JP2001192269A - Silicon carbide sintered body and its production process - Google Patents

Silicon carbide sintered body and its production process

Info

Publication number
JP2001192269A
JP2001192269A JP2000005964A JP2000005964A JP2001192269A JP 2001192269 A JP2001192269 A JP 2001192269A JP 2000005964 A JP2000005964 A JP 2000005964A JP 2000005964 A JP2000005964 A JP 2000005964A JP 2001192269 A JP2001192269 A JP 2001192269A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
carbon
inert gas
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000005964A
Other languages
Japanese (ja)
Inventor
Osamu Himeno
修 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000005964A priority Critical patent/JP2001192269A/en
Publication of JP2001192269A publication Critical patent/JP2001192269A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent any carbon layer from being deposited on the surface of a silicon carbide sintered body. SOLUTION: The production process of this silicon carbide sintered body comprises: placing a pressed green body which consists essentially of silicon carbide and also contains at least carbon as a sintering aid, in a sintering furnace; adjusting the pressure within the furnace to <=1 Torr; thereafter initiating the temperature elevation of the furnace; filling the furnace with an inert gas so as to obtain a 0.1-10 atm inert gas pressure within the furnace, or allowing the inert gas to flow through the furnace, to form an inert gas atmosphere within the furnace in the temperature range of room temperature to 1,900 deg.C; and sintering the green body while maintaining the formed inert gas atmosphere throughout the whole sintering temperature range of up to a 1,900-2,300 deg.C maximum sintering temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素質焼結体
とその製造方法に関する。
The present invention relates to a silicon carbide sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】高密度炭化珪素焼結体は耐熱性、耐薬品
性、耐摩耗性等に優れていることから、高温下での構造
材料として注目されその製造法の確立が望まれており、
その一製造法として以下のようなものがあった。
2. Description of the Related Art A high-density silicon carbide sintered body is excellent in heat resistance, chemical resistance, abrasion resistance, etc., and is attracting attention as a structural material at high temperatures, and it is desired to establish a manufacturing method thereof. ,
One of the production methods is as follows.

【0003】これは炭化珪素を主体とする加圧成形体の
焼成条件に着目してなされたもので、上記加圧成形体を
常温からl600〜1800℃までの温度では5tor
r以下の真空下で焼成し、次いで2000〜2500℃
までの温度では流動しない不活性ガス雰囲気中で焼成す
ることを特徴とするものである。かかる製造法によれ
ば、全て真空下で焼成する場合に比して焼結体表面での
炭素被膜の生成が極めて少なく、かつ上記焼成条件下に
おけると同様の高密度の焼結体が得られるものとしてい
る(特公昭61−308号公報参照)。
[0003] This is made by paying attention to the firing conditions of a pressure-formed body mainly composed of silicon carbide, and the pressure-formed body is heated to 5 torr at a temperature from room temperature to 1,600 to 1,800 ° C.
r under vacuum, then 2000 to 2500 ° C
It is characterized by firing in an inert gas atmosphere that does not flow at temperatures up to. According to such a production method, the generation of a carbon coating on the surface of the sintered body is extremely small as compared with the case where all are fired under vacuum, and a high-density sintered body similar to that under the above firing conditions can be obtained. (See Japanese Patent Publication No. 61-308).

【0004】従来、炭化珪素の原料粉末は、その製造工
程や、焼成する際に、結晶表面が酸化される事により、
その結晶表面にSiO2の薄膜ができ、結晶の表面自由
エネルギーを低下させ、焼結を阻害すると言う問題があ
った。そこで、焼結の推進力である表面自由エネルギー
を増大させるために、焼結助剤としてカーボン(C)を
添加することで、SiO2が還元されてSiCとCOガ
スになることで焼結が促進すること等の様々な焼結体製
造方法が広く知られている。さらに炉内を1torr以
下の真空雰囲気にすることで、SiO2が還元されて発
生するCOガスを積極的に炉内より吸い出すことで焼結
体周辺から取り去り、焼結体周辺のCOガスの分圧を下
げ、還元反応をより進める方法も取られてきた(特公平
4−35453公報参照)。
[0004] Conventionally, the raw material powder of silicon carbide is oxidized on the crystal surface during its production process and firing, so that
There is a problem that a thin film of SiO 2 is formed on the crystal surface, which lowers the surface free energy of the crystal and inhibits sintering. Therefore, in order to increase the surface free energy, which is the driving force of sintering, carbon (C) is added as a sintering aid, so that SiO 2 is reduced to SiC and CO gas to perform sintering. Various methods for producing sintered bodies, such as accelerating, are widely known. Further, by setting the inside of the furnace to a vacuum atmosphere of 1 torr or less, CO gas generated by reduction of SiO 2 is positively sucked from the furnace to be removed from the periphery of the sintered body, and the amount of CO gas around the sintered body is reduced. A method has also been adopted in which the pressure is reduced to further promote the reduction reaction (see Japanese Patent Publication No. 4-35453).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、炭化珪
素を主成分としてカーボンを含む加圧成形体を、常圧も
しくは10気圧以下の比較的低圧下において、焼結によ
る緻密化が十分起こり、なおかつ異常な結晶粒の成長が
起こらない温度域である2000℃前後の高温域まで真
空雰囲気で焼成する方法では、得られる焼結体表面にカ
ーボンが析出してしまうという問題があった。
However, under a relatively low pressure of normal pressure or 10 atm or less, the compact formed by sintering is sufficiently densified, and the pressure-molded body containing silicon carbide as a main component and carbon is sufficiently increased. The method of firing in a vacuum atmosphere up to a high temperature range of about 2000 ° C., which is a temperature range in which the growth of crystal grains does not occur, has a problem that carbon is deposited on the surface of the obtained sintered body.

【0006】炭化珪素質焼結体の表面にカーボンが析出
してしまうと、例えば摺動部材においては、摺動面周辺
にカーボンが脱落し潤滑油中にカーボンが混入し、摺動
面を損傷し摺動性を低下させ、また摺動面の潤滑剤の寿
命も低下していた。また、ポンプ・バルブ用構造部材や
高温管路部材等に用いる場合、前述の効果と共に被運搬
流体中へのカーボンが混入するという問題があった。ま
た、各種コンタミネーションを良しとしない用途におい
てもコンタミネーション源として問題となっていた。
If carbon is deposited on the surface of the silicon carbide sintered body, for example, in a sliding member, carbon is dropped around the sliding surface and carbon is mixed in the lubricating oil, and the sliding surface is damaged. In addition, the slidability was reduced, and the life of the lubricant on the sliding surface was also reduced. Further, when used for a structural member for a pump / valve, a high-temperature pipe member, or the like, there is a problem that carbon is mixed into the transported fluid together with the above-described effects. In addition, there has been a problem as a contamination source even in applications in which various contaminations are not good.

【0007】しかしながら析出したカーボン層は、一般
の洗浄プロセスでは完全に除去することが困難で、完全
に除去する為には、研削、研磨など該焼結体表面の一部
ごと除去する物理的加工法を余儀なくされていた。これ
により、セラミックの焼結後の物理的加工は非常にコス
トが掛かるため、セラミック製品の製造コストを押し上
げる大きな要因となっていた。
However, it is difficult to completely remove the deposited carbon layer by a general cleaning process. In order to completely remove the carbon layer, physical processing such as grinding and polishing is performed to remove a part of the surface of the sintered body. The law had been forced. As a result, physical processing after sintering of the ceramic is very costly, which has been a major factor that increases the manufacturing cost of the ceramic product.

【0008】[0008]

【課題を解決するための手段】そこで本発明者は鋭意研
究の結果、炭化珪素を主成分とし、焼結助剤として少な
くともカーボンを含み、表面部に析出するカーボン層の
厚みを最大15μm以下としたものである。
The inventors of the present invention have conducted intensive studies and found that the thickness of a carbon layer containing silicon carbide as a main component, at least carbon as a sintering aid, and deposited on the surface is 15 μm or less at the maximum. It was done.

【0009】又、上記炭化珪素質焼結体の製造に関して
は、炭化珪素を主成分とし、焼結助剤として少なくとも
カーボンを含有する加圧成形体を焼成炉内に配置し、焼
成炉内を1torr以下とした後、昇温を開始し、室温
乃至1900℃の間で、不活性ガスを0.1乃至10気
圧の圧力になるように封入するか若しくは流して不活性
ガス雰囲気とし、常圧もしくは10気圧以下の比較的低
圧下において、焼結による緻密化が十分起こり、なおか
つ異常な結晶粒の成長が起こらない温度域である190
0℃乃至2300℃の最高焼成温度までその不活性ガス
雰囲気を維持しつつ焼成する製造方法を確立した。
In the production of the silicon carbide-based sintered body, a press-formed body containing silicon carbide as a main component and at least carbon as a sintering aid is placed in a firing furnace. After the pressure is reduced to 1 torr or less, the temperature is raised, and an inert gas is filled or flown at a pressure of 0.1 to 10 atm between room temperature and 1900 ° C. to form an inert gas atmosphere. Alternatively, at a relatively low pressure of 10 atm or less, densification by sintering sufficiently occurs, and the temperature range is such that abnormal crystal grain growth does not occur.
A manufacturing method was established in which firing was performed while maintaining the inert gas atmosphere up to a maximum firing temperature of 0 ° C. to 2300 ° C.

【0010】これにより、得られる炭化珪素質焼結体の
表面部に析出するカーボン層の厚みが最大15μm以下
となることから、摺動部材等において表面の一部ごとカ
ーボン層を除去する物理的加工法を伴わずに使用するこ
とを可能としたものである。
As a result, the thickness of the carbon layer deposited on the surface of the silicon carbide-based sintered body obtained is at most 15 μm or less. This makes it possible to use it without a processing method.

【0011】[0011]

【発明の実施の形態】本発明は、炭化珪素を主成分と
し、焼結助剤として少なくともカーボンを含む炭化珪素
焼結体において、表面部に析出するカーボン層の厚みを
最大15μm以下としたものであり、このような炭化珪
素焼結体を製造するために、炭化珪素を主成分として少
なくともカーボンを含む加圧成形体を焼成する際、不活
性ガスを常温乃至1900℃までの間で炉内に流し始
め、常圧もしくは10気圧以下の比較的低圧下におい
て、焼結による緻密化が十分起こり、なおかつ異常な結
晶粒の成長が起こらない最度域である1900℃乃至2
300℃迄の温度までその不活性ガス雰囲気を維持しつ
つ焼成することを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a silicon carbide sintered body containing silicon carbide as a main component and at least carbon as a sintering aid, in which the thickness of a carbon layer deposited on the surface is 15 μm or less at the maximum. In order to manufacture such a silicon carbide sintered body, when sintering a press-formed body containing silicon carbide as a main component and at least carbon, an inert gas is heated in a furnace between room temperature and 1900 ° C. At a normal pressure or a relatively low pressure of 10 atm or less, the densification by sintering sufficiently occurs, and the maximum temperature range of 1900 ° C. to 2 ° C. where abnormal crystal grain growth does not occur.
It is characterized in that firing is performed while maintaining the inert gas atmosphere up to a temperature of 300 ° C.

【0012】さらにその際、加圧成形体若しくは焼結体
の表面若しくは結晶表面の酸化を防止する目的で、昇温
開始前に焼成炉内の大気を真空ポンプ等の利用により1
torr以下まで減圧し、その後不活性ガスを、より積
極的に炉内からのカーボン雰囲気の搬出される0.1乃
至10気圧までの圧力になるように封入若しくは流し続
け、炉内の酸素雰囲気を不活性ガスにより炉外へ押しだ
すことで、より酸素雰囲気のAr、He等の不活性ガス
雰囲気への置換が促進される方法を併せて用いる。
Further, at that time, in order to prevent oxidation of the surface of the press-formed body or the sintered body or the crystal surface, the atmosphere in the firing furnace is reduced by using a vacuum pump or the like before the start of temperature rise.
The pressure is reduced to not more than torr, and then the inert gas is more positively charged or kept at a pressure of 0.1 to 10 atm, at which the carbon atmosphere is carried out of the furnace. A method is also used in which the gas is pushed out of the furnace by an inert gas to promote the replacement of the atmosphere with an inert gas such as Ar or He in an oxygen atmosphere.

【0013】また、不活性ガス導入温度を常温乃至19
00℃としたのは、1900℃を越えると、カーボン層
の最大厚みが15μmより大きくなるためである。
Further, the inert gas introduction temperature is set at a temperature between room temperature and 19 ° C.
The reason why the temperature is set to 00 ° C. is that if the temperature exceeds 1900 ° C., the maximum thickness of the carbon layer becomes larger than 15 μm.

【0014】本発明の方法によれば、常圧もしくは10
気圧以下の比較的低圧下において、焼結による緻密化が
十分起こり、なおかつ異常な結晶粒の成長が起こらない
温度域である2000℃前後の高温域まで真空雰囲気で
焼成する従来方法と比較して、得られる焼結体表面のカ
ーボンの発生を抑え、該カーボン層厚さを最大15μm
以下とすることができる。
According to the method of the present invention, normal pressure or 10
Under a relatively low pressure of less than the atmospheric pressure, compared with the conventional method of firing in a vacuum atmosphere up to a high temperature range of about 2000 ° C., which is a temperature range in which densification by sintering sufficiently occurs and abnormal crystal grain growth does not occur. The generation of carbon on the surface of the obtained sintered body is suppressed, and the thickness of the carbon layer is at most 15 μm.
It can be:

【0015】なお、カーボン層の厚さは、最大厚さで評
価し、カーボン層の最大厚さとは任意の測定個所20カ
所の最大値を指すものとする。
The thickness of the carbon layer is evaluated based on the maximum thickness, and the maximum thickness of the carbon layer indicates the maximum value of any 20 measurement points.

【0016】そして、該焼結体を摺動部材として用いる
場合は、種々の試験の結果、カーボン層の最大厚さが1
5μm以下の場合は、表面の一部ごと除去する物理的加
工の必要が無くなることが判った。
When the sintered body is used as a sliding member, as a result of various tests, the maximum thickness of the carbon layer is 1
It was found that when the thickness was 5 μm or less, there was no need for physical processing for removing the entire surface.

【0017】例えば、ポンプ、バルブ等の部品におい
て、本発明品を使用すれば、潤滑油中へのカーボンの混
入を押さえることが出来、その潤滑性を損なうことが無
い。
For example, if the product of the present invention is used in parts such as a pump and a valve, the mixing of carbon into lubricating oil can be suppressed, and the lubricity is not impaired.

【0018】更に、その摺動面周辺にカーボンが脱落す
ることが少なくなり、結果的に摺動面の潤滑剤の寿命が
向上し、さらに周囲へのカーボンのコンタミネーション
を飛躍的に少なくできる。また、ポンプ・バルブ用構造
部材や高温管路部材等に用いる場合、前述の効果と共に
被運搬流体中へのカーボン混入を防ぐことができる。
Furthermore, carbon is less likely to fall off around the sliding surface, and as a result, the life of the lubricant on the sliding surface is improved, and the contamination of carbon around the sliding surface can be drastically reduced. In addition, when used in a structural member for a pump / valve, a high-temperature pipe member, or the like, it is possible to prevent carbon from being mixed into the transported fluid together with the above-described effects.

【0019】また、コンタミネーションを良しとしない
半導体製造装置用部品、液晶部品等においては、さらに
実施例からわかるとおり不活性ガスの導入温度が低い程
析出するカーボン層の厚さが小さくなるため、不活性ガ
スを低い温度から導入し、最大厚さを5μm以下とする
必要がある。
Further, in a component for a semiconductor manufacturing apparatus, a liquid crystal component, and the like which do not have good contamination, as can be seen from the examples, the lower the introduction temperature of the inert gas, the smaller the thickness of the deposited carbon layer becomes. It is necessary to introduce an inert gas from a low temperature and make the maximum thickness 5 μm or less.

【0020】なお、本発明の炭化珪素質焼結体の組成と
しては、主成分はα相がほぼ100重量%の炭化珪素か
らなり、焼結助剤としてカーボンを0.20乃至0.3
0重量%、ホウ素を0.15乃至0.30重量%含むも
のが好ましい。なお、本発明は上記の組成系及び範囲に
限らず、他の焼結助剤としてアルミナ、イットリア等を
含む液相焼結炭化珪素質焼結体にも適用出来る。
In the composition of the silicon carbide sintered body of the present invention, the main component is composed of silicon carbide in which the α phase is almost 100% by weight, and carbon is used as a sintering aid in an amount of 0.20 to 0.3.
Those containing 0% by weight and 0.15 to 0.30% by weight of boron are preferable. The present invention is not limited to the above-described composition system and range, and can be applied to a liquid phase sintered silicon carbide sintered body containing alumina, yttria, and the like as other sintering aids.

【0021】本発明により得られる炭化珪素等焼結体は
表面の一部ごと除去する物理的加工法を伴わず、以下の
ような用途に適合することができる。
The sintered body of silicon carbide or the like obtained by the present invention can be applied to the following uses without a physical processing method for removing a part of the surface.

【0022】該焼結体を摺動部材として用いる場合は、
その摺動面周辺にカーボンが脱落することは少なくな
り、結果的に摺動面の潤滑剤の寿命が向上し、さらに周
囲へのカーボンのコンタミネーションを飛躍的に少なく
できる。また、ポンプ・バルブ用構造部材や高温管路部
材等に用いる場合、前述の効果と共に被運搬流体中への
カーボン混入を防ぐことができる。また、コンタミネー
ションを良しとしない半導体製造装置用部品、液晶部品
等の用途にも応用できる。
When the sintered body is used as a sliding member,
Carbon is less likely to fall off around the sliding surface, and as a result, the life of the lubricant on the sliding surface is improved, and the contamination of carbon around the sliding surface can be drastically reduced. In addition, when used in a structural member for a pump / valve, a high-temperature pipe member, or the like, it is possible to prevent carbon from being mixed into the transported fluid together with the above-described effects. In addition, the present invention can also be applied to applications such as parts for semiconductor manufacturing equipment and liquid crystal parts that do not have good contamination.

【0023】以下に本発明の実施例及び比較例を挙げて
本発明を、より具体的に説明するが、本発明はその要旨
を越えない限り、以下に述べる実施例に限定されるもの
ではない。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention. However, the present invention is not limited to the examples described below unless departing from the gist of the present invention. .

【0024】[0024]

【実施例】(実験例1)焼結体の組成としてカーボンが
0.25重量%程度、硼素が0.20重量%程度、主成
分はα相の炭化珪素がほぼ100重量%となるような組
成に原料を配合し、硼素源、炭素源、粒径1μm以下の
炭化珪素原料を、回転ミルにより分散混合し、更に成形
助剤としての有機分を添加し、スプレードライヤーによ
り顆粒状となった原料粉末を使用した。これをCIPに
より成形したものを切削加工し、焼結前の寸法で直径6
0mm、厚さ10mmとしたテスト片により実験を行っ
た。
EXAMPLES (Experimental Example 1) The composition of the sintered body is such that carbon is about 0.25% by weight, boron is about 0.20% by weight, and the main component is almost 100% by weight of α-phase silicon carbide. The raw materials were blended into the composition, a boron source, a carbon source, and a silicon carbide raw material having a particle size of 1 μm or less were dispersed and mixed by a rotary mill, and an organic component as a molding aid was further added, and the mixture was granulated by a spray dryer. Raw material powder was used. This is molded by CIP and then cut to a diameter of 6 mm before sintering.
The experiment was performed using a test piece having a thickness of 0 mm and a thickness of 10 mm.

【0025】焼成の昇温開始前に焼成炉内の大気を真空
ポンプ等の利用により0.02torrまで減圧した
後、真空雰囲気を保ちつつヒートサイクルを開始し、A
rガスを表1に示す各温度で炉内に導入し、最高焼成温
度である2100℃以降、降温サイクルを経て常温域に
至るまでArガス雰囲気を1気圧程度に保ちながら焼成
を行った。
Before starting the temperature rise of the firing, the atmosphere in the firing furnace was reduced to 0.02 torr by using a vacuum pump or the like, and then the heat cycle was started while maintaining the vacuum atmosphere.
The r gas was introduced into the furnace at each temperature shown in Table 1, and firing was performed while maintaining the Ar gas atmosphere at about 1 atm from the maximum firing temperature of 2100 ° C. to a room temperature range through a cooling cycle.

【0026】得られた炭化珪素質焼結体表面に析出する
カーボン層の厚さを測定した。なお、カーボン厚さの測
定は、該サンプルを直径部で2分割した面の全周にわた
って行い、その周を20当分した箇所でSEM写真を撮
ることにより行った。
The thickness of the carbon layer deposited on the surface of the obtained silicon carbide sintered body was measured. In addition, the measurement of the carbon thickness was performed over the entire circumference of the surface where the sample was divided into two parts by the diameter part, and SEM photographs were taken at positions where the circumference was divided into 20.

【0027】なお、本発明の実施例1乃至10と比較例
では、加熱サイクルが終わるまでの熱履歴を均一に近づ
ける目的で、昇温、降温の温度勾配、および、加熱サイ
クルが終わるまでの経過時間を同一とした。
In Examples 1 to 10 of the present invention and Comparative Example, in order to make the heat history up to the end of the heating cycle more uniform, the temperature gradient of the temperature increase and the temperature decrease, and the progress of the heating cycle until the end of the heating cycle. The time was the same.

【0028】本発明の実施例1乃至10及び比較例で得
られた炭化珪素質焼結体表面に析出するカーボン層の最
大厚さを表1に示す。
Table 1 shows the maximum thickness of the carbon layer deposited on the surface of the silicon carbide sintered body obtained in Examples 1 to 10 and Comparative Example of the present invention.

【0029】また、本発明の実施例4、実施例6及び比
較例で得られた、炭化珪素質焼結体の破断面電顕反射電
子像写真の模式図を、図1乃至図3に示す。
FIGS. 1 to 3 are schematic views of electron microscopic reflection electron micrographs of a silicon carbide sintered body obtained in Example 4, Example 6, and Comparative Example of the present invention. .

【0030】表1及び図3に示すとおり、Arガス導入
開始温度が1900℃を越える比較例では、焼結体表面
に析出するカーボン層の厚さは最大17.4μmであ
り、測定個所全てにおいて、ほぼ均一にカーボン層が観
測された。
As shown in Table 1 and FIG. 3, in the comparative example in which the Ar gas introduction start temperature exceeds 1900 ° C., the maximum thickness of the carbon layer deposited on the sintered body surface is 17.4 μm. , A carbon layer was observed almost uniformly.

【0031】これに対し、表1及び図1、2に示すよう
に、Arガス導入開始温度が室温〜1900℃である、
本発明実施例では、炭化珪素質焼結体表面に析出するカ
ーボン層の最大厚さは3.9μm乃至14.7μmであ
った。また、図1に示すように不活性ガス導入温度を1
000℃以下としたものでは、多くの測定個所でカーボ
ンの析出を確認できなかった。
On the other hand, as shown in Table 1 and FIGS. 1 and 2, the Ar gas introduction start temperature is from room temperature to 1900 ° C.
In the example of the present invention, the maximum thickness of the carbon layer deposited on the surface of the silicon carbide sintered body was 3.9 μm to 14.7 μm. Also, as shown in FIG.
When the temperature was set to 000 ° C. or lower, carbon deposition could not be confirmed at many measurement points.

【0032】この結果より、本発明によれば得られる炭
化珪素質焼結体表面に析出するカーボンの析出量を抑え
ることが出来ることは明らかである。
From these results, it is clear that the amount of carbon deposited on the surface of the silicon carbide sintered body obtained according to the present invention can be suppressed.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上に詳述した通り、炭化珪素を主成分
とし、焼結助剤として少なくともカーボンを含み、表面
部に析出するカーボン層の厚みを最大15μm以下とし
たことにより、該炭化珪素質焼結体を摺動部材として用
いる場合には、その摺動面周辺にカーボンが脱落するこ
とは少なくなり、結果的に摺動面の潤滑剤の寿命が向上
し、さらに周囲へのカーボンのコンタミネーションを飛
躍的に少なくできる。また、ポンプ・バルブ用構造部材
や高温管路部材等に用いる場合、前述の効果と共に被運
搬流体中へのカーボン混入を防ぐことができる。また、
各種コンタミネーションを良しとしない用途にも応用で
きることとなる。
As described in detail above, the silicon carbide is mainly contained, and at least carbon is contained as a sintering aid. When a high-quality sintered body is used as a sliding member, carbon is less likely to fall off around the sliding surface, and as a result, the life of the lubricant on the sliding surface is improved, and the carbon Contamination can be dramatically reduced. In addition, when used in a structural member for a pump / valve, a high-temperature pipe member, or the like, it is possible to prevent carbon from being mixed into the transported fluid together with the above-described effects. Also,
It can be applied to applications where various contaminations are not good.

【0035】又、炭化珪素を主成分とし、焼結助剤とし
て少なくともカーボンを含有する加圧成形体を焼成炉内
に配置し、焼成炉内を1torr以下とした後、昇温を
開始し、室温乃至1900℃の間で、不活性ガスを0.
1乃至10気圧の圧力になるように封入するか若しくは
流して不活性ガス雰囲気とし、1900℃乃至2300
℃の最高焼成温度までその不活性ガス雰囲気を維持しつ
つ焼成することにより、本発明により得られる炭化珪素
を主体とする焼結体は、従来と比較して、析出するカー
ボンの析出量を著しく少なくする事ができるものであ
る。
Further, a press-formed body containing silicon carbide as a main component and at least carbon as a sintering aid is placed in a firing furnace, the temperature in the firing furnace is reduced to 1 torr or less, and the temperature is increased. At room temperature to 1900 ° C., an inert gas is
Enclose or flow to a pressure of 1 to 10 atm to make an inert gas atmosphere, 1900 ° C to 2300
By sintering while maintaining the inert gas atmosphere up to the maximum sintering temperature of ° C., the sintered body mainly composed of silicon carbide obtained according to the present invention significantly reduces the amount of deposited carbon as compared with the prior art. It can be reduced.

【0036】従って、本発明により得られる炭化珪素を
主体とする焼結体は、その利用用途によっては、該表面
を析出カーボンの除去を目的とした物理的加工を伴わず
に利用することが可能となり、製造コスト、加工時間削
減の観点からも、その工業的有用性はきわめて大きい。
Therefore, the sintered body mainly composed of silicon carbide obtained by the present invention can be used without physical processing for the purpose of removing precipitated carbon depending on its use. Thus, from the viewpoint of reducing the manufacturing cost and the processing time, its industrial utility is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭化珪素質焼結体の表面に析出するカ
ーボン層を示す破断面の電子顕微鏡写真の模式図であ
る。
FIG. 1 is a schematic view of an electron micrograph of a fractured surface showing a carbon layer deposited on a surface of a silicon carbide based sintered body of the present invention.

【図2】本発明の炭化珪素質焼結体の表面に析出するカ
ーボン層を示す破断面の電子顕微鏡写真の模式図であ
る。
FIG. 2 is a schematic view of an electron micrograph of a fractured surface showing a carbon layer deposited on the surface of a silicon carbide based sintered body of the present invention.

【図3】比較例の炭化珪素質焼結体の表面に析出するカ
ーボン層を示す破断面の電子顕微鏡写真の模式図であ
る。
FIG. 3 is a schematic diagram of an electron micrograph of a fractured surface showing a carbon layer deposited on the surface of a silicon carbide based sintered body of a comparative example.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素を主成分とし、焼結助剤として少
なくともカーボンを含み、表面部に析出するカーボン層
の厚みが最大15μm以下であることを特徴とする炭化
珪素質焼結体。
1. A silicon carbide-based sintered body comprising silicon carbide as a main component, at least carbon as a sintering aid, and a carbon layer deposited on a surface portion having a maximum thickness of 15 μm or less.
【請求項2】炭化珪素を主成分とし、焼結助剤として少
なくともカーボンを含有する加圧成形体を焼成炉内に配
置し、焼成炉内を1torr以下とした後、昇温を開始
し、室温乃至1900℃の間で、不活性ガスを0.1乃
至10気圧の圧力になるように封入するか若しくは流し
て不活性ガス雰囲気とし、1900℃乃至2300℃の
最高焼成温度までその不活性ガス雰囲気を維持しつつ焼
成することを特徴とする炭化珪素質焼結体の製造方法。
2. A pressure-formed body containing silicon carbide as a main component and at least carbon as a sintering aid is placed in a firing furnace, and the temperature in the firing furnace is reduced to 1 torr or less, and then the temperature is increased. At room temperature to 1900 ° C., an inert gas is filled or flowed to a pressure of 0.1 to 10 atm to form an inert gas atmosphere, and the inert gas is heated to a maximum firing temperature of 1900 ° C. to 2300 ° C. A method for producing a silicon carbide-based sintered body, characterized by firing while maintaining an atmosphere.
JP2000005964A 2000-01-07 2000-01-07 Silicon carbide sintered body and its production process Pending JP2001192269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000005964A JP2001192269A (en) 2000-01-07 2000-01-07 Silicon carbide sintered body and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000005964A JP2001192269A (en) 2000-01-07 2000-01-07 Silicon carbide sintered body and its production process

Publications (1)

Publication Number Publication Date
JP2001192269A true JP2001192269A (en) 2001-07-17

Family

ID=18534564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000005964A Pending JP2001192269A (en) 2000-01-07 2000-01-07 Silicon carbide sintered body and its production process

Country Status (1)

Country Link
JP (1) JP2001192269A (en)

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP2002326875A (en) Abrasion resistant member of silicon nitride and its manufacturing method
WO2017030360A1 (en) Silicon nitride sintered compact with high thermal conductivity, and method for manufacturing same
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
TW200422279A (en) Porous Si3N4 and producing method thereof
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
US20160016807A1 (en) Reaction Bonded Silicon Carbide Bodies Made From High Purity Carbonaceous Preforms
WO2015025951A1 (en) Porous ceramic and method for producing same
US9073791B2 (en) Method of forming a silicon carbide body
JP2001192269A (en) Silicon carbide sintered body and its production process
JP4497787B2 (en) Rolling ball
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2004307239A (en) Wear-resistant aluminum oxide member with layered structure and preparation method therefor
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001072479A (en) Silicon carbide porous body and production thereof
EP1435501A1 (en) Heat-resistant coated member
JP4803877B2 (en) Silicon carbide sintered body and method for producing the same
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
JP3602931B2 (en) Low hardness silicon nitride sintered body and semiconductor manufacturing parts using the same
JP5295983B2 (en) Method for producing wear-resistant member made of silicon nitride
JPH11310461A (en) Production of high-purity carbide ceramic part item
JP5132541B2 (en) Manufacturing method of heat-resistant and wear-resistant member for manufacturing apparatus for group 3-5 compound semiconductor
JP2002249387A (en) Method for manufacturing silicon carbide-based member
CN116813353A (en) Silicon nitride-based composite powder and preparation method and sintering method thereof