufacturing an organic thin-film light emitting display according to the present invention, the current-limiting connection portion may be made of a metal oxide having a resistivity of 1 × 10 −3 to 1 × 10 +1 Ωcm as the high-resistance conductor. The method for manufacturing an organic thin-film light-emitting display panel according to the present invention, wherein the resistivity is controlled by controlling an oxygen concentration in a target and / or a sputtering gas. It is.

【0024】さらに、本発明の他の有機薄膜発光ディス
プレイの製造方法は、前記限流透明電極部を、前記高抵
抗透明導電体としての抵抗率1×10-3〜1×10+1Ω
cmの金属酸化物をスパッタ法により成膜して形成する
本発明の前記有機薄膜発光ディスプレイパネルの製造方
法であって、ターゲット中および/またはスパッタガス
中の酸素濃度の制御により抵抗率を制御することを特徴
とするものである。
Further, in another method of manufacturing an organic thin-film light emitting display according to the present invention, the current-limiting transparent electrode portion is provided with a resistivity of 1 × 10 −3 to 1 × 10 +1 Ω as the high-resistance transparent conductor.
The method of manufacturing an organic thin-film light-emitting display panel according to the present invention, wherein the resistivity is controlled by controlling the oxygen concentration in a target and / or a sputtering gas. It is characterized by the following.

【0025】[0025]

【発明の実施の形態】以下、本発明の有機薄膜発光ディ
スプレイを、具体的な実施の形態に関して説明する。本
発明の有機薄膜発光ディスプレイは、図1に示すよう
な、透明性基板1上に、短冊状に配置された複数列の第
一の電極7と、かかる第一の電極7と直交する方向に同
じく短冊状に配置された複数列の第二の電極8とを有
し、2つの電極7および8の間に少なくとも有機発光層
を含む有機層5を挟持してなるものであり、両電極の交
点が夫々画素10を構成しており、所望の画素10を構
成する両電極7および8の間に電圧を印加して電流を注
入することでエレクトロルミネッセンスを取り出すこと
により情報の表示を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the organic thin-film light emitting display of the present invention will be described with reference to specific embodiments. As shown in FIG. 1, the organic thin-film light-emitting display of the present invention includes a plurality of rows of first electrodes 7 arranged in a strip shape on a transparent substrate 1 and a direction orthogonal to the first electrodes 7. A plurality of rows of second electrodes 8 similarly arranged in a strip shape, comprising at least an organic layer 5 including an organic light emitting layer sandwiched between two electrodes 7 and 8; Each intersection constitutes a pixel 10, and information is displayed by extracting electroluminescence by applying a voltage between the electrodes 7 and 8 constituting a desired pixel 10 and injecting a current.

【0026】本発明においては、上記複数列の第一の電
極7の夫々が、対応する画素10に電流を供給する給電
機能と、この画素10においてエレクトロルミネッセン
スを取り出す透明電極機能と、この画素10において第
一の電極7と第二の電極8とが短絡した際に過電流制限
および電位調整を行う限流抵抗機能との3機能を少なく
とも備えていることが必要である。
In the present invention, each of the plurality of rows of first electrodes 7 has a power supply function for supplying a current to the corresponding pixel 10, a transparent electrode function for extracting electroluminescence from the pixel 10, Needs to have at least three functions, that is, a current limiting resistance function for limiting overcurrent and adjusting potential when the first electrode 7 and the second electrode 8 are short-circuited.

【0027】図2は、本発明の有機薄膜発光ディスプレ
イの好適例の部分拡大図であり、単位発光画素ごとに独
立した、透明導電性膜からなる透明電極部4と、金属膜
等の電気的に連続した導電体からなる給電部2と、かか
る画素中の透明電極部4と給電部2とを電気的に接続す
る限流接続部3とからなる第一の電極7の好適構成例を
示す概略平面図である。この場合において、透明電極部
4は給電部2と電気的に接触することなく各画素10中
に形成されており、これらを接続する限流接続部3は高
抵抗導電体からなっている。
FIG. 2 is a partially enlarged view of a preferred example of the organic thin-film light emitting display of the present invention. The transparent electrode portion 4 made of a transparent conductive film and an electric material such as a metal film are provided independently for each unit light emitting pixel. A preferred configuration example of a first electrode 7 including a power supply unit 2 made of a continuous conductor and a current limiting connection unit 3 electrically connecting the transparent electrode unit 4 and the power supply unit 2 in the pixel is shown. It is a schematic plan view. In this case, the transparent electrode section 4 is formed in each pixel 10 without being in electrical contact with the power supply section 2, and the current-limiting connection section 3 connecting these is made of a high-resistance conductor.

【0028】上述の構造とすることにより、長期の駆動
において画素10内での電極間短絡が発生した場合に
は、比較的高抵抗に作製された限流抵抗部3において大
きな電圧降下が生じる。
With the above-described structure, when a short circuit occurs between the electrodes in the pixel 10 during long-term driving, a large voltage drop occurs in the current-limiting resistor portion 3 made relatively high in resistance.

【0029】この電圧降下によって、短絡画素を含む電
極列の電位変動を許容範囲内に抑えることで、明るい線
状欠陥などの画質不良を防止することが可能となる。
By this voltage drop, the potential fluctuation of the electrode row including the short-circuited pixels is suppressed to within an allowable range, so that it is possible to prevent poor image quality such as a bright linear defect.

【0030】また、限流抵抗部3の抵抗によって、短絡
電流を駆動回路が許容できる設計範囲内に制限すること
が可能となる。
Further, the resistance of the current limiting resistor 3 makes it possible to limit the short-circuit current to a design range allowable by the drive circuit.

【0031】本発明における限流抵抗部3の抵抗値は、
上述の原理に沿って決定されるものである。即ち、パッ
シブマトリクス型有機薄膜発光ディスプレイのマトリク
ス数、給電部2の給電抵抗、発光素子の発光閾値電圧、
駆動回路に用いられるドライバICの内部インピーダン
スなどを考慮して、設計することができる。
The resistance value of the current limiting resistor 3 in the present invention is:
It is determined according to the above principle. That is, the number of matrices of the passive matrix type organic thin film light emitting display, the power supply resistance of the power supply unit 2, the light emission threshold voltage of the light emitting element,
The design can be made in consideration of the internal impedance of the driver IC used in the drive circuit.

【0032】特には、限流接続部3を、透明電極部4を
形成する透明性導電膜と同一の透明性を有する高抵抗導
電膜から構成する場合、即ち、図4に示すように、第一
の電極7を、電気的に連続した導電体からなる給電部2
と、画素毎に独立して、給電部2と電気的に接触するよ
う形成された高抵抗透明導電体からなる限流透明電極部
9と、からなる構成とした場合に、製造プロセスが簡略
となり、電極の形成における歩留まりの低下を抑止する
ことができる。この場合の限流接続部3、即ち、限流透
明電極部9を構成する透明性導電膜は、配線幅を細くす
ることなどによって高抵抗化が可能であり、これにより
高い過電流抑止効果を得ることができる。
In particular, when the current limiting connection portion 3 is made of a high-resistance conductive film having the same transparency as the transparent conductive film forming the transparent electrode portion 4, that is, as shown in FIG. One electrode 7 is connected to a power supply unit 2 made of an electrically continuous conductor.
And a current-limiting transparent electrode portion 9 made of a high-resistance transparent conductor formed so as to be in electrical contact with the power supply portion 2 independently for each pixel. In addition, it is possible to suppress a decrease in the yield in forming the electrodes. In this case, the current-limiting connection portion 3, that is, the transparent conductive film constituting the current-limiting transparent electrode portion 9 can have a high resistance by narrowing the wiring width or the like, thereby achieving a high overcurrent suppressing effect. Obtainable.

【0033】限流接続部3に用いる高抵抗導電体材料と
しては、過電流発生時に生ずる発熱に耐え得る高融点材
料を選択することができ、これによりリーク電流に伴い
発生するジュール熱による断線を防ぐことができる。特
には、抵抗率1×10-3〜1×10+1Ωcmである、ス
パッタ法により成膜が可能な金属酸化物が好ましく、タ
ーゲット中および/またはスパッタガス中の酸素濃度を
制御することにより、所望の抵抗率に制御することがで
きる。
As the high-resistance conductive material used for the current-limiting connection portion 3, a high-melting-point material that can withstand the heat generated when an overcurrent occurs can be selected, so that disconnection due to Joule heat generated due to a leak current can be prevented. Can be prevented. In particular, a metal oxide having a resistivity of 1 × 10 −3 to 1 × 10 +1 Ωcm and capable of being formed by a sputtering method is preferable. By controlling the oxygen concentration in the target and / or the sputtering gas, Can be controlled to a desired resistivity.

【0034】本発明に係る高抵抗導電体材料としての具
体的な金属酸化物の例としては、インジウム−錫−酸化
物、酸化錫、酸化亜鉛、インジウム−亜鉛−酸化物など
が挙げられるが、前述の電気的な短絡の原因を排除低減
するために重要である成膜表面の平滑性や、本発明の重
要な制御因子である抵抗率の制御の容易さの観点から
は、インジウム−亜鉛−酸化物が好ましい。インジウム
−亜鉛−酸化物は、アルゴン/酸素スパッタガス中の酸
素分圧を制御することで、表面の平滑性を損なうことな
く抵抗の調整を行うことができるためである。
Examples of specific metal oxides as the high-resistance conductor material according to the present invention include indium-tin-oxide, tin oxide, zinc oxide, and indium-zinc-oxide. From the viewpoint of the smoothness of the film formation surface, which is important for eliminating and reducing the cause of the above-described electrical short circuit, and the ease of controlling the resistivity, which is an important control factor of the present invention, indium-zinc- Oxides are preferred. This is because the resistance of indium-zinc-oxide can be adjusted without impairing the surface smoothness by controlling the oxygen partial pressure in the argon / oxygen sputtering gas.

【0035】尚、図3(イ)〜(ハ)は、本発明に係る
単位発光画素部分の好適例の拡大図であり、限流接続部
3の配設位置および形状の異なる構成例を示している。
限流接続部3は、給電部2および透明電極部4と電気的
に接触しており、かつ、透明電極部4と給電部2とが直
接に接触しないよう形成されていればよく、配設位置お
よび形状はこれらの例に制限されない。
FIGS. 3A to 3C are enlarged views of a preferred example of the unit light-emitting pixel portion according to the present invention, and show configuration examples in which the position and the shape of the current limiting connection portion 3 are different. ing.
The current limiting connection part 3 is only required to be in electrical contact with the power supply part 2 and the transparent electrode part 4 and to be formed so that the transparent electrode part 4 and the power supply part 2 are not in direct contact. The position and shape are not limited to these examples.

【0036】また、図4(イ)〜(ハ)は、本発明に係
る単位発光画素部分の他の好適例の拡大図であり、限流
接続部の配設位置および形状の他の異なる構成例を示し
ている。この場合には、限流接続部と透明電極部とが一
体で限流透明電極部9として形成され、かつ、給電部2
と電気的に接触していればよく、配設位置はこれらの例
に制限されない。
FIGS. 4A to 4C are enlarged views of another preferred embodiment of the unit light-emitting pixel portion according to the present invention. An example is shown. In this case, the current limiting connection portion and the transparent electrode portion are integrally formed as the current limiting transparent electrode portion 9 and the power supply portion 2
The arrangement position is not limited to these examples.

【0037】本発明の有機薄膜発光ディスプレイにおい
ては、第一の電極7を上記構成とするものであればよ
く、他の構成要素の材料、作製手順等は慣用に従い行う
ことができる。また、本発明の製造方法においては、上
記所望の抵抗率の制御を成膜雰囲気中の酸素濃度の制御
により行うことが重要であり、それ以外の条件等は適宜
設定して実施することが可能である。
In the organic thin-film light emitting display of the present invention, the first electrode 7 may have the above-described structure, and the materials of the other components, the manufacturing procedure, and the like can be performed in accordance with a conventional manner. Further, in the manufacturing method of the present invention, it is important to control the above-described desired resistivity by controlling the oxygen concentration in the film formation atmosphere, and other conditions and the like can be appropriately set and performed. It is.

【0038】[0038]

【実施例】以下、実施例を用いて、本発明をより詳細に
説明する。画素数(80×RGB)×60ドット、画素
ピッチ110×330μm、サブドット数14400と
して、以下に示すように実施例および比較例の有機EL
ディスプレイパネルを作製した。
Hereinafter, the present invention will be described in more detail with reference to examples. The number of pixels (80 × RGB) × 60 dots, the pixel pitch 110 × 330 μm, and the number of sub-dots 14400, the organic EL of the example and the comparative example as shown below.
A display panel was manufactured.

【0039】実施例1 最初に、図3(イ)に示す電極構造を有する基板を下記
の手順で作製した。ガラス基板上に、給電部2としての
抵抗率1.5×10-5[Ω・cm]のMo膜を、膜厚3
00nm、幅20μmにて形成した。給電部2の成膜に
はDCマグネトロンスパッタ法を用い、パターニングに
は通常のフォトリソグラフィー法を用いた。
Example 1 First, a substrate having the electrode structure shown in FIG. On a glass substrate, a Mo film having a resistivity of 1.5 × 10 −5 [Ω · cm] as a power supply unit 2 was formed to a thickness of 3
It was formed with a thickness of 00 nm and a width of 20 μm. The DC magnetron sputtering method was used for the film formation of the power supply unit 2, and the ordinary photolithography method was used for the patterning.

【0040】次に、透明電極部4としての抵抗率4.1
×10-3[Ω・cm]のインジウム−錫−酸化物(IT
O)を膜厚100nm、幅80μm、長さ280μmに
て形成した。透明電極部4の成膜にはDCマグネトロン
スパッタ法を用い、パターニングには通常のフォトリソ
グラフィー法を用いた。
Next, the resistivity 4.1 as the transparent electrode portion 4
× 10 −3 [Ω · cm] indium-tin-oxide (IT
O) was formed with a thickness of 100 nm, a width of 80 μm, and a length of 280 μm. The DC magnetron sputtering method was used for the film formation of the transparent electrode part 4, and the usual photolithography method was used for the patterning.

【0041】更に、限流接続部3として抵抗率6×10
-2[Ω・cm]のインジウム−亜鉛−酸化物を膜厚30
nm、幅10μm、長さ80μmで形成した。画素電極
部の成膜にはDCマグネトロンスパッタ法を用い、パタ
ーニングには通常のフォトリソグラフィー法を用いた。
Further, the current limiting connection 3 has a resistivity of 6 × 10
-2 [Ω · cm] indium-zinc-oxide with a film thickness of 30
It was formed with a thickness of 10 nm and a width of 80 μm. DC magnetron sputtering was used for forming the pixel electrode portion, and ordinary photolithography was used for patterning.

【0042】続いて、以下の手順で、上記基板上に有機
層5および第二の電極である陰極8を形成し、封止、接
続を行った。上記基板を、酸素/窒素混合ガス(20%
酸素、水分量20ppm以下)パージ環境にてUV照射
洗浄を行った後、速やかに蒸着装置に導入した。
Subsequently, an organic layer 5 and a cathode 8 as a second electrode were formed on the substrate by the following procedure, and sealing and connection were performed. The above substrate is mixed with an oxygen / nitrogen mixed gas (20%
(Oxygen and water content 20 ppm or less)) After UV irradiation cleaning in a purge environment, the mixture was immediately introduced into a vapor deposition apparatus.

【0043】次に、有機正孔注入層、有機発光層、有機
電子注入層およびAl陰極を、10×10-5Pa台の真
空を破ることなく、連続して成膜した。すべての成膜は
抵抗加熱式蒸着法を用いて行い、膜厚の検出には水晶振
動子式膜厚計を使用した。第二の電極である陰極の形成
には、厚さ20μmの電鋳形成Niマスクを用いた。
Next, an organic hole injecting layer, an organic light emitting layer, an organic electron injecting layer and an Al cathode were successively formed without breaking a vacuum of the order of 10 × 10 −5 Pa. All film formation was performed by using a resistance heating type evaporation method, and a quartz oscillator type film thickness meter was used for film thickness detection. A 20 μm-thick electroformed Ni mask was used to form the cathode as the second electrode.

【0044】成膜を終了した基板を、大気に曝すことな
く、窒素ガス雰囲気下のグローブボックスに移送し、U
V硬化/熱硬化併用型シール剤とガラス封止板とを用い
て封止した。封止内にはグローブボックス内環境ガスで
ある窒素ガス(水分量5ppm以下、酸素分量5ppm
以下)を充填した。封止を完了した基板を大気中に取り
出し、異方導電性接着剤(ACF)を用いて駆動回路端
子に接続した。
The substrate on which film formation has been completed is transferred to a glove box under a nitrogen gas atmosphere without being exposed to the atmosphere.
Sealing was performed using a V-curing / thermo-curing combined sealant and a glass sealing plate. Nitrogen gas (water content 5 ppm or less, oxygen content 5 ppm) which is an environmental gas in the glove box
Below). The sealed substrate was taken out into the atmosphere and connected to the drive circuit terminals using an anisotropic conductive adhesive (ACF).

【0045】実施例2 最初に、図4(イ)に示す電極構造を有する基板を下記
の手順で作製した。ガラス基板上に、給電部2としての
抵抗率1.5×10-5[Ω・cm]のMo膜を、膜厚3
00nm、幅20μmにて形成した。給電部2の成膜に
はDCマグネトロンスパッタ法を用い、パターニングに
は通常のフォトリソグラフィー法を用いた。
Example 2 First, a substrate having the electrode structure shown in FIG. On a glass substrate, a Mo film having a resistivity of 1.5 × 10 −5 [Ω · cm] as a power supply unit 2 was formed to a thickness of 3
It was formed with a thickness of 00 nm and a width of 20 μm. The DC magnetron sputtering method was used for the film formation of the power supply unit 2, and the ordinary photolithography method was used for the patterning.

【0046】次に、限流透明電極部9として抵抗率2×
10-2[Ω・cm]のインジウム−亜鉛−酸化物を膜厚
100nm、幅10μm、長さ80μmの細線部と幅8
0μm、長さ280μmの矩形部とからなる形状に形成
した。限流透明電極部9の成膜にはDCマグネトロンス
パッタ法を用い、パターニングには通常のフォトリソグ
ラフィー法を用いた。続いて、上記基板上に、実施例1
と同様にして有機層5および第二の電極である陰極8を
形成し、封止、接続を行った。
Next, the current-limiting transparent electrode portion 9 is formed of a resistivity 2 ×
An indium-zinc-oxide of 10 -2 [Ω · cm] is formed of a thin line portion having a thickness of 100 nm, a width of 10 µm, a length of 80 µm, and a width of 8
It was formed into a shape consisting of a rectangular portion having a length of 0 μm and a length of 280 μm. A DC magnetron sputtering method was used for forming the current-limiting transparent electrode portion 9, and a normal photolithography method was used for patterning. Subsequently, Example 1 was placed on the substrate.
The organic layer 5 and the cathode 8 as the second electrode were formed in the same manner as described above, and sealing and connection were performed.

【0047】比較例1 ガラス基板上に、給電部2としての抵抗率1.5×10
-5[Ω・cm]のMo膜を膜厚300nm、幅20μm
にて形成した。給電部2の成膜にはDCマグネトロンス
パッタ法を用い、パターニングには通常のフォトリソグ
ラフィー法を用いた。
Comparative Example 1 On a glass substrate, a resistivity 1.5 × 10
-5 [Ωcm] Mo film with a thickness of 300 nm and a width of 20 μm
Formed. The DC magnetron sputtering method was used for the film formation of the power supply unit 2, and the ordinary photolithography method was used for the patterning.

【0048】次に、透明電極部4としての抵抗率2×1
-2[Ω・cm]のインジウム−亜鉛−酸化物を、膜厚
100nm、幅100μm、長さ280μmの矩形形状
にて、280μmの長辺が給電部2と接触するように形
成した。透明電極部4の成膜にはDCマグネトロンスパ
ッタ法を用い、パターニングには通常のフォトリソグラ
フィー法を用いた。続いて、この基板上に、実施例1と
同様にして有機層5および第二の電極である陰極8を形
成し、封止、接続を行った。
Next, the resistivity of the transparent electrode portion 4 is 2 × 1.
An indium-zinc-oxide of 0 -2 [Ω · cm] was formed in a rectangular shape having a thickness of 100 nm, a width of 100 µm, and a length of 280 µm such that the long side of 280 µm was in contact with the power supply unit 2. The DC magnetron sputtering method was used for the film formation of the transparent electrode part 4, and the usual photolithography method was used for the patterning. Subsequently, an organic layer 5 and a cathode 8 as a second electrode were formed on this substrate in the same manner as in Example 1, and sealing and connection were performed.

【0049】性能の評価 上記実施例および比較例の有機発光ディスプレイについ
て100時間のパッシブマトリクス駆動(駆動周波数6
0Hz、デューティ1/60、階調数32、階調方式は
フレーム・シニング・アウト)を行い、その後、以下の
評価を実施した。なお、各基板構成によって駆動電圧−
輝度特性が異なることから、比較のために全点灯状態で
のエリアル輝度が100cd/m2となるように規格化
して評価した。
Evaluation of Performance Passive matrix driving (driving frequency of 6 hours) was performed for the organic light emitting displays of the above Examples and Comparative Examples for 100 hours.
0 Hz, a duty of 1/60, a number of gradations of 32, and a gradation method of frame thinning out), and then the following evaluation was performed. It should be noted that the driving voltage −
Since the luminance characteristics are different, for comparison, evaluation was performed by normalizing the Arial luminance in all lighting states to be 100 cd / m 2 .

【0050】評価項目 1)駆動電圧:本発明に係る構造(限流接続部3または
限流透明電極部9)の導入による動作電圧の上昇を評価
した。 2)全点灯状態での非点灯画素数:電気的短絡を伴う欠
陥画素数に相当するものであり、本発明に係る構造の導
入が欠陥発生に与える影響を評価した。全点灯状態と
は、全てのデータラインが選択された状態である。 3)欠陥画素あたりの短絡電流:全消灯状態(全てのデ
ータラインが非選択の状態で駆動されている)でのパネ
ル電流から、充放電電流や回路電流などを減じて、短絡
画素数で除した値である。本発明に係る構造の短絡電流
制限能力を評価した。 4)試験画像表示時の線状画質不良:風景画などの試験
画像を与えた状態で、短絡画素に起因する画像不良を判
定した。 これらの結果を下記表1にまとめて示す。尚、本評価に
おいて、駆動開始時点では、全てのディスプレイは無欠
陥であった。
Evaluation item 1) Drive voltage: An increase in operating voltage due to the introduction of the structure according to the present invention (current-limiting connection portion 3 or current-limiting transparent electrode portion 9) was evaluated. 2) Number of non-lighting pixels in all lighting states: This corresponds to the number of defective pixels accompanied by an electrical short circuit, and the effect of introducing the structure according to the present invention on occurrence of defects was evaluated. The full lighting state is a state in which all data lines are selected. 3) Short-circuit current per defective pixel: The charge / discharge current, circuit current, etc., are subtracted from the panel current in the all-off state (all data lines are driven in a non-selected state), and divided by the number of short-circuit pixels. Value. The short-circuit current limiting ability of the structure according to the present invention was evaluated. 4) Linear image quality defect at the time of display of a test image: In a state where a test image such as a landscape image was given, an image defect caused by a short-circuit pixel was determined. These results are summarized in Table 1 below. In this evaluation, at the start of driving, all displays were defect-free.

【0051】[0051]

【表1】 [Table 1]

【0052】上記表1より、従来技術である比較例に対
して、実施例では、短絡画素に起因する短絡電流につい
て顕著な制限効果が確認された。また、短絡画素を含む
データラインが点灯状態となることにより生ずる明るい
線状の画像欠陥についても、目視で発生は認められなか
った。
From the above Table 1, it is confirmed that the embodiment has a remarkable limiting effect on the short-circuit current caused by the short-circuited pixel in comparison with the comparative example which is the prior art. Also, no bright linear image defects caused by the lighting of the data line including the short-circuited pixels were observed.

【0053】更に、実施例において懸念された、配線抵
抗の上昇に伴う駆動電圧の上昇は僅か(相対値にして1
%以下)であり、構造が複雑となることにより懸念され
た非点灯画素数についても比較例に対し有意差は見られ
なかった。以上の点から、本発明の目的が達成されたこ
とが確かめられた。
Further, the rise of the driving voltage caused by the rise of the wiring resistance, which is a concern in the embodiment, is slight (1 relative value).
% Or less), and there was no significant difference from the comparative example in the number of non-lighting pixels, which was a concern due to the complicated structure. From the above points, it was confirmed that the object of the present invention was achieved.

【0054】[0054]

【発明の効果】本発明によれば、長期駆動時における短
絡欠陥の発生による表示画質の低下を防止し、短絡電流
の抑制を可能とした良好な有機薄膜発光ディスプレイお
よびその製造方法を提供することができる。
According to the present invention, it is possible to provide a good organic thin-film light emitting display capable of preventing a deterioration in display image quality due to the occurrence of short-circuit defects during long-term driving and suppressing a short-circuit current, and a method of manufacturing the same. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例のパッシブマトリクス型有機発光
ディスプレイを示す平面図である。
FIG. 1 is a plan view showing a passive matrix organic light emitting display according to an example of the present invention.

【図2】図1の有機発光ディスプレイの楕円で囲んだ部
分を示す部分拡大図である。
FIG. 2 is a partially enlarged view showing a portion surrounded by an ellipse of the organic light emitting display of FIG.

【図3】本発明に係る単位発光画素部分の電極構造を示
す部分拡大図である。
FIG. 3 is a partially enlarged view showing an electrode structure of a unit light emitting pixel portion according to the present invention.

【図4】本発明に係る単位発光画素部分の他の電極構造
を示す部分拡大図である。
FIG. 4 is a partially enlarged view showing another electrode structure of a unit light emitting pixel portion according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 給電部 3 限流接続部 4 透明電極部 5 有機層 7 第一の電極(データライン) 8 第二の電極(アドレスライン) 9 限流透明電極部 10 画素 DESCRIPTION OF SYMBOLS 1 Substrate 2 Power supply part 3 Current limiting connection part 4 Transparent electrode part 5 Organic layer 7 First electrode (data line) 8 Second electrode (address line) 9 Current limiting transparent electrode part 10 pixel

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K007 AB05 AB18 BA06 BB01 BB04 CA01 CB01 CB03 DA00 DB03 EB00 FA01 FA02 GA00 5C094 AA21 AA42 AA43 BA27 CA19 DA07 EA05 EB02 HA08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3K007 AB05 AB18 BA06 BB01 BB04 CA01 CB01 CB03 DA00 DB03 EB00 FA01 FA02 GA00 5C094 AA21 AA42 AA43 BA27 CA19 DA07 EA05 EB02 HA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明性基板上に、短冊状に配置された複
数列の第一の電極と、該第一の電極に直交する方向に短
冊状に配置された複数列の第二の電極とを有し、該第一
の電極と第二の電極との間に少なくとも有機発光層を挟
持してなり、かつ、該両電極の交点は各々画素を構成
し、所望の画素を構成する該両電極間に電圧を印加して
エレクトロルミネッセンスを取り出すことにより情報の
表示を行う有機薄膜発光ディスプレイにおいて、 前記複数列の第一の電極が夫々、対応する前記画素に電
流を供給する給電機能と、該画素においてエレクトロル
ミネッセンスを取り出す透明電極機能と、該画素におい
て前記両電極間の短絡時に過電流制限および電位調整を
行う限流抵抗機能との3機能を少なくとも備えることを
特徴とする有機薄膜発光ディスプレイ。
1. A plurality of rows of first electrodes arranged in a strip shape on a transparent substrate, and a plurality of rows of second electrodes arranged in a strip shape in a direction orthogonal to the first electrode. Having at least an organic light-emitting layer sandwiched between the first electrode and the second electrode, and the intersection of the two electrodes constitutes a pixel, and the two electrodes constituting a desired pixel In a thin-film organic light-emitting display for displaying information by applying voltage between electrodes to extract electroluminescence, the plurality of columns of first electrodes each supply a current to a corresponding one of the pixels, An organic thin film light emitting device having at least three functions: a transparent electrode function for extracting electroluminescence in a pixel; and a current limiting resistance function for limiting overcurrent and adjusting potential when a short circuit occurs between the two electrodes in the pixel. Spray.
【請求項2】 前記複数列の第一の電極が、該電極に延
在する電気的に連続した導電体からなる給電部と、該給
電部と電気的に接触することなく該電極内の前記画素部
分に配列された透明導電体からなる透明電極部と、該給
電部と該透明電極部との間を電気的に接続するよう配置
された高抵抗導電体からなる限流接続部と、からなる請
求項1記載の有機薄膜発光ディスプレイ。
2. A power supply unit comprising a plurality of rows of first electrodes, the power supply unit comprising an electrically continuous conductor extending to the electrode, and a power supply unit provided in the electrode without being in electrical contact with the power supply unit. A transparent electrode portion made of a transparent conductor arranged in the pixel portion, and a current-limiting connection portion made of a high-resistance conductor arranged to electrically connect between the power supply portion and the transparent electrode portion. The organic thin-film light-emitting display according to claim 1.
【請求項3】 前記複数列の第一の電極が、該電極に延
在する電気的に連続した導電体からなる給電部と、該給
電部と電気的に接触して該電極内の前記画素部分に配列
された高抵抗透明導電体からなる限流透明電極部と、か
らなる請求項1記載の有機薄膜発光ディスプレイ。
3. The power supply unit, wherein the plurality of rows of first electrodes are formed of an electrically continuous conductor extending to the electrodes, and the pixel in the electrode is in electrical contact with the power supply unit. 2. The organic thin-film light-emitting display according to claim 1, comprising a current-limiting transparent electrode portion made of a high-resistance transparent conductor arranged in a portion.
【請求項4】 前記限流接続部を、前記高抵抗導電体と
しての抵抗率1×10-3〜1×10+1Ωcmの金属酸化
物をスパッタ法により成膜して形成する請求項2記載の
有機薄膜発光ディスプレイパネルの製造方法であって、
ターゲット中および/またはスパッタガス中の酸素濃度
の制御により抵抗率を制御することを特徴とする有機薄
膜発光ディスプレイの製造方法。
4. The current limiting connection part is formed by sputtering a metal oxide having a resistivity of 1 × 10 −3 to 1 × 10 +1 Ωcm as the high-resistance conductor. A method for producing an organic thin film light emitting display panel according to the above,
A method for manufacturing an organic thin-film light emitting display, wherein resistivity is controlled by controlling oxygen concentration in a target and / or sputter gas.
【請求項5】 前記限流透明電極部を、前記高抵抗透明
導電体としての抵抗率1×10-3〜1×10+1Ωcmの
金属酸化物をスパッタ法により成膜して形成する請求項
3記載の有機薄膜発光ディスプレイパネルの製造方法で
あって、ターゲット中および/またはスパッタガス中の
酸素濃度の制御により抵抗率を制御することを特徴とす
る有機薄膜発光ディスプレイの製造方法。
5. The current-limiting transparent electrode portion is formed by depositing a metal oxide having a resistivity of 1 × 10 −3 to 1 × 10 +1 Ωcm as the high-resistance transparent conductor by a sputtering method. Item 4. The method for producing an organic thin film light emitting display panel according to Item 3, wherein the resistivity is controlled by controlling the oxygen concentration in the target and / or the sputtering gas.
【請求項6】 前記金属酸化物が、インジウム−亜鉛−
酸化物である請求項4または5記載の有機薄膜発光ディ
スプレイの製造方法。
6. The method according to claim 1, wherein the metal oxide is indium-zinc-
The method for producing an organic thin-film light-emitting display according to claim 4 or 5, which is an oxide.
JP2000006891A 2000-01-14 2000-01-14 Organic thin film luminous display and its manufacturing method Pending JP2001196191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006891A JP2001196191A (en) 2000-01-14 2000-01-14 Organic thin film luminous display and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006891A JP2001196191A (en) 2000-01-14 2000-01-14 Organic thin film luminous display and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001196191A true JP2001196191A (en) 2001-07-19

Family

ID=18535350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006891A Pending JP2001196191A (en) 2000-01-14 2000-01-14 Organic thin film luminous display and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001196191A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224957A (en) * 2004-02-10 2005-08-25 Seiko Epson Corp Line head and image forming apparatus using the same
US6989806B2 (en) 2002-11-20 2006-01-24 Osram Opto Semiconductors Gmbh Current limiting device
WO2014178547A1 (en) * 2013-04-29 2014-11-06 주식회사 엘지화학 Organic light emitting device and method for fabricating same
KR101477953B1 (en) 2013-04-01 2014-12-30 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
KR20150123599A (en) * 2014-04-25 2015-11-04 주식회사 엘지화학 Organic light emitting device
WO2015174669A1 (en) * 2014-05-12 2015-11-19 주식회사 엘지화학 Organic light-emitting element
KR20150129564A (en) * 2014-05-12 2015-11-20 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
KR20150129565A (en) * 2014-05-12 2015-11-20 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
KR20150130120A (en) * 2014-05-13 2015-11-23 주식회사 엘지화학 Organic light emitting device
JP2015535138A (en) * 2012-11-16 2015-12-07 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2016518018A (en) * 2013-05-16 2016-06-20 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2017507465A (en) * 2014-03-14 2017-03-16 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device
WO2019082950A1 (en) * 2017-10-27 2019-05-02 パイオニア株式会社 Light-emitting device
WO2020132807A1 (en) * 2018-12-24 2020-07-02 深圳市柔宇科技有限公司 Display panel, preparation method therefor, and display apparatus

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6989806B2 (en) 2002-11-20 2006-01-24 Osram Opto Semiconductors Gmbh Current limiting device
JP2005224957A (en) * 2004-02-10 2005-08-25 Seiko Epson Corp Line head and image forming apparatus using the same
US9954195B2 (en) 2012-11-16 2018-04-24 Lg Display Co., Ltd. Organic light emitting device and method for manufacturing the same
JP2015535138A (en) * 2012-11-16 2015-12-07 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
CN105103330A (en) * 2013-04-01 2015-11-25 株式会社Lg化学 Organic light emitting element and manufacturing method therefor
EP2960961A4 (en) * 2013-04-01 2017-01-11 LG Display Co., Ltd. Organic light emitting element and manufacturing method therefor
JP2016518000A (en) * 2013-04-01 2016-06-20 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
KR101477953B1 (en) 2013-04-01 2014-12-30 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
US20160005993A1 (en) * 2013-04-01 2016-01-07 Lg Chem, Ltd. Organic light emitting device and method for manufacturing the same
CN105103330B (en) * 2013-04-01 2019-06-11 乐金显示有限公司 Organic luminescent device and its manufacturing method
US9825249B2 (en) * 2013-04-01 2017-11-21 Lg Display Co., Ltd. Organic light emitting device and method for manufacturing the same
US20160027862A1 (en) * 2013-04-29 2016-01-28 Lg Chem, Ltd. Organic light emitting device and method for manufacturing the same
US9666830B2 (en) 2013-04-29 2017-05-30 Lg Display, Co., Ltd. Organic light emitting device and method for manufacturing the same
CN105164829A (en) * 2013-04-29 2015-12-16 株式会社Lg化学 Organic light emitting device and method for fabricating same
KR101469413B1 (en) * 2013-04-29 2014-12-04 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
JP2016520963A (en) * 2013-04-29 2016-07-14 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
TWI552408B (en) * 2013-04-29 2016-10-01 樂金顯示科技股份有限公司 Organic light emitting device and method for manufacturing the same
WO2014178547A1 (en) * 2013-04-29 2014-11-06 주식회사 엘지화학 Organic light emitting device and method for fabricating same
JP2016518018A (en) * 2013-05-16 2016-06-20 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2017507465A (en) * 2014-03-14 2017-03-16 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device
KR102063476B1 (en) * 2014-04-25 2020-01-08 엘지디스플레이 주식회사 Lighting device
KR20150123599A (en) * 2014-04-25 2015-11-04 주식회사 엘지화학 Organic light emitting device
US20170077210A1 (en) * 2014-05-12 2017-03-16 Lg Display Co., Ltd. Organic light-emitting device and method for preparing same
EP3144995A4 (en) * 2014-05-12 2017-11-01 LG Display Co., Ltd. Organic light-emitting device and method for preparing same
CN106463645A (en) * 2014-05-12 2017-02-22 乐金显示有限公司 Organic light-emitting device and method for preparing same
CN106463642A (en) * 2014-05-12 2017-02-22 乐金显示有限公司 Organic light-emitting diode and method for manufacturing same
KR102101644B1 (en) * 2014-05-12 2020-04-17 엘지디스플레이 주식회사 Organic light emitting device and method for manufacturing the same
WO2015174669A1 (en) * 2014-05-12 2015-11-19 주식회사 엘지화학 Organic light-emitting element
JP2017516268A (en) * 2014-05-12 2017-06-15 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device
JP2017516271A (en) * 2014-05-12 2017-06-15 エルジー ディスプレイ カンパニー リミテッド ORGANIC LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD
JP2017517106A (en) * 2014-05-12 2017-06-22 エルジー ディスプレイ カンパニー リミテッド ORGANIC LIGHT-EMITTING ELEMENT AND MANUFACTURING METHOD
KR101954821B1 (en) * 2014-05-12 2019-05-31 엘지디스플레이 주식회사 Organic light emitting device
KR20150129561A (en) * 2014-05-12 2015-11-20 주식회사 엘지화학 Organic light emitting device
EP3144993A4 (en) * 2014-05-12 2018-03-21 LG Display Co., Ltd. Organic light-emitting element
KR20150129565A (en) * 2014-05-12 2015-11-20 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
CN106463646A (en) * 2014-05-12 2017-02-22 乐金显示有限公司 Organic light-emitting element
US10056572B2 (en) 2014-05-12 2018-08-21 Lg Display Co., Ltd. Organic light-emitting element
US10074823B2 (en) 2014-05-12 2018-09-11 Lg Display Co., Ltd. Organic light emtting device with short circuit preventing layer and method for manufacturing the same
CN106463646B (en) * 2014-05-12 2018-10-26 乐金显示有限公司 Organic illuminating element
KR101946999B1 (en) * 2014-05-12 2019-02-12 엘지디스플레이 주식회사 Organic light emitting device and method for manufacturing the same
US10325975B2 (en) * 2014-05-12 2019-06-18 Lg Display Co., Ltd. Organic light-emitting device and method for preparing same
KR20150129564A (en) * 2014-05-12 2015-11-20 주식회사 엘지화학 Organic light emitting device and method for manufacturing the same
US9978983B2 (en) 2014-05-13 2018-05-22 Lg Display Co., Ltd. Organic light-emitting device
KR101946905B1 (en) * 2014-05-13 2019-04-22 엘지디스플레이 주식회사 Organic light emitting device
JP2017516273A (en) * 2014-05-13 2017-06-15 エルジー ディスプレイ カンパニー リミテッド Organic light emitting device
KR20150130120A (en) * 2014-05-13 2015-11-23 주식회사 엘지화학 Organic light emitting device
WO2019082950A1 (en) * 2017-10-27 2019-05-02 パイオニア株式会社 Light-emitting device
JPWO2019082950A1 (en) * 2017-10-27 2020-11-12 パイオニア株式会社 Light emitting device
WO2020132807A1 (en) * 2018-12-24 2020-07-02 深圳市柔宇科技有限公司 Display panel, preparation method therefor, and display apparatus

Similar Documents

Publication Publication Date Title
JPH06301355A (en) Driving method for organic thin-film el element
KR101556987B1 (en) Method of manufacturing organic light-emitting device
JP2001196191A (en) Organic thin film luminous display and its manufacturing method
JP3606309B2 (en) Organic thin film light emitting display
KR20050111163A (en) Organic electro-luminescence display device and method for fabricating thereof
JPH09106887A (en) Organic elecro-luminence element and drive method thereof
KR20020025862A (en) Organic el display
KR100618574B1 (en) Drive circuit organic electro luminescent display
US8076843B2 (en) Organic electroluminescence display device
JP3633841B2 (en) Repair method of organic thin film light emitting display
KR100796601B1 (en) Organic electroluminescence display device
US6462470B1 (en) Organic electroluminescent display with three kinds of layer-stacked devices
US20220130916A1 (en) Oled display panel and display device
KR100885842B1 (en) Organic electro- luminescent display device and fabricating method thereof
WO2013088874A1 (en) Light emitting device and organic el element driving method
JP3539596B2 (en) Optical element
EP1684551B1 (en) Organic electro-luminescence display panel
KR100717327B1 (en) Organic Electro Luminescence Display Device And Method For Fabricating Thereof
JP2004311205A (en) Passive matrix type organic thin-film light emitting display, and manufacturing method of passive matrix type organic thin-film light emitting display
JPH0482197A (en) Thin film electroluminescent (el) element
JP2004247088A (en) Manufacturing method of organic el panel
KR100608888B1 (en) Mother Glass And Fabricating Method of Organic Electro Luminescence Device Using The Same
JP4207593B2 (en) Organic thin film light emitting display
JP2005181703A (en) Display panel and method for wiring display panel
KR20080054050A (en) Organic light emitting display