JP2001194027A - Air conditioner and multi-type air conditioner - Google Patents

Air conditioner and multi-type air conditioner

Info

Publication number
JP2001194027A
JP2001194027A JP2000004462A JP2000004462A JP2001194027A JP 2001194027 A JP2001194027 A JP 2001194027A JP 2000004462 A JP2000004462 A JP 2000004462A JP 2000004462 A JP2000004462 A JP 2000004462A JP 2001194027 A JP2001194027 A JP 2001194027A
Authority
JP
Japan
Prior art keywords
control valve
indoor
flow control
heat exchanger
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000004462A
Other languages
Japanese (ja)
Other versions
JP4063465B2 (en
Inventor
Takuya Mukoyama
琢也 向山
Toshiaki Yoshikawa
利彰 吉川
Shigeki Onishi
茂樹 大西
Masahiro Nakayama
雅弘 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000004462A priority Critical patent/JP4063465B2/en
Publication of JP2001194027A publication Critical patent/JP2001194027A/en
Application granted granted Critical
Publication of JP4063465B2 publication Critical patent/JP4063465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance comfortableness against the indoor side temperature and humidity and to enhance comfortableness against the indoor side noise furthermore by enlarging the region of latent heat exchanging quantity and sensible heat exchanging quantity controllable through an indoor heat exchanger. SOLUTION: The air conditioner comprises a refrigeration cycle formed by sequentially coupling a compressor, an outdoor side heat exchanger, a first flow rate control valve, and an indoor side heat exchanger divided thermally into a plurality of subsections and coupling a second flow rate control valve between the indoor side heat exchangers, an indoor side fan, and an outdoor side fan. A porous body is provided in the refrigerant channel of at least one of the first and second flow rate control valves and the air conditioner is provided with an operation mode where the outdoor side heat exchanger is used as a condenser, and the indoor side heat exchanger is used as a reheater on the upstream side of the second flow rate control valve in the direction of refrigerant flow and used as an evaporator on the downstream side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクルの
凝縮熱の一部を再熱の目的のために使用する空気調和機
に係り、より詳細には、温度と湿度の制御性を高めると
ともに、冷媒流動音を低減することにより、温度と湿度
と騒音に対する快適性を向上させる空気調和機に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner that uses a part of the heat of condensation of a refrigeration cycle for the purpose of reheating, and more particularly, to improving the controllability of temperature and humidity. The present invention relates to an air conditioner that improves comfort against temperature, humidity, and noise by reducing refrigerant flow noise.

【0002】[0002]

【従来の技術】従来の冷凍サイクルの凝縮熱の一部を再
熱の目的のために使用する空気調和機は、主として、回
転数可変型圧縮機と、室外側熱交換器と、第1流量制御
弁と、熱的に2分割された室内側熱交換器とを順次接続
し、この2分割された室内側熱交換器間に第2流量制御
弁を接続して形成される冷凍サイクルを備えている。
2. Description of the Related Art An air conditioner that uses a part of the heat of condensation of a conventional refrigeration cycle for the purpose of reheating is mainly composed of a variable speed compressor, an outdoor heat exchanger, and a first flow rate. A refrigeration cycle formed by sequentially connecting a control valve and a thermally split indoor heat exchanger, and connecting a second flow control valve between the two split indoor heat exchangers; ing.

【0003】上記従来の空気調和機では、室外側熱交換
器を凝縮器として使用し、2分割された室内側熱交換器
のうち第2流量制御弁の冷媒流れ方向上流側を再熱器と
して使用し、冷媒流れ下流側を蒸発器として使用する運
転モードにおいて、第1流量制御弁の開度は固定し、第
2流量制御弁の開度を調節することで室内側空気の温度
と湿度の制御を行っている。
In the above-mentioned conventional air conditioner, the outdoor heat exchanger is used as a condenser, and the upstream of the second flow control valve in the refrigerant flow direction in the two divided indoor heat exchangers is used as the reheater. In the operation mode in which the downstream side of the refrigerant flow is used as an evaporator, the opening degree of the first flow control valve is fixed, and the opening degree of the second flow control valve is adjusted to adjust the temperature and humidity of the indoor air. Control.

【0004】図11は、上記運転モードにおいて第2流
量制御弁の開度を2段階に調節した場合の、室内側熱交
換器による潜熱熱交換量と顕熱熱交換量の制御可変領域
の一例を示したものである。
FIG. 11 shows an example of a variable control region of the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger when the opening of the second flow control valve is adjusted in two stages in the above operation mode. It is shown.

【0005】[0005]

【発明が解決しようとする課題】従来の空気調和機の上
記運転モードにおいて、第2流量制御弁の開度は調節さ
れるが、第1流量制御弁の開度は固定されて運転されて
いたので、冷媒流量の制御可変領域は制限される。
In the above-described operation mode of the conventional air conditioner, the opening of the second flow control valve is adjusted, but the operation of the first flow control valve is fixed. Therefore, the variable control region of the refrigerant flow rate is limited.

【0006】また、第2流量制御弁は室内側に設置され
るため、圧縮機回転数を上昇させて冷媒流量を増加させ
た場合、第2流量制御弁を通過する冷媒流動音による室
内側騒音が増大する。同様に、再熱器として使用する室
内側熱交換器の冷媒入口では、冷媒は依然として高圧で
あるため、冷媒流量の増加に伴い室内側騒音が増大す
る。したがって室内の騒音に対する快適性を維持するた
め、圧縮機回転数の制御可変領域、すなわち冷媒流量の
制御可変領域は制限される。
Also, since the second flow control valve is installed indoors, when the compressor rotation speed is increased to increase the refrigerant flow rate, the indoor noise due to the refrigerant flow noise passing through the second flow control valve is increased. Increase. Similarly, at the refrigerant inlet of the indoor heat exchanger used as a reheater, the refrigerant is still at a high pressure, so the indoor noise increases with an increase in the refrigerant flow rate. Therefore, in order to maintain comfort against indoor noise, the variable control region of the compressor speed, that is, the variable control region of the refrigerant flow rate is limited.

【0007】以上のことから、上記運転モードにおい
て、室内側熱交換器の冷媒流量の制御可変領域は制限さ
れるため、室内側熱交換器による潜熱熱交換量と顕熱熱
交換量の制御可変領域についても図11に示すように限
られた範囲となり、室内側空気の温度と湿度を広範囲に
制御することができないという問題点があった。
[0007] From the above, in the above operation mode, since the variable control range of the refrigerant flow rate of the indoor heat exchanger is limited, the control variable of the latent heat exchange amount and the sensible heat exchange amount by the indoor heat exchanger is variable. The area is also limited as shown in FIG. 11, and there is a problem that the temperature and humidity of the indoor air cannot be controlled in a wide range.

【0008】さらに、従来の空気調和機では、作動冷媒
に主としてR22が使用されていたが、オゾン層破壊防
止の目的のため、R410Aなどのハイドロフルオロカ
ーボン系冷媒への代替化が進行中であり、このR410
Aは、R22に比べ動作圧力が高くなるため、上記第2
流量制御弁における冷媒差圧も大きくなり、冷媒流動音
により室内側騒音が増大するという問題点があった。
Further, in the conventional air conditioner, R22 is mainly used as a working refrigerant, but for the purpose of preventing ozone layer destruction, replacement with a hydrofluorocarbon-based refrigerant such as R410A is in progress. This R410
A has a higher operating pressure than R22,
There is a problem that the refrigerant differential pressure in the flow control valve also increases, and the indoor noise increases due to the refrigerant flow noise.

【0009】この発明は、かかる問題点を解決するため
になされたもので、冷凍サイクルの凝縮熱の一部を再熱
の目的のために使用する空気調和機において、室内側熱
交換器による潜熱熱交換量と顕熱熱交換量の制御可変領
域を拡大することで、室内側の温度と湿度に対する快適
性を向上し、さらに、室内側熱交換器へ流入する冷媒の
流動音、および室内側に設けられた第2流量制御弁の冷
媒流動音を抑制することで、室内側の騒音に対する快適
性を向上することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and in an air conditioner in which part of the heat of condensation of a refrigeration cycle is used for the purpose of reheating, a latent heat generated by an indoor heat exchanger is used. By expanding the controllable range of the amount of heat exchange and the amount of sensible heat exchange, the comfort with respect to the indoor temperature and humidity is improved, and the flow noise of the refrigerant flowing into the indoor heat exchanger and the indoor An object of the present invention is to improve the comfort with respect to the indoor noise by suppressing the refrigerant flow noise of the second flow control valve provided in the vehicle.

【0010】[0010]

【課題を解決するための手段】この発明に係る空気調和
機は、圧縮機、室外側熱交換器、第1流量制御弁、熱的
に複数に分割された室内側熱交換器を順次接続し、熱的
に複数に分割された室内側熱交換器間に第2流量制御弁
を接続して形成される冷凍サイクルと、室内側送風機
と、室外側送風機と、を有する空気調和機において、第
1流量制御弁及び第2流量制御弁の少なくとも何れか一
方の冷媒流路に多孔質体を設け、室外側熱交換器を凝縮
器として使用し、熱的に複数に分割された室内側熱交換
器のうち第2流量制御弁の冷媒流れ方向上流側を再熱器
として使用し、冷媒流れ下流側を蒸発器として使用する
運転モードを備えたものである。
An air conditioner according to the present invention comprises a compressor, an outdoor heat exchanger, a first flow control valve, and an indoor heat exchanger which is thermally divided into a plurality of parts. An air conditioner having a refrigeration cycle formed by connecting a second flow control valve between indoor heat exchangers that are thermally divided into a plurality, an indoor blower, and an outdoor blower; A porous body is provided in at least one of the refrigerant flow passages of the first flow control valve and the second flow control valve, and the indoor heat exchanger is thermally divided into a plurality using the outdoor heat exchanger as a condenser. An operation mode in which the upstream side of the second flow control valve in the refrigerant flow direction of the heat exchanger is used as a reheater, and the downstream side of the refrigerant flow is used as an evaporator.

【0011】また、第2流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したものである。
Further, the second flow control valve is constituted by a flow control valve whose opening can be adjusted in multiple stages.

【0012】また、第2流量制御弁を電子制御式膨張弁
で構成したものである。
Further, the second flow control valve is constituted by an electronically controlled expansion valve.

【0013】また、第1流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したものである。
Further, the first flow control valve is constituted by a flow control valve whose opening degree can be adjusted in multiple stages.

【0014】また、第1流量制御弁を電子制御式膨張弁
で構成したものである。
Further, the first flow control valve is constituted by an electronically controlled expansion valve.

【0015】また、第2流量制御弁と並列に、冷媒の流
動抵抗体として、オリフィスの前後またはそのいずれか
に多孔体を使用したオリフィス体を備えたものである。
Further, an orifice body using a porous body in front of or behind the orifice is provided as a flow resistor for the refrigerant in parallel with the second flow control valve.

【0016】また、第2流量制御弁と並列にオリフィス
体を備え、第2流量制御弁をその開度を全閉と全開の間
で2段階に調節が可能な流量制御弁で構成したものであ
る。
Also, an orifice body is provided in parallel with the second flow control valve, and the second flow control valve is constituted by a flow control valve whose opening can be adjusted in two stages between fully closed and fully opened. is there.

【0017】また、第2流量制御弁と直列に、冷媒の流
動抵抗体として、流路に多孔体を使用したオリフィス体
を備えたものである。
Further, an orifice body using a porous body in the flow path is provided as a flow resistor for the refrigerant in series with the second flow control valve.

【0018】また、請求項1記載の空気調和機におい
て、冷凍サイクルの作動冷媒として、ハイドロフルオロ
カーボン系冷媒の単独または混合の冷媒を使用するもの
である。
Further, in the air conditioner according to the first aspect, a single or mixed hydrofluorocarbon-based refrigerant is used as a working refrigerant of the refrigeration cycle.

【0019】また、室内側空気の温度および湿度を検出
する手段と、これらの検出結果に応じて室内側送風機と
室外側送風機との送風量を制御する手段と、室外側熱交
換器を凝縮器として使用し、熱的に複数に分割された室
内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流
側を再熱器として使用し、冷媒流れ下流側を蒸発器とし
て使用する運転モードにおいて、室内側空気の温度およ
び湿度の検出結果に応じて、室内側送風機の送風量およ
び室外側送風機の送風量を制御することにより、室内側
熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行
う制御手段と、を備えたものである。
Also, means for detecting the temperature and humidity of the indoor air, means for controlling the amount of air blown between the indoor blower and the outdoor blower in accordance with the detection results, and a condenser for the outdoor heat exchanger Operation mode in which the upstream of the second flow control valve in the refrigerant flow direction is used as a reheater and the downstream of the refrigerant flow is used as an evaporator among the indoor heat exchangers that are thermally divided into a plurality. , The amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger are controlled by controlling the amount of air blown by the indoor air blower and the amount of air blown by the outdoor air blower according to the detection results of the temperature and humidity of the indoor air. Control means for controlling the amount.

【0020】また、室内側熱交換器の温度および室外側
熱交換器の温度を検出する手段と、これらの検出結果に
応じて室内側送風機の送風量と室外側送風機の送風量と
を制御する手段と、室外側熱交換器を凝縮器として使用
し、熱的に複数に分割された室内側熱交換器のうち第2
流量制御弁の冷媒流れ方向上流側を再熱器として使用
し、冷媒流れ下流側を蒸発器として使用する運転モード
において、室内側熱交換器の温度および室外側熱交換器
の温度の検出結果に応じて、室内側送風機の送風量およ
び室外側送風機の送風量を制御することにより、室内側
熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行
う制御手段と、を備えたものである。
Further, means for detecting the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger, and controls the amount of air blown by the indoor blower and the amount of air blown by the outdoor blower according to the detection results. Means and an outdoor heat exchanger used as a condenser, and a second one of the plurality of thermally divided indoor heat exchangers.
In an operation mode in which the upstream side of the refrigerant flow direction of the flow control valve is used as a reheater and the downstream side of the refrigerant flow is used as an evaporator, the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger are detected. Control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the amount of air blown by the indoor air blower and the amount of air blown by the outdoor air blower accordingly. It is.

【0021】また、圧縮機の回転数を制御する圧縮機回
転数制御部と、この圧縮機回転数制御部の温度を検出す
る手段と、この検出結果に応じて室内側送風機の送風量
と、室外側送風機の送風量とを制御する手段と、室外側
熱交換器を凝縮器として使用し、熱的に複数に分割され
た室内側熱交換器のうち第2流量制御弁の冷媒流れ方向
上流側を再熱器として使用し、冷媒流れ下流側を蒸発器
として使用する運転モードにおいて、圧縮機回転数制御
部の温度の検出結果に応じて、室内側送風機の送風量お
よび室外側送風機の送風量を制御することにより、室内
側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を
行う制御手段と、を備えたものである。
Also, a compressor rotation speed control unit for controlling the rotation speed of the compressor, means for detecting the temperature of the compressor rotation speed control unit, an air flow rate of the indoor blower according to the detection result, Means for controlling the amount of air blown by the outdoor blower, and using the outdoor heat exchanger as a condenser, and a plurality of thermally split indoor heat exchangers, upstream of the second flow control valve in the refrigerant flow direction. In the operation mode using the side as the reheater and the downstream side of the refrigerant flow as the evaporator, according to the detection result of the temperature of the compressor rotation speed control unit, the blower amount of the indoor blower and the blower of the outdoor blower are determined. And control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the air volume.

【0022】また、目標となる室内温度および室内湿度
を外部から設定する手段と、室内側空気の温度および湿
度を検出する手段と、目標室内温度と検出室内温度との
差および目標室内湿度と検出室内湿度との差を演算する
手段と、この演算結果に応じて室内側送風機及び室外側
送風機の送風量の送風量と、圧縮機の回転数と、第1流
量制御弁の開度と、第2流量制御弁の開度とを制御する
手段と、室外側熱交換器を凝縮器として使用し、熱的に
複数に分割された室内側熱交換器のうち第2流量制御弁
の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ
下流側を蒸発器として使用する運転モードにおいて、目
標室内温度と検出室内温度との差および目標室内湿度と
検出室内湿度との差の演算結果に応じて室内側送風機及
び室外側送風機の送風量と、圧縮機の回転数と、第1流
量制御弁の開度と、第2流量制御弁の開度とを制御する
ことにより、室内側熱交換器による潜熱熱交換量と顕熱
熱交換量の制御を行う制御手段と、を備えたものであ
る。
Means for externally setting the target indoor temperature and indoor humidity; means for detecting the temperature and humidity of indoor air; detecting the difference between the target indoor temperature and the detected indoor temperature and detecting the target indoor humidity; Means for calculating the difference from the indoor humidity, the amount of air blown by the indoor blower and the outdoor blower according to the calculation result, the number of rotations of the compressor, the opening of the first flow control valve, (2) means for controlling the opening degree of the flow rate control valve, and the refrigerant flow direction of the second flow rate control valve among the indoor side heat exchangers which are thermally divided into a plurality using the outdoor heat exchanger as a condenser In an operation mode in which the upstream side is used as a reheater and the refrigerant flow downstream side is used as an evaporator, according to the calculation result of the difference between the target indoor temperature and the detected indoor temperature and the difference between the target indoor humidity and the detected indoor humidity. Of the indoor fan and the outdoor fan By controlling the air volume, the number of revolutions of the compressor, the opening of the first flow control valve, and the opening of the second flow control valve, the amount of latent heat exchange and sensible heat exchange by the indoor heat exchanger is controlled. Control means for controlling the amount.

【0023】また、第1流量制御弁は、冷媒流路に多孔
質体を使用しないものである。
The first flow control valve does not use a porous body in the refrigerant flow path.

【0024】また、圧縮機を回転数可変型圧縮機で構成
し、冷凍サイクル中蒸発過程における冷媒の過熱状態を
検出する手段と、この検出結果に基づいて、第1流量制
御弁及び第2流量制御弁の少なくとも一方の開度と、圧
縮機の回転数との制御を行う制御手段と、を備えたもの
である。
Further, the compressor is constituted by a variable-speed compressor, means for detecting a superheated state of the refrigerant in the evaporation process during the refrigeration cycle, and a first flow control valve and a second flow control valve based on the detection result. A control means for controlling at least one of the opening degree of the control valve and the rotation speed of the compressor is provided.

【0025】また、圧縮機を回転数可変型圧縮機で構成
し、冷凍サイクル中凝縮過程における冷媒の過冷却状態
を検出する手段と、この検出結果に基づいて、第1流量
制御弁及び第2流量制御弁の少なくとも一方の開度と、
圧縮機の回転数との制御を行う制御手段と、を備えたも
のである。
Further, the compressor is constituted by a variable-speed compressor, means for detecting a supercooled state of the refrigerant in the condensing process during the refrigeration cycle, and a first flow control valve and a second flow control valve based on the detection result. At least one opening of the flow control valve;
Control means for controlling the number of revolutions of the compressor.

【0026】この発明に係るマルチタイプの空気調和機
は、請求項10〜16の何れかに記載の空気調和機にお
いて、第1流量制御弁と、室内側熱交換器と、第2流量
制御弁との接続体を複数について並列接続して構成した
ものである。
A multi-type air conditioner according to the present invention is the air conditioner according to any one of claims 10 to 16, wherein the first flow control valve, the indoor heat exchanger, and the second flow control valve are provided. And a plurality of connected bodies are connected in parallel.

【0027】この発明に係る空気調和機は、圧縮機、四
方切換弁、室外側熱交換器、第1流量制御弁、熱的に複
数に分割された室内側熱交換器を順次接続し、熱的に複
数に分割された室内側熱交換器間に第2流量制御弁を接
続して形成される冷凍サイクルと、室内側送風機と、室
外側送風機と、を有する空気調和機において、圧縮機か
らの吐出冷媒が、四方切換弁、室外側熱交換器、および
第1流量制御弁をバイパスして室内側熱交換器に流入す
るバイパス経路と、このバイパス経路中に設けられた第
3流量制御弁及び室内側熱交換器から圧縮機の方向への
冷媒の流動を防止する機構と、を備えたものである。
In the air conditioner according to the present invention, a compressor, a four-way switching valve, an outdoor heat exchanger, a first flow control valve, and an indoor heat exchanger that is thermally divided into a plurality of heat exchangers are sequentially connected. Refrigeration cycle formed by connecting the second flow control valve between indoor heat exchangers divided into a plurality of, an indoor blower, and an outdoor blower, from the compressor Path through which the discharged refrigerant flows into the indoor heat exchanger by bypassing the four-way switching valve, the outdoor heat exchanger, and the first flow control valve, and the third flow control valve provided in the bypass path And a mechanism for preventing the flow of the refrigerant from the indoor heat exchanger toward the compressor.

【0028】また、圧縮機、四方切換弁、室外側熱交換
器、第1流量制御弁、熱的に複数に分割された室内側熱
交換器を順次接続し、熱的に複数に分割された室内側熱
交換器間に第2流量制御弁を接続して形成される冷凍サ
イクルと、室内側送風機と、室外側送風機と、を有する
空気調和機において、圧縮機からの吐出冷媒が、四方切
換弁、および室内側熱交換器を通過した後、第1流量制
御弁、室外側熱交換器、および四方切換弁をバイパスし
て圧縮機に吸入されるバイパス経路と、このバイパス経
路中に設けられた第3流量制御弁及び圧縮機から室内側
熱交換器の方向への冷媒の流動を防止する機構と、を備
えたものである。
Further, the compressor, the four-way switching valve, the outdoor heat exchanger, the first flow control valve, and the indoor heat exchanger thermally divided into a plurality are sequentially connected to be thermally divided into a plurality. In an air conditioner having a refrigeration cycle formed by connecting a second flow control valve between indoor heat exchangers, an indoor blower, and an outdoor blower, refrigerant discharged from a compressor is switched in four directions. After passing through the valve and the indoor heat exchanger, the first flow control valve, the outdoor heat exchanger, and a bypass path that is drawn into the compressor by bypassing the four-way switching valve, and is provided in the bypass path. And a mechanism for preventing the flow of the refrigerant from the third flow control valve and the compressor toward the indoor heat exchanger.

【0029】また、請求項18または請求項19記載の
空気調和機において、第2流量制御弁の冷媒流路に多孔
質体を備えたものである。
Further, in the air conditioner according to claim 18 or 19, a porous body is provided in the refrigerant flow path of the second flow control valve.

【0030】また、請求項18または請求項19または
請求項20記載の空気調和機において、冷凍サイクルの
作動冷媒として、ハイドロフルオロカーボン系冷媒の単
独または混合の冷媒を使用するものである。
[0030] In the air conditioner according to claim 18, 19, or 20, an independent or mixed refrigerant of hydrofluorocarbon-based refrigerant is used as a working refrigerant of the refrigeration cycle.

【0031】[0031]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図面を参照して説明する。図1〜5は実
施の形態1を示す図で、図1は空気調和機の冷凍サイク
ル図、図2は制御装置の要部ブロック図、図3は各機器
の制御に対する室内側熱交換器による潜熱熱交換量と顕
熱熱交換量との関係図、図4は室内側熱交換器による潜
熱熱交換量と顕熱熱交換量との制御可変範囲を示した
図、図5設定された目標温・湿度と実際の温・湿度との
差の値に対応した、各アクチュエータに対する制御指令
信号のマトリックス構成例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1 to 5 show a first embodiment, FIG. 1 is a refrigeration cycle diagram of an air conditioner, FIG. 2 is a block diagram of a main part of a control device, and FIG. FIG. 4 is a diagram showing the relationship between the amount of latent heat exchange and the amount of sensible heat exchange, FIG. 4 is a diagram showing a variable control range between the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger, and FIG. FIG. 9 is a diagram illustrating an example of a matrix configuration of control command signals for each actuator, corresponding to the difference between the temperature and humidity and the actual temperature and humidity.

【0032】図1に示すように、圧縮機1と、室外側熱
交換器2と、第1流量制御弁3と、室内側熱交換器4a
と、第2流量制御弁5と、室内側熱交換器4bとを順次
接続した構成であり、室内側熱交換器4aと室内側熱交
換器4bは熱的に分割されている。圧縮機1、室外側熱
交換器2、および第1流量制御弁3は室外ユニットA側
であり、室内側熱交換器4a、第2流量制御弁5、室内
側熱交換器4bは室内ユニットB側である。
As shown in FIG. 1, a compressor 1, an outdoor heat exchanger 2, a first flow control valve 3, and an indoor heat exchanger 4a
And the second flow control valve 5 and the indoor heat exchanger 4b are sequentially connected, and the indoor heat exchanger 4a and the indoor heat exchanger 4b are thermally divided. The compressor 1, the outdoor heat exchanger 2, and the first flow control valve 3 are on the outdoor unit A side. The indoor heat exchanger 4a, the second flow control valve 5, and the indoor heat exchanger 4b are connected to the indoor unit B. Side.

【0033】第2流量制御弁5には、冷媒流路に多孔質
体を使用した多段階に開度調節が可能な流量制御弁を用
い、第1流量制御弁3についても冷媒流路に多孔質体を
使用した多段階に開度調節が可能な流量制御弁を用い
る。多孔質体には、0.1μmから300μmの径で構
成された燒結金属を使用する。多段階に開度調節が可能
な流量制御弁としては、例えば電子制御式膨張弁が挙げ
られる。
As the second flow control valve 5, a flow control valve using a porous material in the refrigerant flow path and capable of adjusting the opening in multiple stages is used. A flow control valve capable of adjusting the opening in multiple stages using a solid body is used. As the porous body, a sintered metal having a diameter of 0.1 μm to 300 μm is used. An example of the flow control valve capable of adjusting the opening in multiple stages is an electronically controlled expansion valve.

【0034】さらに、圧縮機1に回転数可変型圧縮機を
用い、これを制御する圧縮機回転数制御部を備える。作
動流体となる冷媒にはハイドロフルオロカーボン系冷媒
(具体的にはR410AやR407C等)を用い、冷凍
機油にはアルキルベンゼン系油、エステル系油、エーテ
ル系油等を使用する。
Further, a variable speed compressor is used as the compressor 1 and a compressor speed controller for controlling the variable speed compressor is provided. A hydrofluorocarbon-based refrigerant (specifically, R410A, R407C, or the like) is used as a refrigerant serving as a working fluid, and an alkylbenzene-based oil, an ester-based oil, an ether-based oil, or the like is used as a refrigerating machine oil.

【0035】図2に示すように、空気調和機の制御回路
は、制御部8に第1流量制御弁3と、室内側空気温度セ
ンサ6と、室内側空気湿度センサ7と、吸入温度センサ
13と、室内側送風機9と、室外側送風機10と、圧縮
機回転数制御部11とを接続した構成である。吸入温度
センサ13は、圧縮機1に設置された吸入冷媒温度を検
出するものである。また、目標となる室内側空気温・湿
度を、外部から制御部8へ設定する機能を有する目標温
・湿度設定装置12を備える。制御部8は、記憶機能
と、演算機能と、接続された各機器へ制御指令信号を出
力する機能とを備える。
As shown in FIG. 2, the control circuit of the air conditioner includes a control unit 8 including a first flow control valve 3, a room air temperature sensor 6, a room air humidity sensor 7, and a suction temperature sensor 13. , An indoor blower 9, an outdoor blower 10, and a compressor rotation speed control unit 11 are connected. The suction temperature sensor 13 detects the temperature of the suction refrigerant installed in the compressor 1. Further, a target temperature / humidity setting device 12 having a function of setting a target indoor air temperature / humidity to the control unit 8 from outside is provided. The control unit 8 has a storage function, an arithmetic function, and a function of outputting a control command signal to each connected device.

【0036】以上のような空気調和機の構成において、
図1中矢印の方向に冷媒を流した場合、第1流量制御弁
3・第2流量制御弁5を設けたことにより、冷凍サイク
ルの凝縮熱の一部を室内側熱交換器4aにおいて再熱の
目的で使用することができる。以下、室外側熱交換器2
を凝縮器として使用し、室内側熱交換器4aを再熱器と
して使用し、室内側熱交換器4bを蒸発器として使用す
る運転モードについて考える。
In the configuration of the air conditioner as described above,
When the refrigerant flows in the direction of the arrow in FIG. 1, a part of the heat of condensation of the refrigeration cycle is reheated in the indoor heat exchanger 4a by providing the first flow control valve 3 and the second flow control valve 5. Can be used for the purpose. Hereinafter, the outdoor heat exchanger 2
Is used as a condenser, the indoor heat exchanger 4a is used as a reheater, and the indoor heat exchanger 4b is used as an evaporator.

【0037】室内側熱交換器4aを再熱器として使用す
る場合、冷媒は第1流量制御弁3で減圧されるが、室内
側熱交換器4aへ流入する冷媒は依然として高圧であ
り、冷媒流動音による騒音が問題となる。これに対し、
本実施の形態では、第1流量制御弁3の冷媒流路に多孔
質体を使用することで、室内側熱交換器4aへ流入する
冷媒が整流され冷媒流動音の抑制が可能となる。
When the indoor heat exchanger 4a is used as a reheater, the refrigerant is depressurized by the first flow control valve 3, but the refrigerant flowing into the indoor heat exchanger 4a is still at a high pressure, Noise due to sound is a problem. In contrast,
In the present embodiment, by using a porous body for the refrigerant flow path of the first flow control valve 3, the refrigerant flowing into the indoor heat exchanger 4a is rectified, and the refrigerant flow noise can be suppressed.

【0038】また、第1流量制御弁3と第2流量制御弁
5とにより冷媒に対し絞りが作用するが、気液二相とな
った冷媒がこのような絞り作用をうけると冷媒流動音が
生じる。特に、第2流量制御弁5においては、気液二相
となった冷媒が通過する可能性が高く、さらに室内側に
設置されていることから冷媒流動音による騒音が問題と
なる。
The first flow control valve 3 and the second flow control valve 5 cause a throttle to act on the refrigerant. When the gas-liquid two-phase refrigerant is subjected to such a throttling operation, the refrigerant flow noise is generated. Occurs. In particular, in the second flow control valve 5, there is a high possibility that the gas-liquid two-phase refrigerant passes therethrough. Further, since the second flow control valve 5 is installed indoors, noise due to the refrigerant flow noise becomes a problem.

【0039】また、本実施の形態のように、作動流体と
なる冷媒にR410A等の比較的高圧で作動する冷媒を
使用した場合、絞り前後での冷媒差圧が大きくなり、上
記の冷媒流動音の発生がより顕著となる。これに対し、
本実施の形態では、第2流量制御弁5の冷媒流路に多孔
質体を用いることにより、冷媒流動音を抑制し、低騒音
な空気調和機を実現している。
When a refrigerant that operates at a relatively high pressure, such as R410A, is used as the refrigerant as the working fluid as in the present embodiment, the refrigerant differential pressure before and after the throttling increases, and the above-mentioned refrigerant flow noise Is more remarkable. In contrast,
In the present embodiment, the use of a porous body in the refrigerant flow path of the second flow control valve 5 suppresses refrigerant flow noise, thereby realizing a low-noise air conditioner.

【0040】次に、上記のような室外側熱交換器2を凝
縮器として使用し、室内側熱交換器4aを再熱器として
使用し、室内側熱交換器4bを蒸発器として使用する運
転モードにおける、室内側熱交換器による潜熱熱交換量
と顕熱熱交換量について説明する。
Next, an operation in which the outdoor heat exchanger 2 as described above is used as a condenser, the indoor heat exchanger 4a is used as a reheater, and the indoor heat exchanger 4b is used as an evaporator. The latent heat exchange amount and the sensible heat exchange amount by the indoor heat exchanger in the mode will be described.

【0041】室内側送風量と、室外側送風量と、第1流
量制御弁開度と、第2流量制御弁開度と、圧縮機運転周
波数とをそれぞれ変化させた場合、室内側熱交換器によ
る潜熱熱交換量と顕熱熱交換量の推移傾向は図3に示す
ようになる。一般に、圧縮機運転周波数、室内側送風
量、室外側送風量をそれぞれ増加させると、室内側熱交
換器による熱交換量は、各量について図示矢印の方向へ
推移する。同様に、第1流量制御弁開度、第2流量制御
弁開度をそれぞれ減少させると、室内側熱交換器による
熱交換量は、各量について図示矢印の方向へ推移する。
When the indoor air flow rate, the outdoor air flow rate, the first flow control valve opening degree, the second flow control valve opening degree, and the compressor operating frequency are respectively changed, the indoor heat exchanger FIG. 3 shows the transition trends of the latent heat exchange amount and the sensible heat exchange amount due to the above. In general, when the compressor operating frequency, the indoor air flow rate, and the outdoor air flow rate are respectively increased, the amount of heat exchange by the indoor heat exchanger changes in the direction indicated by the arrow for each quantity. Similarly, when the opening degree of the first flow control valve and the opening degree of the second flow control valve are respectively reduced, the amount of heat exchange by the indoor heat exchanger changes in the direction of the arrow in the figure for each amount.

【0042】従来の空気調和機では、圧縮機運転周波数
及び第2流量制御弁開度の調節により、室内側熱交換器
による潜熱熱交換量と顕熱熱交換量を制御していた。さ
らに、上記冷媒流動音の増大を考慮すると、高周波数域
で圧縮機を運転することができず、また、第2流量調節
弁開度についても2段階の調節であったため、室内側熱
交換器による潜熱熱交換量と顕熱熱交換量の制御可能な
範囲は、図11に示すように限られていた。
In the conventional air conditioner, the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger are controlled by adjusting the compressor operating frequency and the degree of opening of the second flow control valve. Further, in consideration of the increase in the refrigerant flow noise, the compressor cannot be operated in a high frequency range, and the opening degree of the second flow control valve is also adjusted in two steps. The controllable range of the amount of latent heat exchange and the amount of sensible heat exchange is limited as shown in FIG.

【0043】本実施の形態では、上記のように第2流量
制御弁5での冷媒流動音が抑制されるため、圧縮機運転
周波数を上昇させて冷媒動作圧が高い状態での運転が可
能である。また、室内側送風量、室外側送風量、第1流
量制御弁開度および第1流量制御弁開度についても、こ
れらを調節する機能を備える。したがって、室内側熱交
換器による潜熱熱交換量と顕熱熱交換量は、図4の斜線
部で示すように、広範囲にわたっての制御が可能とな
る。
In this embodiment, since the refrigerant flow noise at the second flow control valve 5 is suppressed as described above, it is possible to increase the compressor operating frequency and operate the refrigerant at a high refrigerant operating pressure. is there. In addition, a function is provided for adjusting the indoor air flow, the outdoor air flow, the first flow control valve opening, and the first flow control valve opening. Therefore, the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger can be controlled over a wide range as shown by the hatched portion in FIG.

【0044】これにより、例えば、従来は、顕熱熱交換
量を抑えた状態での高潜熱負荷への対応は困難であった
が、圧縮機運転周波数および第1流量制御弁開度を増加
させることで対応が可能となる。また、室内側送風量を
抑えた状態でも、第1・第2流量制御弁の開度調節によ
り顕熱熱交換量の増加が可能となり、空気調和機の低騒
音化を図ることができる。具体的な制御は、以下のよう
な方法による。
Thus, for example, conventionally, it has been difficult to cope with a high latent heat load in a state in which the amount of sensible heat exchange is suppressed, but the operating frequency of the compressor and the opening of the first flow control valve are increased. This makes it possible to respond. Further, even in a state in which the amount of air blown on the indoor side is suppressed, the amount of sensible heat exchange can be increased by adjusting the opening degrees of the first and second flow control valves, and the noise of the air conditioner can be reduced. Specific control is performed by the following method.

【0045】目標温・湿度設定装置12により目標とな
る室内側温・湿度を設定する。制御部8において、設定
された温度と、室内側空気温度センサ6による温度の検
出結果との差Δtを演算する。同様に、制御部8におい
て、設定された湿度と、室内側空気湿度センサ7による
湿度の検出結果との差ΔRHを演算する。制御部8は、
各Δtの値とΔRHの値との組み合わせ毎に、室内側送
風機9と、室外側送風機10と、圧縮機回転数制御部1
1と、第1流量制御弁3と、第2流量制御弁5とに対す
る制御指令信号のマトリックス状の情報をあらかじめ記
憶している。
The target indoor temperature / humidity is set by the target temperature / humidity setting device 12. The control unit 8 calculates a difference Δt between the set temperature and the temperature detection result by the indoor air temperature sensor 6. Similarly, the control unit 8 calculates a difference ΔRH between the set humidity and the detection result of the humidity by the indoor air humidity sensor 7. The control unit 8
For each combination of the value of Δt and the value of ΔRH, the indoor blower 9, the outdoor blower 10, and the compressor rotation speed control unit 1
Matrix information of control command signals for the first, the first flow control valve 3 and the second flow control valve 5 is stored in advance.

【0046】このマトリックスの構成例を図5に示す。
上記ΔRHの値が変化する領域として想定しうる領域を
m個の区間に分け、任意のi番目の区間の代表値をΔR
Hi(ΔRH1≦ΔRHi<ΔRHm)とする。同様
に、Δtの値についても、n個の区間のうち任意のj番
目の区間の代表値をΔtj(Δt1≦Δtj<Δtn)
とする。ΔRHiとΔtjの組み合わせに対し、制御指
令信号の組である指令ijを対応させる。すなわちm×
n個の制御指令信号の組で、マトリックスを構成してい
る。指令ijの内容は、上記のように、室内側送風機9
と、室外側送風機10と、圧縮機回転数制御部11と、
第1流量制御弁3と、第2流量制御弁5とに対する各制
御指令信号の組である。
FIG. 5 shows an example of the configuration of this matrix.
A region that can be assumed as a region where the value of ΔRH changes is divided into m sections, and a representative value of an arbitrary i-th section is represented by ΔR
Hi (ΔRH1 ≦ ΔRHi <ΔRHm). Similarly, for the value of Δt, the representative value of an arbitrary j-th section among the n sections is represented by Δtj (Δt1 ≦ Δtj <Δtn).
And A command ij, which is a set of control command signals, is made to correspond to a combination of ΔRHi and Δtj. That is, mx
A set of n control command signals forms a matrix. The content of the command ij is, as described above, the indoor blower 9
An outdoor blower 10, a compressor rotation speed control unit 11,
This is a set of control command signals for the first flow control valve 3 and the second flow control valve 5.

【0047】上記のようなマトリックスを用い、Δtと
ΔRHの演算結果に基づいて各制御指令信号を選択し、
制御部8より出力することで、室内側熱交換器による潜
熱熱交換量と顕熱熱交換量を変化させる。以上のような
方法で制御を行うことにより、室内側空気の温度と湿度
を広範囲に制御可能なだけでなく、速やかに目標温・湿
度に到達が可能な空気調和機を実現している。
Using the above matrix, each control command signal is selected based on the calculation results of Δt and ΔRH,
The output from the control unit 8 changes the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger. By performing control using the method described above, an air conditioner that can not only control the temperature and humidity of the indoor air in a wide range but also quickly reach the target temperature and humidity is realized.

【0048】なお、本実施の形態では、第1流量制御弁
3および第2流量制御弁5に多段階に開度調節が可能な
流量制御弁を用いたが、開度調節可能な段階が多いほど
よりきめ細かく、開度調節可能な範囲が広いほどより幅
広い範囲で室内側空気の温度と湿度が制御可能となる。
In the present embodiment, the first and second flow control valves 3 and 5 use flow control valves whose opening can be adjusted in multiple stages, but there are many stages in which the opening can be adjusted. The temperature and humidity of the indoor air can be controlled in a wider range as the range is more fine and the degree of opening adjustment is wider.

【0049】なお、本実施の形態において、室内側熱交
換器による潜熱熱交換量と顕熱熱交換量の制御可能な範
囲を広げるため、圧縮機1の回転数を増加させたり、室
外側送風機10の回転数を減少させた場合、圧縮機回転
数制御部11の制御基板温度の上昇を招く。この基板温
度の過昇を防ぐために、圧縮機1あるいは室外側送風機
10の回転数の可変範囲は制限される。これに対し、圧
縮機回転数制御部11に温度センサを設置し、基板温度
があらかじめ設定された一定値以上になった場合に、室
外側送風機10の回転数を増加させ、またこれに伴い室
内側送風機9の回転数を変化させる制御指令信号を出力
する構成とすることで、より広範囲にわたる、室内側熱
交換器による潜熱熱交換量と顕熱熱交換量の制御が可能
となる。
In this embodiment, in order to increase the controllable range of the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger, the number of rotations of the compressor 1 is increased, In the case where the rotation speed of the compressor 10 is reduced, the control substrate temperature of the compressor rotation speed control unit 11 increases. In order to prevent the substrate temperature from excessively rising, the variable range of the rotation speed of the compressor 1 or the outdoor blower 10 is limited. On the other hand, a temperature sensor is installed in the compressor rotation speed control unit 11 to increase the rotation speed of the outdoor blower 10 when the substrate temperature becomes equal to or higher than a predetermined value. By outputting a control command signal for changing the rotation speed of the inner blower 9, it is possible to control the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger over a wider range.

【0050】実施の形態2.以下、この発明の実施の形
態2を図面を参照して説明する。図6は実施の形態2を
示す図で、空気調和機の冷凍サイクル図である。作動冷
媒および制御回路の構成は、実施の形態1と同様であ
る。図6に示すように、実施の形態1の冷凍サイクルの
構成に加え、第2流量制御弁5と並列に、オリフィス前
後に燒結金属等の多孔体を設置したオリフィス体14を
接続した構成である。このようにオリフィス前後に多孔
体を設置することで、絞りにより発生する冷媒流動音を
抑制することができ、空気調和機の低騒音化を実現して
いる。
Embodiment 2 Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. FIG. 6 shows the second embodiment and is a refrigeration cycle diagram of the air conditioner. The configurations of the working refrigerant and the control circuit are the same as in the first embodiment. As shown in FIG. 6, in addition to the configuration of the refrigeration cycle of the first embodiment, an orifice body 14 having a porous body such as a sintered metal installed before and after the orifice is connected in parallel with the second flow control valve 5. . By arranging the porous body before and after the orifice as described above, the refrigerant flow noise generated by the throttle can be suppressed, and the noise reduction of the air conditioner is realized.

【0051】本実施の形態では、実施の形態1と同様
に、室外側熱交換器2を凝縮器として使用し、室内側熱
交換器4aを再熱器として使用し、室内側熱交換器4b
を蒸発器として使用する運転モードにおいて、室内側熱
交換器による潜熱熱交換量と顕熱熱交換量は、図4の斜
線部で示すように、広範囲にわたっての制御が可能とな
る。特に、本実施の形態では、第2流量制御弁5を全閉
した状態でもオリフィス体14を通じて常に冷媒が循環
する構成となっているので、第2流量制御弁5として開
度調節が全開と全閉の2段階のような簡単な流量制御弁
を用いても冷凍サイクルの実現を可能としている。
In this embodiment, as in the first embodiment, the outdoor heat exchanger 2 is used as a condenser, the indoor heat exchanger 4a is used as a reheater, and the indoor heat exchanger 4b is used.
In the operation mode in which is used as an evaporator, the amount of latent heat exchange and the amount of sensible heat exchange by the indoor-side heat exchanger can be controlled over a wide range as shown by the hatched portion in FIG. In particular, in the present embodiment, even when the second flow control valve 5 is fully closed, the refrigerant always circulates through the orifice body 14, so that the opening adjustment of the second flow control valve 5 is fully open and fully open. The refrigeration cycle can be realized even by using a simple flow control valve such as a closed two-stage valve.

【0052】実施の形態3.以下、この発明の実施の形
態3を図面を参照して説明する。図7は実施の形態3を
示す図で、空気調和機の冷凍サイクル図である。図7に
示すように、実施の形態1の冷凍サイクルの構成に加
え、第2流量制御弁5前後に直列に、オリフィス前後に
燒結金属等の多孔体を設置したオリフィス体14aおよ
びオリフィス体14bを接続した構成である。このよう
にオリフィス前後に多孔体を設置することで、絞りによ
り発生する冷媒流動音を抑制することができ、空気調和
機の低騒音化を実現している。
Embodiment 3 FIG. Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. FIG. 7 shows the third embodiment and is a refrigeration cycle diagram of the air conditioner. As shown in FIG. 7, in addition to the configuration of the refrigeration cycle of the first embodiment, an orifice body 14a and an orifice body 14b in which porous bodies such as sintered metal are installed before and after the orifice are arranged in series before and after the second flow control valve 5. It is a connected configuration. By arranging the porous body before and after the orifice as described above, the refrigerant flow noise generated by the throttle can be suppressed, and the noise reduction of the air conditioner is realized.

【0053】特に本実施の形態では、第2流量制御弁5
前後にオリフィス体を設けることにより、第2流量制御
弁5における冷媒差圧が抑えられ、第2流量制御弁5の
耐圧を減らすことができる。また、冷媒差圧が抑えられ
るため、第2流量制御弁5における冷媒流動音に対する
抑制効果が向上する。
Particularly in the present embodiment, the second flow control valve 5
By providing the orifices before and after, the refrigerant differential pressure in the second flow control valve 5 can be suppressed, and the pressure resistance of the second flow control valve 5 can be reduced. Further, since the refrigerant differential pressure is suppressed, the effect of suppressing the refrigerant flow noise in the second flow control valve 5 is improved.

【0054】本実施の形態では、実施の形態1と同様
に、室外側熱交換器2を凝縮器として使用し、室内側熱
交換器4aを再熱器として使用し、室内側熱交換器4b
を蒸発器として使用する運転モードにおいて、室内側熱
交換器による潜熱熱交換量と顕熱熱交換量は、図4の斜
線部で示すように、広範囲にわたっての制御が可能とな
る。
In the present embodiment, as in the first embodiment, the outdoor heat exchanger 2 is used as a condenser, the indoor heat exchanger 4a is used as a reheater, and the indoor heat exchanger 4b is used.
In the operation mode in which is used as an evaporator, the amount of latent heat exchange and the amount of sensible heat exchange by the indoor-side heat exchanger can be controlled over a wide range as shown by the hatched portion in FIG.

【0055】特に、本実施の形態では、室内側熱交換器
4a後の絞りを、オリフィス体14aと、オリフィス体
14bと、第2流量制御弁5とで行うため、冷媒に対し
第2流量制御弁5による絞りを補助的に作用させること
ができ、冷媒流量制御性が向上する。
Particularly, in the present embodiment, the throttle after the indoor heat exchanger 4a is performed by the orifice body 14a, the orifice body 14b, and the second flow control valve 5, so that the second flow control for the refrigerant is performed. The restriction by the valve 5 can be made to act as an auxiliary, and the refrigerant flow controllability is improved.

【0056】なお、以上実施の形態1から実施の形態3
で説明した空気調和機においては、室外ユニット側に第
1流量制御弁3を備える例を示したが、図8に示すよう
に室内ユニット側に第1流量制御弁3を設置しても、同
様の効果を達成できる。また、そのように構成した第1
流量制御弁3と、室内側熱交換器と、第2流量制御弁と
の接続体を複数について並列接続してマルチタイプの空
気調和機を構成してもよい。
Note that Embodiments 1 to 3 are described above.
In the air conditioner described in the above, an example is shown in which the first flow control valve 3 is provided on the outdoor unit side, but the same applies when the first flow control valve 3 is installed on the indoor unit side as shown in FIG. The effect of can be achieved. In addition, the first
A plurality of connection bodies of the flow control valve 3, the indoor heat exchanger, and the second flow control valve may be connected in parallel to form a multi-type air conditioner.

【0057】なお、以上実施の形態1から実施の形態3
で説明した空気調和機においては、第1流量制御弁3、
または、第1流量制御弁3および第2流量制御弁5にお
いて、多孔質体により冷媒流動音の抑制を実現してい
る。従って、弁体あるいはその周辺に、特に消音材を添
付する必要がないため、リサイクル性に優れる。
Note that Embodiments 1 to 3 are described above.
In the air conditioner described in the above, the first flow control valve 3,
Alternatively, in the first flow control valve 3 and the second flow control valve 5, the suppression of the refrigerant flow noise is realized by the porous body. Therefore, there is no need to attach a noise-reduction material to the valve body or its periphery, so that the valve body is excellent in recyclability.

【0058】実施の形態4.以下、この発明の実施の形
態4を図面を参照して説明する。図9は実施の形態4を
示す図で、空気調和機の冷凍サイクル図である。図に示
すように、圧縮機1と、四方切換弁15と、室外側熱交
換器2と、第1流量制御弁3と、室内側熱交換器4a
と、第2流量制御弁5と、室内側熱交換器4bとを順次
接続した構成であり、室内側熱交換器4aと室内側熱交
換器4bは熱的に分割されている。
Embodiment 4 Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 9 shows the fourth embodiment and is a refrigeration cycle diagram of the air conditioner. As shown in the figure, the compressor 1, the four-way switching valve 15, the outdoor heat exchanger 2, the first flow control valve 3, and the indoor heat exchanger 4a
And the second flow control valve 5 and the indoor heat exchanger 4b are sequentially connected, and the indoor heat exchanger 4a and the indoor heat exchanger 4b are thermally divided.

【0059】さらに、圧縮機吐出側配管と室内側熱交換
器とを、四方切換弁15、室外側熱交換器2、および第
1流量制御弁3をバイパスして結ぶ配管によって接続
し、この配管の途中に第3流量制御弁16を設置し、上
記バイパス経路の開閉を行う。また、上記第3流量制御
弁16と直列に逆止弁17を設置し、室内側熱交換器側
から圧縮機側への冷媒の流動を防止する構成である。
Further, the compressor discharge side pipe and the indoor side heat exchanger are connected by a pipe which bypasses the four-way switching valve 15, the outdoor side heat exchanger 2, and the first flow control valve 3, and is connected. The third flow control valve 16 is installed in the middle of the above to open and close the bypass path. Further, a check valve 17 is provided in series with the third flow control valve 16 to prevent the refrigerant from flowing from the indoor heat exchanger to the compressor.

【0060】第2流量制御弁5には、冷媒流路に多孔質
体を使用した多段階に開度調節が可能な流量制御弁を用
いる。多孔質体には、0.1μmから300μmの径で
構成された燒結金属を使用する。作動流体となる冷媒に
は、ハイドロフルオロカーボン系冷媒(具体的にはR4
10AやR407C等)を用い、冷凍機油には、アルキ
ルベンゼン系油、エステル系油、エーテル系油等を使用
する。
As the second flow control valve 5, a flow control valve using a porous body for the refrigerant flow path and capable of adjusting the opening in multiple stages is used. As the porous body, a sintered metal having a diameter of 0.1 μm to 300 μm is used. The refrigerant to be a working fluid includes a hydrofluorocarbon-based refrigerant (specifically, R4
10A or R407C), and an alkylbenzene-based oil, an ester-based oil, an ether-based oil, or the like is used as the refrigerating machine oil.

【0061】以上のような空気調和機の構成において、
第3流量制御弁16を閉じた状態で、冷媒を図9中矢印
の方向に冷媒を流したとき、室外側熱交換器2を凝縮
器、室内側熱交換器4aを再熱器、室内側熱交換器4b
を蒸発器として使用する運転が可能となる。この運転モ
ードにおいて、室外側空気温度が低下していくにつれ、
室外側熱交換器による熱交換量が増加するため、室内側
熱交換器4aで再熱の目的で使用される凝縮熱量は減少
し、顕熱熱交換量を抑えた状態での高潜熱負荷への対応
が困難となる。
In the configuration of the air conditioner as described above,
When the refrigerant flows in the direction indicated by the arrow in FIG. 9 with the third flow control valve 16 closed, the outdoor heat exchanger 2 is a condenser, the indoor heat exchanger 4a is a reheater, and the indoor heat exchanger 4a is a reheater. Heat exchanger 4b
The operation which uses as an evaporator becomes possible. In this operation mode, as the outdoor air temperature decreases,
Since the amount of heat exchange by the outdoor heat exchanger increases, the amount of condensed heat used for the purpose of reheating in the indoor heat exchanger 4a decreases, and a high latent heat load in a state where the amount of sensible heat exchange is suppressed. Is difficult to deal with.

【0062】これに対し、本実施の形態において、第3
流量制御弁16を開き、第1流量制御弁3を閉じ、図9
中矢印の方向に冷媒を流す運転を行った場合、圧縮機よ
り吐出された冷媒の大部分は室外側熱交換器2をバイパ
スして室内側熱交換器へ流入する。こうすることで、冷
凍サイクル中の凝縮熱の大部分を、室内側熱交換器4a
で再熱の目的での利用が可能となり、例えば1℃といっ
たような低い室外側空気温度においても、顕熱熱交換量
を抑えた状態での高潜熱負荷への対応を実現している。
すなわち、室外側空気温度の低下する冬季においても、
室内側空気温度を低下させることなく除湿量を確保した
運転が可能となる。
On the other hand, in the present embodiment, the third
The flow control valve 16 is opened, the first flow control valve 3 is closed, and FIG.
When the operation of flowing the refrigerant in the direction of the middle arrow is performed, most of the refrigerant discharged from the compressor bypasses the outdoor heat exchanger 2 and flows into the indoor heat exchanger. In this way, most of the heat of condensation in the refrigeration cycle is transferred to the indoor heat exchanger 4a.
Thus, even for a low outdoor air temperature such as 1 ° C., it is possible to cope with a high latent heat load in a state where the amount of sensible heat exchange is suppressed.
That is, even in winter when the outdoor air temperature decreases,
The operation which secured the dehumidification amount can be performed without lowering the indoor air temperature.

【0063】なお、上記の運転では、室外側熱交換器2
へも冷媒の流入があるため、運転を継続していくにつ
れ、室外側熱交換器2内に冷媒が溜まり込む。このため
に室内側熱交換器内の冷媒が不足する場合は、第1流量
制御弁3を完全に閉じることなく若干開くことで、室内
側熱交換器内の冷媒が不足することなく、その効果を達
成できる。
In the above operation, the outdoor heat exchanger 2
As the operation is continued, the refrigerant accumulates in the outdoor heat exchanger 2. For this reason, when the refrigerant in the indoor heat exchanger runs short, the first flow control valve 3 is slightly opened without being completely closed, so that the refrigerant in the indoor heat exchanger does not run short and its effect can be improved. Can be achieved.

【0064】なお、作動冷媒にR410A等の比較的高
圧で動作する冷媒を使用し、上記のようにバイパス回路
を開いた運転を行うと、第2流量制御弁5前後における
冷媒差圧が大きくなるため、冷媒流動音の発生が懸念さ
れる。これに対し、本実施の形態では第2流量制御弁5
に多孔質体を使用することで冷媒流動音を抑制している
ため、上記のような運転を行った場合でも、室内におけ
る低騒音性が確保される。
When a refrigerant operating at a relatively high pressure such as R410A is used as the working refrigerant and the operation is performed with the bypass circuit opened as described above, the refrigerant differential pressure around the second flow control valve 5 increases. For this reason, there is a concern about generation of refrigerant flow noise. On the other hand, in the present embodiment, the second flow control valve 5
Since the flow of the refrigerant is suppressed by using a porous body, low noise in the room can be ensured even when the above operation is performed.

【0065】実施の形態5.以下、この発明の実施の形
態5を図面を参照して説明する。図10は実施の形態5
を示す図で、空気調和機の冷凍サイクル図である。図に
示すように、圧縮機1と、四方切換弁15と、室外側熱
交換器2と、第1流量制御弁3と、室内側熱交換器4a
と、第2流量制御弁5と、室内側熱交換器4bとを順次
接続した構成であり、室内側熱交換器4aと室内側熱交
換器4bは熱的に分割されている。
Embodiment 5 Hereinafter, a fifth embodiment of the present invention will be described with reference to the drawings. FIG. 10 shows a fifth embodiment.
FIG. 3 is a refrigeration cycle diagram of the air conditioner. As shown in the figure, the compressor 1, the four-way switching valve 15, the outdoor heat exchanger 2, the first flow control valve 3, and the indoor heat exchanger 4a
And the second flow control valve 5 and the indoor heat exchanger 4b are sequentially connected, and the indoor heat exchanger 4a and the indoor heat exchanger 4b are thermally divided.

【0066】さらに、圧縮機吸入側配管と室内側熱交換
器とを、第1流量制御弁3、室外側熱交換器2、四方切
換弁15をバイパスして結ぶ配管によって接続し、この
配管の途中に第3流量制御弁16を設置し、上記バイパ
ス経路の開閉を行う。また、上記第3流量制御弁16と
直列に逆止弁17を設置し、圧縮機側から室内側熱交換
器側への冷媒の流動を防止する構成である。
Further, the compressor suction side pipe and the indoor side heat exchanger are connected by a pipe connecting the first flow control valve 3, the outdoor side heat exchanger 2, and the four-way switching valve 15 by bypass. A third flow control valve 16 is installed on the way to open and close the bypass path. Further, a check valve 17 is provided in series with the third flow control valve 16 to prevent the refrigerant from flowing from the compressor side to the indoor heat exchanger side.

【0067】第2流量制御弁5には、冷媒流路に多孔質
体を使用した多段階に開度調節が可能な流量制御弁を用
いる。上記多孔質体には、0.1μmから300μmの
径で構成された燒結金属を使用する。作動流体となる冷
媒には、ハイドロフルオロカーボン系冷媒(具体的には
R410AやR407C等)を用い、冷凍機油には、ア
ルキルベンゼン系油、エステル系油、エーテル系油等を
使用する。
As the second flow rate control valve 5, a flow rate control valve using a porous body for the refrigerant flow path and capable of adjusting the opening in multiple stages is used. A sintered metal having a diameter of 0.1 μm to 300 μm is used for the porous body. A hydrofluorocarbon-based refrigerant (specifically, R410A, R407C, or the like) is used as a refrigerant serving as a working fluid, and an alkylbenzene-based oil, an ester-based oil, an ether-based oil, or the like is used as a refrigeration oil.

【0068】以上のような空気調和機の構成において、
実施の形態4で述べたように、第3流量制御弁16を閉
じた状態で、冷媒を図10中破線矢印の方向に冷媒を流
し、室外側熱交換器2を凝縮器、室内側熱交換器4aを
再熱器、室内側熱交換器4bを蒸発器として使用する運
転モードとしたとき、室外側空気温度が低下していくに
つれ、顕熱熱交換量を抑えた状態での高潜熱負荷への対
応が困難となる。
In the above configuration of the air conditioner,
As described in the fourth embodiment, with the third flow control valve 16 closed, the refrigerant is caused to flow in the direction of the dashed arrow in FIG. 10, the outdoor heat exchanger 2 is used as the condenser, and the indoor heat exchange is performed. When the operation mode in which the heater 4a is used as a reheater and the indoor heat exchanger 4b is used as an evaporator is used, as the outdoor air temperature decreases, the high latent heat load in a state in which the amount of sensible heat exchange is suppressed. It becomes difficult to deal with.

【0069】これに対し、本実施の形態において、第3
流量制御弁16を開き、第1流量制御弁3を閉じ、図1
0中矢印の方向に冷媒を流す運転を行った場合、圧縮機
1より吐出された冷媒は、四方切換弁15、室内側熱交
換器を通過し、室外側熱交換器2をバイパスして大部分
は圧縮機1へ吸入される。こうすることで、冷凍サイク
ル中の凝縮熱の大部分を、室内側熱交換器4bで再熱の
目的での利用が可能となり、例えば1℃といったような
低い室外側空気温度においても、顕熱熱交換量を抑えた
状態での高潜熱負荷への対応を実現している。すなわ
ち、室外側空気温度の低下する冬季においても、室内側
空気温度を低下させることなく除湿量を確保した運転が
可能となる。
On the other hand, in the present embodiment, the third
Opening the flow control valve 16 and closing the first flow control valve 3, FIG.
When the operation of flowing the refrigerant in the direction of the middle arrow 0 is performed, the refrigerant discharged from the compressor 1 passes through the four-way switching valve 15 and the indoor heat exchanger, bypasses the outdoor heat exchanger 2, and largely flows. The part is sucked into the compressor 1. By doing so, most of the heat of condensation in the refrigeration cycle can be used for the purpose of reheating in the indoor heat exchanger 4b, and even at a low outdoor air temperature such as 1 ° C., the sensible heat Achieving a high latent heat load while suppressing the amount of heat exchange. In other words, even in the winter season when the outdoor air temperature decreases, it is possible to perform the operation while ensuring the dehumidification amount without lowering the indoor air temperature.

【0070】実施の形態6.圧縮機1を回転数可変型圧
縮機で構成し、冷凍サイクル中蒸発過程における冷媒の
過熱状態を検出する手段と、この検出結果に基づいて、
第1流量制御弁3及び第2流量制御弁5の少なくとも一
方の開度と、圧縮機1の回転数との制御を行うことによ
り、広範囲の室内側潜熱・顕熱負荷に対応した運転が可
能となるだけでなく、速やかに室内温・湿度を目標温・
湿度に調節することが可能となる。
Embodiment 6 FIG. The compressor 1 is constituted by a variable-speed compressor, and means for detecting a superheated state of the refrigerant in the evaporation process during the refrigeration cycle, and based on the detection result,
By controlling the opening degree of at least one of the first flow control valve 3 and the second flow control valve 5 and the rotation speed of the compressor 1, an operation corresponding to a wide range of indoor-side latent heat / sensible heat load is possible. Not only will the room temperature and humidity quickly reach the target temperature
It is possible to adjust to humidity.

【0071】実施の形態7.圧縮機1を回転数可変型圧
縮機で構成し、冷凍サイクル中凝縮過程における冷媒の
過冷却状態を検出する手段と、この検出結果に基づい
て、第1流量制御弁3及び第2流量制御弁5の少なくと
も一方の開度と、圧縮機1の回転数との制御を行うこと
により、広範囲の室内側潜熱・顕熱負荷に対応した運転
が可能となるだけでなく、速やかに室内温・湿度を目標
温・湿度に調節することが可能となる。
Embodiment 7 FIG. Means for detecting the supercooled state of the refrigerant during the condensing process during the refrigerating cycle, and a first flow control valve 3 and a second flow control valve based on the detection result; By controlling at least one of the opening degree 5 and the rotation speed of the compressor 1, it is possible to operate not only in response to a wide range of latent heat and sensible heat load on the indoor side, but also to quickly adjust the indoor temperature and humidity. Can be adjusted to the target temperature and humidity.

【0072】[0072]

【発明の効果】この発明に係る空気調和機は、圧縮機、
室外側熱交換器、第1流量制御弁、熱的に複数に分割さ
れた室内側熱交換器を順次接続し、熱的に複数に分割さ
れた室内側熱交換器間に第2流量制御弁を接続して形成
される冷凍サイクルと、室内側送風機と、室外側送風機
と、を有する空気調和機において、第1流量制御弁及び
第2流量制御弁の少なくとも何れか一方の冷媒流路に多
孔質体を設け、室外側熱交換器を凝縮器として使用し、
熱的に複数に分割された室内側熱交換器のうち第2流量
制御弁の冷媒流れ方向上流側を再熱器として使用し、冷
媒流れ下流側を蒸発器として使用する運転モードにおい
て、冷媒流動音が抑制され、騒音に対する快適性の向上
が可能となる。
The air conditioner according to the present invention comprises a compressor,
An outdoor heat exchanger, a first flow control valve, a plurality of thermally divided indoor heat exchangers sequentially connected, and a second flow control valve between the thermally divided indoor heat exchangers And an air conditioner having an indoor blower and an outdoor blower, wherein a hole is formed in a refrigerant flow path of at least one of the first flow control valve and the second flow control valve. Using the outdoor heat exchanger as a condenser,
In an operation mode in which the refrigerant flow direction upstream of the second flow control valve is used as a reheater and the refrigerant flow downstream is used as an evaporator among the plurality of indoor heat exchangers thermally divided, The sound is suppressed, and the comfort with respect to noise can be improved.

【0073】また、第2流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したので、第2流量制
御弁の弁開度を調節することで、室内側熱交換器による
潜熱熱交換量と顕熱熱交換量とを変化させることが可能
となる。
Also, since the second flow control valve is constituted by a flow control valve whose opening can be adjusted in multiple stages, the indoor heat exchanger can be adjusted by adjusting the valve opening of the second flow control valve. , The amount of latent heat exchange and the amount of sensible heat exchange can be changed.

【0074】また、第2流量制御弁を電子制御式膨張弁
で構成したので、第2流量制御弁の弁開度を調節するこ
とで、室内側熱交換器による潜熱熱交換量と顕熱熱交換
量とを変化させることが可能となる。
Further, since the second flow control valve is constituted by an electronically controlled expansion valve, the amount of latent heat exchange by the indoor heat exchanger and the amount of sensible heat heat can be controlled by adjusting the valve opening of the second flow control valve. It is possible to change the exchange amount.

【0075】また、第1流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したので、第1流量制
御弁の弁開度を調節することで、室内側熱交換器による
潜熱熱交換量と顕熱熱交換量とを変化させることが可能
となる。
Further, since the first flow control valve is constituted by a flow control valve whose opening can be adjusted in multiple stages, the indoor heat exchanger can be adjusted by adjusting the valve opening of the first flow control valve. , The amount of latent heat exchange and the amount of sensible heat exchange can be changed.

【0076】また、第1流量制御弁を電子制御式膨張弁
で構成したので、第1流量制御弁の弁開度を調節するこ
とで、室内側熱交換器による潜熱熱交換量と顕熱熱交換
量とを変化させることが可能となる。
Further, since the first flow control valve is constituted by an electronically controlled expansion valve, the amount of latent heat exchange and sensible heat exchange by the indoor heat exchanger is adjusted by adjusting the valve opening of the first flow control valve. It is possible to change the exchange amount.

【0077】また、第2流量制御弁と並列に、冷媒の流
動抵抗体として、オリフィスの前後またはそのいずれか
に多孔体を使用したオリフィス体を備えたので、絞りに
より発生する冷媒流動音を抑制することができ、空気調
和機の低騒音化を実現できる。
Further, an orifice body using a porous body in front of or behind the orifice is provided in parallel with the second flow control valve as a coolant flow resistor, so that the coolant flow noise generated by the throttle is suppressed. The noise of the air conditioner can be reduced.

【0078】また、第2流量制御弁と並列にオリフィス
体を備え、第2流量制御弁をその開度を全閉と全開の間
で2段階に調節が可能な流量制御弁で構成したので、第
2流量制御弁に簡単な構成のものを使用できる。
Also, an orifice body is provided in parallel with the second flow control valve, and the second flow control valve is constituted by a flow control valve whose opening can be adjusted in two stages between fully closed and fully opened. A simple configuration can be used for the second flow control valve.

【0079】また、第2流量制御弁と直列に、冷媒の流
動抵抗体として、流路に多孔体を使用したオリフィス体
を備えたので、絞りにより発生する冷媒流動音を抑制す
ることができ、空気調和機の低騒音化を実現している。
また、第2流量制御弁における冷媒差圧が抑えられ、第
2流量制御弁の耐圧を減らすことができる。また、冷媒
差圧が抑えられるため、第2流量制御弁における冷媒流
動音に対する抑制効果が向上する。
Further, since an orifice body using a porous body in the flow path is provided as a refrigerant flow resistor in series with the second flow control valve, it is possible to suppress the refrigerant flow noise generated by the throttle. The noise of the air conditioner has been reduced.
Further, the refrigerant differential pressure in the second flow control valve is suppressed, and the pressure resistance of the second flow control valve can be reduced. Further, since the refrigerant differential pressure is suppressed, the effect of suppressing the refrigerant flow noise in the second flow control valve is improved.

【0080】また、請求項1記載の空気調和機におい
て、冷凍サイクルの作動冷媒として、ハイドロフルオロ
カーボン系冷媒の単独または混合の冷媒を使用しても、
冷媒流動音が抑制され、騒音に対する快適性の向上が可
能となる。
Further, in the air conditioner according to the present invention, even if a single or mixed hydrofluorocarbon-based refrigerant is used as a working refrigerant of the refrigeration cycle,
Refrigerant flow noise is suppressed, and comfort with respect to noise can be improved.

【0081】また、室内側空気の温度および湿度を検出
する手段と、これらの検出結果に応じて室内側送風機と
室外側送風機との送風量を制御する手段と、室外側熱交
換器を凝縮器として使用し、熱的に複数に分割された室
内側熱交換器のうち第2流量制御弁の冷媒流れ方向上流
側を再熱器として使用し、冷媒流れ下流側を蒸発器とし
て使用する運転モードにおいて、室内側空気の温度およ
び湿度の検出結果に応じて、室内側送風機の送風量およ
び室外側送風機の送風量を制御することにより、室内側
熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行
う制御手段と、を備えたので、広範囲の室内側潜熱・顕
熱負荷に対応した運転が可能となる。
Further, means for detecting the temperature and humidity of the indoor air, means for controlling the amount of air blown between the indoor blower and the outdoor blower in accordance with the results of the detection, and a means for connecting the outdoor heat exchanger to a condenser Operation mode in which the upstream of the second flow control valve in the refrigerant flow direction is used as a reheater and the downstream of the refrigerant flow is used as an evaporator among the indoor heat exchangers that are thermally divided into a plurality. , The amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger are controlled by controlling the amount of air blown by the indoor air blower and the amount of air blown by the outdoor air blower according to the detection results of the temperature and humidity of the indoor air. Since control means for controlling the amount is provided, an operation corresponding to a wide range of indoor-side latent heat / sensible heat load can be performed.

【0082】また、室内側熱交換器の温度および室外側
熱交換器の温度を検出する手段と、これらの検出結果に
応じて室内側送風機の送風量と室外側送風機の送風量と
を制御する手段と、室外側熱交換器を凝縮器として使用
し、熱的に複数に分割された室内側熱交換器のうち第2
流量制御弁の冷媒流れ方向上流側を再熱器として使用
し、冷媒流れ下流側を蒸発器として使用する運転モード
において、室内側熱交換器の温度および室外側熱交換器
の温度の検出結果に応じて、室内側送風機の送風量およ
び室外側送風機の送風量を制御することにより、室内側
熱交換器による潜熱熱交換量と顕熱熱交換量の制御を行
う制御手段と、を備えたので、広範囲の室内側潜熱・顕
熱負荷に対応した運転が可能となる。
Further, means for detecting the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger, and controls the amount of air blown by the indoor blower and the amount of air blown by the outdoor blower according to the detection results. Means and an outdoor heat exchanger used as a condenser, and a second one of the plurality of thermally divided indoor heat exchangers.
In an operation mode in which the upstream side of the refrigerant flow direction of the flow control valve is used as a reheater and the downstream side of the refrigerant flow is used as an evaporator, the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger are detected. Accordingly, control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the amount of air blown by the indoor air blower and the amount of air blown by the outdoor air blower are provided. In addition, operation corresponding to a wide range of indoor-side latent / sensible heat loads can be performed.

【0083】また、圧縮機の回転数を制御する圧縮機回
転数制御部と、この圧縮機回転数制御部の温度を検出す
る手段と、この検出結果に応じて室内側送風機の送風量
と、室外側送風機の送風量とを制御する手段と、室外側
熱交換器を凝縮器として使用し、熱的に複数に分割され
た室内側熱交換器のうち第2流量制御弁の冷媒流れ方向
上流側を再熱器として使用し、冷媒流れ下流側を蒸発器
として使用する運転モードにおいて、圧縮機回転数制御
部の温度の検出結果に応じて、室内側送風機の送風量お
よび室外側送風機の送風量を制御することにより、室内
側熱交換器による潜熱熱交換量と顕熱熱交換量の制御を
行う制御手段と、を備えたので、広範囲の室内側潜熱・
顕熱負荷に対応した運転が可能となる。
Further, a compressor rotation speed control unit for controlling the rotation speed of the compressor, a means for detecting the temperature of the compressor rotation speed control unit, an air flow rate of the indoor blower according to the detection result, Means for controlling the amount of air blown by the outdoor blower, and using the outdoor heat exchanger as a condenser, and a plurality of thermally split indoor heat exchangers, upstream of the second flow control valve in the refrigerant flow direction. In the operation mode using the side as the reheater and the downstream side of the refrigerant flow as the evaporator, according to the detection result of the temperature of the compressor rotation speed control unit, the blower amount of the indoor blower and the blower of the outdoor blower are determined. Control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the air flow,
Operation corresponding to the sensible heat load becomes possible.

【0084】また、目標となる室内温度および室内湿度
を外部から設定する手段と、室内側空気の温度および湿
度を検出する手段と、目標室内温度と検出室内温度との
差および目標室内湿度と検出室内湿度との差を演算する
手段と、この演算結果に応じて室内側送風機及び室外側
送風機の送風量の送風量と、圧縮機の回転数と、第1流
量制御弁の開度と、第2流量制御弁の開度とを制御する
手段と、室外側熱交換器を凝縮器として使用し、熱的に
複数に分割された室内側熱交換器のうち第2流量制御弁
の冷媒流れ方向上流側を再熱器として使用し、冷媒流れ
下流側を蒸発器として使用する運転モードにおいて、目
標室内温度と検出室内温度との差および目標室内湿度と
検出室内湿度との差の演算結果に応じて室内側送風機及
び室外側送風機の送風量と、圧縮機の回転数と、第1流
量制御弁の開度と、第2流量制御弁の開度とを制御する
ことにより、室内側熱交換器による潜熱熱交換量と顕熱
熱交換量の制御を行う制御手段と、を備えたので、広範
囲の室内側潜熱・顕熱負荷に対応した運転が可能となる
だけでなく、速やかに室内温・湿度を目標温・湿度に調
節することが可能となる。
Means for externally setting a target indoor temperature and indoor humidity, means for detecting the temperature and humidity of indoor air, a difference between the target indoor temperature and the detected indoor temperature, and a detection of the target indoor humidity. Means for calculating the difference from the indoor humidity, the amount of air blown by the indoor blower and the outdoor blower according to the calculation result, the number of rotations of the compressor, the opening of the first flow control valve, (2) means for controlling the opening degree of the flow rate control valve, and the refrigerant flow direction of the second flow rate control valve among the indoor side heat exchangers which are thermally divided into a plurality using the outdoor heat exchanger as a condenser In an operation mode in which the upstream side is used as a reheater and the refrigerant flow downstream side is used as an evaporator, according to the calculation result of the difference between the target indoor temperature and the detected indoor temperature and the difference between the target indoor humidity and the detected indoor humidity. Of the indoor fan and the outdoor fan By controlling the air volume, the number of revolutions of the compressor, the opening of the first flow control valve, and the opening of the second flow control valve, the amount of latent heat exchange and sensible heat exchange by the indoor heat exchanger is controlled. And control means for controlling the amount, so that not only can operation corresponding to a wide range of indoor latent heat and sensible heat load be possible, but also the room temperature and humidity can be quickly adjusted to the target temperature and humidity. Becomes possible.

【0085】また、圧縮機を回転数可変型圧縮機で構成
し、冷凍サイクル中蒸発過程における冷媒の過熱状態を
検出する手段と、この検出結果に基づいて、第1流量制
御弁及び第2流量制御弁の少なくとも一方の開度と、圧
縮機の回転数との制御を行う制御手段と、を備えたの
で、広範囲の室内側潜熱・顕熱負荷に対応した運転が可
能となるだけでなく、速やかに室内温・湿度を目標温・
湿度に調節することが可能となる。
Further, the compressor is constituted by a variable-speed compressor, means for detecting an overheated state of the refrigerant in the evaporation process during the refrigeration cycle, and a first flow control valve and a second flow control valve based on the detection result. Since control means for controlling at least one of the opening degree of the control valve and the number of revolutions of the compressor is provided, not only can operation corresponding to a wide range of indoor latent heat / sensible heat load be possible, Immediately adjust the indoor temperature and humidity to the target
It is possible to adjust to humidity.

【0086】また、圧縮機を回転数可変型圧縮機で構成
し、冷凍サイクル中凝縮過程における冷媒の過冷却状態
を検出する手段と、この検出結果に基づいて、第1流量
制御弁及び第2流量制御弁の少なくとも一方の開度と、
圧縮機の回転数との制御を行う制御手段と、を備えたの
で、広範囲の室内側潜熱・顕熱負荷に対応した運転が可
能となるだけでなく、速やかに室内温・湿度を目標温・
湿度に調節することが可能となる。
Further, the compressor is constituted by a variable-speed compressor, means for detecting a supercooled state of the refrigerant in the condensing process during the refrigeration cycle, and a first flow control valve and a second flow control valve based on the detection result. At least one opening of the flow control valve;
Control means for controlling the number of rotations of the compressor, not only enables operation corresponding to a wide range of indoor latent heat and sensible heat load, but also promptly sets the indoor temperature and humidity to the target temperature
It is possible to adjust to humidity.

【0087】この発明に係るマルチタイプの空気調和機
は、請求項10〜16の何れかに記載の空気調和機にお
いて、第1流量制御弁と、室内側熱交換器と、第2流量
制御弁との接続体を複数について並列接続して構成した
ので、広範囲の室内側潜熱・顕熱負荷に対応した運転が
可能となる。
A multi-type air conditioner according to the present invention is the air conditioner according to any one of claims 10 to 16, wherein the first flow control valve, the indoor heat exchanger, and the second flow control valve are provided. Since a plurality of connecting members are connected in parallel, operation corresponding to a wide range of indoor-side latent heat / sensible heat load can be performed.

【0088】この発明に係る空気調和機は、圧縮機、四
方切換弁、室外側熱交換器、第1流量制御弁、熱的に複
数に分割された室内側熱交換器を順次接続し、熱的に複
数に分割された室内側熱交換器間に第2流量制御弁を接
続して形成される冷凍サイクルと、室内側送風機と、室
外側送風機と、を有する空気調和機において、圧縮機か
らの吐出冷媒が、四方切換弁、室外側熱交換器、および
第1流量制御弁をバイパスして室内側熱交換器に流入す
るバイパス経路と、このバイパス経路中に設けられた第
3流量制御弁及び室内側熱交換器から圧縮機の方向への
冷媒の流動を防止する機構と、を備えたので、凝縮熱の
大部分を再熱の目的で利用することが可能となり、低い
室外側空気温度においても、顕熱熱交換量を抑えた状態
での高潜熱負荷への対応が可能となる。
The air conditioner according to the present invention comprises a compressor, a four-way switching valve, an outdoor heat exchanger, a first flow control valve, and an indoor heat exchanger which is thermally divided into a plurality of heat exchangers. Refrigeration cycle formed by connecting the second flow control valve between indoor heat exchangers divided into a plurality of, an indoor blower, and an outdoor blower, from the compressor Path through which the discharged refrigerant flows into the indoor heat exchanger by bypassing the four-way switching valve, the outdoor heat exchanger, and the first flow control valve, and the third flow control valve provided in the bypass path And a mechanism for preventing the refrigerant from flowing from the indoor heat exchanger to the compressor, so that most of the heat of condensation can be used for reheating, and the outdoor air temperature is low. High latent heat load with reduced sensible heat exchange Correspondence is possible.

【0089】また、圧縮機、四方切換弁、室外側熱交換
器、第1流量制御弁、熱的に複数に分割された室内側熱
交換器を順次接続し、熱的に複数に分割された室内側熱
交換器間に第2流量制御弁を接続して形成される冷凍サ
イクルと、室内側送風機と、室外側送風機と、を有する
空気調和機において、圧縮機からの吐出冷媒が、四方切
換弁、および室内側熱交換器を通過した後、第1流量制
御弁、室外側熱交換器、および四方切換弁をバイパスし
て圧縮機に吸入されるバイパス経路と、このバイパス経
路中に設けられた第3流量制御弁及び圧縮機から室内側
熱交換器の方向への冷媒の流動を防止する機構と、を備
えたので、凝縮熱の大部分を再熱の目的で利用すること
が可能となり、低い室外側空気温度においても、顕熱熱
交換量を抑えた状態での高潜熱負荷への対応が可能とな
る。
Further, the compressor, the four-way switching valve, the outdoor heat exchanger, the first flow control valve, and the indoor heat exchanger which is thermally divided into a plurality are sequentially connected to be thermally divided into a plurality. In an air conditioner having a refrigeration cycle formed by connecting a second flow control valve between indoor heat exchangers, an indoor blower, and an outdoor blower, refrigerant discharged from a compressor is switched in four directions. After passing through the valve and the indoor heat exchanger, the first flow control valve, the outdoor heat exchanger, and a bypass path that is drawn into the compressor by bypassing the four-way switching valve, and is provided in the bypass path. A third flow control valve and a mechanism for preventing the refrigerant from flowing from the compressor in the direction of the indoor heat exchanger, so that most of the heat of condensation can be used for the purpose of reheating. , With low sensible heat exchange even at low outdoor air temperature Correspondence is possible to a high latent heat load in.

【0090】また、請求項18または請求項19記載の
空気調和機において、第2流量制御弁の冷媒流路に多孔
質体を備えたので、室内における低騒音性が確保され
る。
Further, in the air conditioner according to the eighteenth or nineteenth aspect, since the porous body is provided in the refrigerant flow path of the second flow control valve, low noise in the room is ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1を示す図で、空気調和機の冷凍
サイクル図である。
FIG. 1 shows the first embodiment, and is a refrigeration cycle diagram of an air conditioner.

【図2】 実施の形態1〜3を示す図で、制御装置の要
部ブロック図である。
FIG. 2 is a diagram showing the first to third embodiments, and is a main block diagram of a control device.

【図3】 実施の形態1〜3を示す図で、各機器の制御
に対する室内側熱交換器による潜熱熱交換量と顕熱熱交
換量との関係図である。
FIG. 3 is a diagram showing the first to third embodiments, and is a diagram illustrating a relationship between a latent heat exchange amount and a sensible heat exchange amount by the indoor heat exchanger with respect to control of each device.

【図4】 実施の形態1〜3を示す図で、室内側熱交換
器による潜熱熱交換量と顕熱熱交換量との制御可変範囲
を示した図である。
FIG. 4 is a diagram showing the first to third embodiments, and is a diagram showing a control variable range of a latent heat exchange amount and a sensible heat exchange amount by the indoor heat exchanger.

【図5】 実施の形態1〜3を示す図で、設定された目
標温・湿度と実際の温・湿度との差の値に対応した各ア
クチュエータに対する制御指令信号のマトリックス構成
例を示す図である。
FIG. 5 is a diagram illustrating the first to third embodiments and is a diagram illustrating a matrix configuration example of a control command signal for each actuator corresponding to a value of a difference between a set target temperature / humidity and an actual temperature / humidity. is there.

【図6】 実施の形態2を示す図で、空気調和機の冷凍
サイクル図である。
FIG. 6 shows the second embodiment and is a refrigeration cycle diagram of the air conditioner.

【図7】 実施の形態3を示す図で、空気調和機の冷凍
サイクル図である。
FIG. 7 shows the third embodiment and is a refrigeration cycle diagram of the air conditioner.

【図8】 実施の形態1〜3を示す図で、空気調和機の
冷凍サイクルにおいて、第1流量制御弁を室内ユニット
側に設置した場合の冷凍サイクル図である。
FIG. 8 shows the first to third embodiments, and is a refrigeration cycle diagram in a case where a first flow control valve is installed on the indoor unit side in a refrigeration cycle of an air conditioner.

【図9】 実施の形態4を示す図で、空気調和機の冷凍
サイクル図である。
FIG. 9 shows the fourth embodiment and is a refrigeration cycle diagram of the air conditioner.

【図10】 実施の形態5を示す図で、空気調和機の冷
凍サイクル図である。
FIG. 10 is a diagram showing the fifth embodiment, and is a refrigeration cycle diagram of the air conditioner.

【図11】 従来の空気調和機の室内側熱交換器によ
る、潜熱熱交換量と顕熱熱交換量の制御可変領域の一例
を示した図である。
FIG. 11 is a diagram showing an example of a variable control region of a latent heat exchange amount and a sensible heat exchange amount by an indoor heat exchanger of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

A 室外ユニット、B 室内ユニット、1 圧縮機、2
室外側熱交換器、3第1流量制御弁、4a 室内側熱
交換器、4b 室内側熱交換器、5 第2流量制御弁、
6 室内側空気温度センサ、7 室内側空気湿度セン
サ、8 制御部、9 室内側送風機、10 室外側送風
機、11 圧縮機回転数制御部、12目標温・湿度設定
装置、13 吸入温度センサ、14 オリフィス体、1
5 四方切換弁、16 第3流量制御弁、17 逆止
弁。
A outdoor unit, B indoor unit, 1 compressor, 2
Outdoor heat exchanger, 3 first flow control valve, 4a indoor heat exchanger, 4b indoor heat exchanger, 5 second flow control valve,
6 indoor air temperature sensor, 7 indoor air humidity sensor, 8 control unit, 9 indoor blower, 10 outdoor blower, 11 compressor rotation speed control unit, 12 target temperature / humidity setting device, 13 suction temperature sensor, 14 Orifice body, 1
5 Four-way switching valve, 16 Third flow control valve, 17 Check valve.

フロントページの続き (72)発明者 大西 茂樹 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 中山 雅弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L092 AA03 BA05 BA13 BA23 BA28 DA04 EA15 FA04 FA19 FA20 FA26 Continued on the front page (72) Inventor Shigeki Onishi 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Masahiro Nakayama 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Co., Ltd. In-house F term (reference) 3L092 AA03 BA05 BA13 BA23 BA28 DA04 EA15 FA04 FA19 FA20 FA26

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外側熱交換器、第1流量制御
弁、熱的に複数に分割された室内側熱交換器を順次接続
し、前記熱的に複数に分割された室内側熱交換器間に第
2流量制御弁を接続して形成される冷凍サイクルと、室
内側送風機と、室外側送風機と、を有する空気調和機に
おいて、 前記第1流量制御弁及び前記第2流量制御弁の少なくと
も何れか一方の冷媒流路に多孔質体を設け、前記室外側
熱交換器を凝縮器として使用し、前記熱的に複数に分割
された室内側熱交換器のうち前記第2流量制御弁の冷媒
流れ方向上流側を再熱器として使用し、冷媒流れ下流側
を蒸発器として使用する運転モードを備えたことを特徴
とする空気調和機。
1. A heat exchanger comprising: a compressor, an outdoor heat exchanger, a first flow control valve, and a plurality of thermally divided indoor heat exchangers sequentially connected to each other; An air conditioner having a refrigeration cycle formed by connecting a second flow control valve between exchangers, an indoor blower, and an outdoor blower, wherein the first flow control valve and the second flow control valve A porous body is provided in at least one of the refrigerant flow paths, the outdoor heat exchanger is used as a condenser, and the second flow control of the thermally divided indoor heat exchanger is performed. An air conditioner comprising an operation mode in which an upstream side of a valve in a refrigerant flow direction is used as a reheater and a downstream side of the refrigerant flow is used as an evaporator.
【請求項2】 前記第2流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したことを特徴とする
請求項1記載の空気調和機。
2. The air conditioner according to claim 1, wherein the second flow control valve is constituted by a flow control valve whose opening can be adjusted in multiple stages.
【請求項3】 前記第2流量制御弁を電子制御式膨張弁
で構成したことを特徴とする請求項2記載の空気調和
機。
3. The air conditioner according to claim 2, wherein said second flow control valve is constituted by an electronically controlled expansion valve.
【請求項4】 前記第1流量制御弁をその開度を多段階
に調節が可能な流量制御弁で構成したことを特徴とする
請求項1記載の空気調和機。
4. The air conditioner according to claim 1, wherein the first flow control valve is constituted by a flow control valve whose opening can be adjusted in multiple stages.
【請求項5】 前記第1流量制御弁を電子制御式膨張弁
で構成したことを特徴とする請求項4記載の空気調和
機。
5. The air conditioner according to claim 4, wherein said first flow control valve is constituted by an electronically controlled expansion valve.
【請求項6】 前記第2流量制御弁と並列に、冷媒の流
動抵抗体として、オリフィスの前後またはそのいずれか
に多孔体を使用したオリフィス体を備えたことを特徴と
する請求項1記載の空気調和機。
6. The orifice body according to claim 1, further comprising an orifice body using a porous body in front of or behind the orifice as a flow resistor of the refrigerant in parallel with the second flow control valve. Air conditioner.
【請求項7】 前記第2流量制御弁をその開度を全閉と
全開の間で2段階に調節が可能な流量制御弁で構成した
ことを特徴とする請求項6記載の空気調和機。
7. The air conditioner according to claim 6, wherein the second flow control valve is constituted by a flow control valve whose opening degree can be adjusted in two stages between fully closed and fully opened.
【請求項8】 前記第2流量制御弁と直列に、冷媒の流
動抵抗体として、流路に多孔体を使用したオリフィス体
を備えたことを特徴とする請求項1記載の空気調和機。
8. The air conditioner according to claim 1, further comprising an orifice body using a porous body in a flow path as a flow resistor of the refrigerant in series with the second flow control valve.
【請求項9】 前記冷凍サイクルの作動冷媒として、ハ
イドロフルオロカーボン系冷媒の単独または混合の冷媒
を使用することを特徴とする請求項1記載の空気調和
機。
9. The air conditioner according to claim 1, wherein a single or mixed hydrofluorocarbon-based refrigerant is used as a working refrigerant of the refrigeration cycle.
【請求項10】 室内側空気の温度および湿度を検出す
る手段と、 これらの検出結果に応じて前記室内側送風機と前記室外
側送風機との送風量を制御する手段と、 前記室外側熱交換器を凝縮器として使用し、前記熱的に
複数に分割された室内側熱交換器のうち前記第2流量制
御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒
流れ下流側を蒸発器として使用する運転モードにおい
て、前記室内側空気の温度および湿度の検出結果に応じ
て、前記室内側送風機の送風量および前記室外側送風機
の送風量を制御することにより、前記室内側熱交換器に
よる潜熱熱交換量と顕熱熱交換量の制御を行う制御手段
と、を備えたことを特徴とする請求項1記載の空気調和
機。
10. A means for detecting the temperature and humidity of indoor air, a means for controlling the amount of air blown between the indoor blower and the outdoor blower according to the detection results, and the outdoor heat exchanger Is used as a condenser, and among the thermally divided indoor heat exchangers, the upstream side of the second flow control valve in the refrigerant flow direction is used as a reheater, and the downstream side of the refrigerant flow is an evaporator. In the operation mode used as, according to the detection result of the temperature and humidity of the indoor air, by controlling the air flow rate of the indoor blower and the air flow rate of the outdoor blower, by the indoor heat exchanger The air conditioner according to claim 1, further comprising control means for controlling an amount of latent heat exchange and an amount of sensible heat exchange.
【請求項11】 前記室内側熱交換器の温度および前記
室外側熱交換器の温度を検出する手段と、 これらの検出結果に応じて前記室内側送風機の送風量と
前記室外側送風機の送風量とを制御する手段と、 前記室外側熱交換器を凝縮器として使用し、前記熱的に
複数に分割された室内側熱交換器のうち前記第2流量制
御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒
流れ下流側を蒸発器として使用する運転モードにおい
て、前記室内側熱交換器の温度および前記室外側熱交換
器の温度の検出結果に応じて、前記室内側送風機の送風
量および前記室外側送風機の送風量を制御することによ
り、室内側熱交換器による潜熱熱交換量と顕熱熱交換量
の制御を行う制御手段と、を備えたことを特徴とする請
求項1記載の空気調和機。
11. A means for detecting the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger, and the amount of air blown by the indoor air blower and the amount of air blown by the outdoor air blower according to the detection results. Using the outdoor heat exchanger as a condenser, and reusing the upstream of the second flow control valve in the refrigerant flow direction of the thermally divided indoor heat exchanger. In the operation mode in which the indoor blower is used as a heater and the downstream side of the refrigerant flow is used as an evaporator, the blower of the indoor blower is blown in accordance with the detection result of the temperature of the indoor heat exchanger and the temperature of the outdoor heat exchanger. 2. A control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the air volume and the air volume of the outdoor blower. The air conditioner as described.
【請求項12】 圧縮機の回転数を制御する圧縮機回転
数制御部と、 この圧縮機回転数制御部の温度を検出する手段と、 この検出結果に応じて前記室内側送風機の送風量と、前
記室外側送風機の送風量とを制御する手段と、 前記室外側熱交換器を凝縮器として使用し、前記熱的に
複数に分割された室内側熱交換器のうち前記第2流量制
御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒
流れ下流側を蒸発器として使用する運転モードにおい
て、前記圧縮機回転数制御部の温度の検出結果に応じ
て、前記室内側送風機の送風量および前記室外側送風機
の送風量を制御することにより、前記室内側熱交換器に
よる潜熱熱交換量と顕熱熱交換量の制御を行う制御手段
と、を備えたことを特徴とする請求項1記載の空気調和
機。
12. A compressor rotation speed control unit for controlling the rotation speed of the compressor, means for detecting the temperature of the compressor rotation speed control unit, and the amount of air blown by the indoor blower according to the detection result. Means for controlling the amount of air blown by the outdoor blower, and the second flow control valve of the thermally split indoor heat exchanger using the outdoor heat exchanger as a condenser. In an operation mode in which the upstream side of the refrigerant flow direction is used as a reheater and the downstream side of the refrigerant flow is used as an evaporator, the operation of the indoor-side blower Control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor side heat exchanger by controlling the amount of air and the amount of air blown by the outdoor blower. 1. The air conditioner according to 1.
【請求項13】 目標となる室内温度および室内湿度を
外部から設定する手段と、 室内側空気の温度および湿度を検出する手段と、 前記目標室内温度と前記検出室内温度との差および前記
目標室内湿度と前記検出室内湿度との差を演算する手段
と、 この演算結果に応じて前記室内側送風機及び前記室外側
送風機の送風量の送風量と、前記圧縮機の回転数と、前
記第1流量制御弁の開度と、前記第2流量制御弁の開度
とを制御する手段と、 前記室外側熱交換器を凝縮器として使用し、前記熱的に
複数に分割された室内側熱交換器のうち前記第2流量制
御弁の冷媒流れ方向上流側を再熱器として使用し、冷媒
流れ下流側を蒸発器として使用する運転モードにおい
て、前記目標室内温度と前記検出室内温度との差および
前記目標室内湿度と前記検出室内湿度との差の演算結果
に応じて前記室内側送風機及び前記室外側送風機の送風
量と、前記圧縮機の回転数と、前記第1流量制御弁の開
度と、前記第2流量制御弁の開度とを制御することによ
り、室内側熱交換器による潜熱熱交換量と顕熱熱交換量
の制御を行う制御手段と、を備えたことを特徴とする請
求項1記載の空気調和機。
13. A means for externally setting a target indoor temperature and indoor humidity; a means for detecting the temperature and humidity of indoor air; a difference between the target indoor temperature and the detected indoor temperature; Means for calculating the difference between the humidity and the detected indoor humidity; and, based on the result of the calculation, the amount of air blown by the indoor blower and the outdoor blower, the number of rotations of the compressor, and the first flow rate Means for controlling the opening degree of the control valve and the opening degree of the second flow control valve; and the indoor heat exchanger thermally divided into a plurality using the outdoor heat exchanger as a condenser. In the operation mode in which the upstream side of the refrigerant flow direction of the second flow control valve is used as a reheater and the downstream side of the refrigerant flow is used as an evaporator, a difference between the target indoor temperature and the detected indoor temperature and Target room humidity and The amount of air blown by the indoor blower and the outdoor blower, the number of rotations of the compressor, the opening of the first flow control valve, and the second flow control valve according to the calculation result of the difference from the indoor humidity. The air conditioner according to claim 1, further comprising control means for controlling the amount of latent heat exchange and the amount of sensible heat exchange by the indoor heat exchanger by controlling the opening degree of the air conditioner. .
【請求項14】 前記第1流量制御弁は、冷媒流路に多
孔質体を使用しないことを特徴とする請求項10〜13
の何れかに記載の空気調和機。
14. The first flow control valve does not use a porous body in a refrigerant flow path.
The air conditioner according to any one of the above.
【請求項15】 前記圧縮機を回転数可変型圧縮機で構
成し、 冷凍サイクル中蒸発過程における冷媒の過熱状態を検出
する手段と、 この検出結果に基づいて、前記第1流量制御弁及び前記
第2流量制御弁の少なくとも一方の開度と、前記圧縮機
の回転数との制御を行う制御手段と、を備えたことを特
徴とする請求項1記載の空気調和機。
15. The compressor comprises a variable-speed compressor, means for detecting a superheated state of the refrigerant during an evaporation process during a refrigeration cycle, based on the detection result, the first flow control valve and the first flow control valve. The air conditioner according to claim 1, further comprising control means for controlling at least one opening degree of the second flow control valve and a rotation speed of the compressor.
【請求項16】 前記圧縮機を回転数可変型圧縮機で構
成し、 冷凍サイクル中凝縮過程における冷媒の過冷却状態を検
出する手段と、 この検出結果に基づいて、前記第1流量制御弁及び前記
第2流量制御弁の少なくとも一方の開度と、前記圧縮機
の回転数との制御を行う制御手段と、を備えたことを特
徴とする請求項1記載の空気調和機。
16. A means for detecting the supercooled state of a refrigerant in a condensing process during a refrigeration cycle, wherein the compressor is a variable-speed compressor, and the first flow control valve and The air conditioner according to claim 1, further comprising control means for controlling at least one opening degree of the second flow control valve and a rotation speed of the compressor.
【請求項17】 請求項10〜16の何れかに記載の空
気調和機において、 前記第1流量制御弁と、前記室内側熱交換器と、前記第
2流量制御弁との接続体を複数について並列接続して構
成したことを特徴とするマルチタイプの空気調和機。
17. The air conditioner according to claim 10, wherein a plurality of connecting bodies of the first flow control valve, the indoor heat exchanger, and the second flow control valve are provided. A multi-type air conditioner characterized by being connected in parallel.
【請求項18】 圧縮機、四方切換弁、室外側熱交換
器、第1流量制御弁、熱的に複数に分割された室内側熱
交換器を順次接続し、前記熱的に複数に分割された室内
側熱交換器間に第2流量制御弁を接続して形成される冷
凍サイクルと、室内側送風機と、室外側送風機と、を有
する空気調和機において、 前記圧縮機からの吐出冷媒が、前記四方切換弁、前記室
外側熱交換器、および前記第1流量制御弁をバイパスし
て前記室内側熱交換器に流入するバイパス経路と、 このバイパス経路中に設けられた第3流量制御弁及び前
記室内側熱交換器から前記圧縮機の方向への冷媒の流動
を防止する機構と、を備えたことを特徴とする空気調和
機。
18. A compressor, a four-way switching valve, an outdoor heat exchanger, a first flow control valve, and an indoor heat exchanger that is thermally divided into a plurality of heat exchangers are sequentially connected to each other, and are thermally divided into a plurality of heat exchangers. A refrigeration cycle formed by connecting the second flow control valve between the indoor heat exchangers, an indoor blower, and an outdoor blower, the refrigerant discharged from the compressor, A bypass path bypassing the four-way switching valve, the outdoor heat exchanger, and the first flow control valve and flowing into the indoor heat exchanger; a third flow control valve provided in the bypass path; A mechanism for preventing a refrigerant from flowing from the indoor heat exchanger toward the compressor.
【請求項19】 圧縮機、四方切換弁、室外側熱交換
器、第1流量制御弁、熱的に複数に分割された室内側熱
交換器を順次接続し、前記熱的に複数に分割された室内
側熱交換器間に第2流量制御弁を接続して形成される冷
凍サイクルと、室内側送風機と、室外側送風機と、を有
する空気調和機において、 前記圧縮機からの吐出冷媒が、前記四方切換弁、および
前記室内側熱交換器を通過した後、前記第1流量制御
弁、前記室外側熱交換器、および前記四方切換弁をバイ
パスして前記圧縮機に吸入されるバイパス経路と、 このバイパス経路中に設けられた第3流量制御弁及び前
記圧縮機から前記室内側熱交換器の方向への冷媒の流動
を防止する機構と、 を備えたことを特徴とする空気調和機。
19. A compressor, a four-way switching valve, an outdoor heat exchanger, a first flow control valve, and a thermally divided indoor heat exchanger which are sequentially connected to each other, and are thermally divided into a plurality. A refrigeration cycle formed by connecting the second flow control valve between the indoor heat exchangers, an indoor blower, and an outdoor blower, the refrigerant discharged from the compressor, The four-way switching valve, and after passing through the indoor heat exchanger, the first flow control valve, the outdoor heat exchanger, and a bypass passage that is drawn into the compressor by bypassing the four-way switching valve. An air conditioner comprising: a third flow control valve provided in the bypass path; and a mechanism for preventing a refrigerant from flowing from the compressor toward the indoor heat exchanger.
【請求項20】 前記第2流量制御弁の冷媒流路に多孔
質体を備えたことを特徴とする請求項18または請求項
19記載の空気調和機。
20. The air conditioner according to claim 18, wherein a porous body is provided in a refrigerant flow path of the second flow control valve.
【請求項21】 前記冷凍サイクルの作動冷媒として、
ハイドロフルオロカーボン系冷媒の単独または混合の冷
媒を使用することを特徴とする請求項18または請求項
19または請求項20記載の空気調和機。
21. The working refrigerant of the refrigeration cycle,
21. The air conditioner according to claim 18, wherein a single or a mixture of hydrofluorocarbon refrigerants is used.
JP2000004462A 2000-01-13 2000-01-13 Air conditioner and multi-type air conditioner Expired - Lifetime JP4063465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004462A JP4063465B2 (en) 2000-01-13 2000-01-13 Air conditioner and multi-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000004462A JP4063465B2 (en) 2000-01-13 2000-01-13 Air conditioner and multi-type air conditioner

Publications (2)

Publication Number Publication Date
JP2001194027A true JP2001194027A (en) 2001-07-17
JP4063465B2 JP4063465B2 (en) 2008-03-19

Family

ID=18533251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004462A Expired - Lifetime JP4063465B2 (en) 2000-01-13 2000-01-13 Air conditioner and multi-type air conditioner

Country Status (1)

Country Link
JP (1) JP4063465B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (en) 2004-11-23 2007-09-14 엘지전자 주식회사 multi type air conditioning system and controlling method of the system
CN103307685A (en) * 2013-07-05 2013-09-18 机械工业第三设计研究院 Air conditioning exclusive to continuous wet weather and control method thereof
WO2021077733A1 (en) * 2019-10-25 2021-04-29 南京天加环境科技有限公司 Improved dehumidification and reheating system and control method therefor
CN117529633A (en) * 2021-06-23 2024-02-06 大金工业株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758902B1 (en) 2004-11-23 2007-09-14 엘지전자 주식회사 multi type air conditioning system and controlling method of the system
CN103307685A (en) * 2013-07-05 2013-09-18 机械工业第三设计研究院 Air conditioning exclusive to continuous wet weather and control method thereof
CN103307685B (en) * 2013-07-05 2016-01-20 机械工业第三设计研究院 Return Nan Tian's special air conditioner and control method thereof
WO2021077733A1 (en) * 2019-10-25 2021-04-29 南京天加环境科技有限公司 Improved dehumidification and reheating system and control method therefor
CN117529633A (en) * 2021-06-23 2024-02-06 大金工业株式会社 Air conditioner

Also Published As

Publication number Publication date
JP4063465B2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP2008511813A (en) Heat pump with reheat circuit
JP3740637B2 (en) Air conditioner
WO2010015123A1 (en) Constant temperature dehumidifying air-conditioner
JP3884591B2 (en) Air conditioner
WO2012085965A1 (en) Air conditioner
JP2009210139A (en) Multiple-type air conditioner
JPH06201220A (en) Cooling and heating hybrid engine driving heat pump system
JP4389430B2 (en) Air conditioner
JP2001065953A (en) Air conditioner and control method of the same
KR19990081638A (en) Multi type air conditioner and control method
JP3817981B2 (en) Refrigeration cycle apparatus and air conditioner
JP2001194027A (en) Air conditioner and multi-type air conditioner
JP4221922B2 (en) Flow control device, throttle device, and air conditioner
KR20050045802A (en) Multi airconditioner
JP2008121997A (en) Air conditioner
CN110207417B (en) Air conditioning system
JP3435759B2 (en) Air conditioner
JP2998740B2 (en) Air conditioner
JP2001330274A (en) Air-conditioner and its operation method
JP2001090977A (en) Air-conditioner
JP3417351B2 (en) Aperture device
JP2008261626A (en) Flow control device, restricting device and air conditioner
JP2003042585A (en) Air conditioner
JP4106867B2 (en) Flow control device, air conditioner
JP2001246929A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term