JP2001185449A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor

Info

Publication number
JP2001185449A
JP2001185449A JP37069999A JP37069999A JP2001185449A JP 2001185449 A JP2001185449 A JP 2001185449A JP 37069999 A JP37069999 A JP 37069999A JP 37069999 A JP37069999 A JP 37069999A JP 2001185449 A JP2001185449 A JP 2001185449A
Authority
JP
Japan
Prior art keywords
capacitor
multilayer
external electrode
capacity
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP37069999A
Other languages
Japanese (ja)
Inventor
Yohei Watabe
洋平 渡部
Masahiro Murata
正浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
NEC Tokin Hyogo Ltd
Original Assignee
Tokin Corp
Tokin Ceramics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp, Tokin Ceramics Corp filed Critical Tokin Corp
Priority to JP37069999A priority Critical patent/JP2001185449A/en
Publication of JP2001185449A publication Critical patent/JP2001185449A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor that can suppress ringing occurring in a power supply circuit and has superior high-frequency characteristics and can reduce the number of parts items and molding areas in molding. SOLUTION: The laminated ceramic capacitor is constituted such that a dielectric ceramic layer 1 and an internal electrode 2 are laminated alternately and involves a laminate 10 having a plurality of laminated capacitor parts 3, 4 whose capacities are different and external electrodes 6 that are provided on an external surface of the laminate 10 and connect a plurality of laminated capacitor parts 3, 4 in parallel circuit relation with each other, and is characterized in that high-resistance external electrodes 8 is interposed between the laminating capacitor part 3 that has the highest capacity of a plurality of laminated capacitor parts 3, 4 and the external electrodes 6, the high-resistance external electrodes 8 being provided on the external surface of the laminate 10 and having higher resistances than the external electrodes 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器の受動部
品として用いられる積層セラミックコンデンサに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer ceramic capacitor used as a passive component of electronic equipment.

【0002】[0002]

【従来の技術】携帯電話機やノートパソコン等の電子機
器から発生する放射雑音を低減する方法として、また、
回路基板上のLSIの動作に必要な電流を供給するコン
デンサとして、更に、電流供給ライン経路の増加に伴う
カップリングで発生する雑音を抑制するためにカップリ
ングを緩衝するコンデンサとして、デカップリング・コ
ンデンサが用いられている。
2. Description of the Related Art As a method for reducing radiated noise generated from electronic devices such as mobile phones and notebook personal computers,
A decoupling capacitor as a capacitor for supplying current necessary for the operation of the LSI on the circuit board, and as a capacitor for buffering the coupling in order to suppress noise generated by coupling due to an increase in current supply line paths. Is used.

【0003】デッカプリング・コンデンサの入れ方とし
て、消費電流や駆動電流がほとんど変化しないTTL
ICの場合、TTL IC1個当たり2.2μFを2〜
3個入れていた。また、回路構成としては、電荷供給の
コンデンサとして大容量で高周波帯域で等価直列抵抗
(ESR)の大きいタンタルコンデンサと、低容量で高
周波特性の良い積層セラミックコンデンサの組み合わせ
が一般的である。
As a method of inserting a decoupling capacitor, a TTL in which current consumption and drive current hardly change is considered.
In the case of IC, 2.2 μF per TTL IC
I had three in it. As a circuit configuration, a combination of a tantalum capacitor having a large capacity and a large equivalent series resistance (ESR) in a high frequency band as a charge supply capacitor and a multilayer ceramic capacitor having a low capacity and a good high frequency characteristic is generally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、動作周
波数が高いLSIの場合、LSIから離れた位置に実装
されたり、静電容量が少ないと、遠くのデカップリング
・コンデンサから電荷供給されるため、電流ラインが長
くなりデカップリング効果が得られなくなる。また、隣
接したコンデンサの距離と、そのラインを流れる高周波
電流の波長が一致し、共振現象を引き起こし放射雑音が
大きくなる。更に、ESRが小さく周波数特性の良い積
層セラミックコンデンサで、大きな静電容量のチップと
小さな静電容量のチップを単純に並列に電源ラインに挿
入すると、周波数に対して急峻なインピーダンス特性が
影響して、位相が180°反転した際に発振するために
リンギングという現象が起こるため、大きな静電容量の
チップに直列に抵抗を挿入しなければならなくなるとい
う問題点があった。
However, in the case of an LSI having a high operating frequency, if the LSI is mounted at a position distant from the LSI or if the capacitance is small, electric charge is supplied from a distant decoupling capacitor, so that the current is reduced. The line becomes longer and the decoupling effect cannot be obtained. Further, the distance between the adjacent capacitors and the wavelength of the high-frequency current flowing through the line coincide with each other, causing a resonance phenomenon and increasing radiation noise. Furthermore, when a multilayer ceramic capacitor with a small ESR and good frequency characteristics is used, simply inserting a chip with a large capacitance and a chip with a small capacitance into a power supply line in parallel will cause a sharp impedance characteristic with respect to frequency. When the phase is inverted by 180 °, oscillation occurs and a phenomenon called ringing occurs. Therefore, there is a problem that a resistor must be inserted in series with a chip having a large capacitance.

【0005】上述したことから、回路基板上に最低2個
のコンデンサと抵抗を実装する必要があり、その実装も
共振現象を引き起こさない距離が必要であるため、実装
時の部品点数が多く、かつ、実装面積が大きくなるとい
う問題点があった。
[0005] As described above, it is necessary to mount at least two capacitors and resistors on a circuit board, and the mounting requires a distance that does not cause a resonance phenomenon. Therefore, the number of components at the time of mounting is large, and However, there is a problem that the mounting area becomes large.

【0006】このデカップリング・コンデンサの不都合
を解消するコンデンサとして、2つ以上の容量の異なる
積層コンデンサ部を有する1チップにした積層セラミッ
クコンデンサが発明された。この1チップにした積層コ
ンデンサとして、特開平7−142285号公報や特願
平8−162368号公報に開示されるものがあるが、
いずれの積層セラミックコンデンサも周波数の広帯域化
の効果は上がっているが、異なる容量部を並列接続した
際のリンギングについては考慮されておらず、大容量部
を形成した場合、その効果は不十分であった。
As a capacitor for solving the problem of the decoupling capacitor, a multilayer ceramic capacitor having a single chip having two or more multilayer capacitor portions having different capacities has been invented. Examples of the one-chip multilayer capacitor include those disclosed in JP-A-7-142285 and Japanese Patent Application No. 8-162368.
All multilayer ceramic capacitors have an effect of increasing the frequency band.However, ringing when different capacitors are connected in parallel is not considered, and when a large capacitor is formed, the effect is insufficient. there were.

【0007】それ故に、本発明の課題は、複数の容量の
異なる積層セラミックコンデンサ部を有した1チップ部
品を構成し、大きな容量部の等価直列抵抗を大きくし、
電源回路で発生するリンギングを抑制できて、高周波特
性が良く、しかも実装時の部品点数及び実装面積を低減
することが可能な積層セラミックコンデンサを提供する
事にある。
Therefore, an object of the present invention is to constitute a one-chip component having a plurality of multilayer ceramic capacitor portions having different capacities, to increase the equivalent series resistance of a large capacitance portion,
An object of the present invention is to provide a multilayer ceramic capacitor that can suppress ringing generated in a power supply circuit, has good high-frequency characteristics, and can reduce the number of components and the mounting area during mounting.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明によ
れば、誘電体セラミック層と内部電極層を交互に積層し
て成り、容量の異なる複数の積層コンデンサ部を有した
積層体と、該積層体の外表面上に設けられ、前記複数の
積層コンデンサ部を並列に接続する外部電極とを含む積
層セラミックコンデンサにおいて、前記複数の積層コン
デンサ部の中で最も大容量の積層コンデンサ部と前記外
部電極との間に、高抵抗外部電極が介在しており、該高
抵抗外部電極は、前記積層体の外表面上に設けられ、前
記外部電極よりも電気抵抗が大きいことを特徴とする積
層セラミックコンデンサが得られる。
According to the first aspect of the present invention, there is provided a laminated body having a plurality of laminated capacitor portions having different capacities, each of which is formed by alternately laminating dielectric ceramic layers and internal electrode layers; A multilayer ceramic capacitor provided on an outer surface of the multilayer body and including an external electrode for connecting the plurality of multilayer capacitor sections in parallel, wherein the multilayer capacitor section having the largest capacity among the plurality of multilayer capacitor sections and A high-resistance external electrode is interposed between the external electrode and the high-resistance external electrode, and the high-resistance external electrode is provided on an outer surface of the laminate, and has a higher electrical resistance than the external electrode. A ceramic capacitor is obtained.

【0009】請求項2記載の発明によれば、所定の積層
方向に沿って誘電体セラミック層と内部電極層を交互に
積層して成り、前記積層方向で並んだ大容量の積層コン
デンサ部及び小容量の積層コンデンサ部を有した直方体
状の積層体と、該積層体の外表面上に設けられ、前記大
容量の積層コンデンサ部と前記小容量の積層コンデンサ
部を並列に接続する外部電極とを含む積層セラミックコ
ンデンサにおいて、前記大容量の積層コンデンサ部と前
記外部電極との間に、高抵抗外部電極が介在しており、
該高抵抗外部電極は、前記積層体の外表面上に設けら
れ、前記外部電極よりも電気抵抗が大きいことを特徴と
する積層セラミックコンデンサが得られる。
According to the second aspect of the present invention, the dielectric ceramic layers and the internal electrode layers are alternately laminated along a predetermined laminating direction, and the large-capacity laminated capacitor portion and the small-capacity laminated capacitor portion are arranged in the laminating direction. A rectangular parallelepiped laminated body having a laminated capacitor part having a capacity, and an external electrode provided on the outer surface of the laminated body and connecting the large-capacity laminated capacitor part and the small-capacity laminated capacitor part in parallel. In the multilayer ceramic capacitor including, between the large-capacity multilayer capacitor portion and the external electrode, a high-resistance external electrode is interposed,
The high-resistance external electrode is provided on the outer surface of the multilayer body, and a multilayer ceramic capacitor characterized by having a higher electric resistance than the external electrode is obtained.

【0010】請求項3記載の発明によれば、前記大容量
の積層コンデンサ部を構成する内部電極層が、前記積層
体の相対向する第1及び第2の側面上に引き出されてお
り、前記高抵抗外部電極が、前記大容量の積層コンデン
サ部を構成する内部電極層の引出部分を覆うように、前
記第1及び第2の側面上に設けられ、前記大容量の積層
コンデンサ部を構成する内部電極層に接続されており、
前記小容量の積層コンデンサ部を構成する内部電極層
が、前記積層体の前記第1及び第2の側面に隣接する第
3及び第4の側面上に引き出されており、前記外部電極
が、前記第3及び第4の側面からそれぞれ前記第1及び
第2の側面に掛けて設けられ、前記小容量の積層コンデ
ンサ部を構成する内部電極層に接続されると共に前記高
抵抗外部電極を覆っていることを特徴とする請求項2記
載の積層セラミックコンデンサが得られる。
According to the third aspect of the present invention, the internal electrode layers constituting the large-capacity multilayer capacitor portion are drawn out on the opposed first and second side surfaces of the laminate. A high-resistance external electrode is provided on the first and second side surfaces so as to cover a lead-out portion of an internal electrode layer constituting the large-capacity multilayer capacitor portion, and constitutes the large-capacity multilayer capacitor portion. Connected to the internal electrode layer,
An internal electrode layer constituting the small-capacity multilayer capacitor portion is drawn out on third and fourth side surfaces adjacent to the first and second side surfaces of the multilayer body, and the external electrode is provided on the third and fourth side surfaces. The third and fourth side surfaces are provided so as to extend over the first and second side surfaces, respectively, and are connected to the internal electrode layers constituting the small-capacity multilayer capacitor portion and cover the high-resistance external electrodes. A multilayer ceramic capacitor according to claim 2 is obtained.

【0011】請求項4記載の発明によれば、前記大容量
の積層コンデンサ部と前記小容量部の積層コンデンサ部
の間隔が、0.15mm以上であることを特徴とする請
求項2又は3記載の積層セラミックコンデンサが得られ
る。
According to a fourth aspect of the present invention, the distance between the large-capacity multilayer capacitor portion and the small-capacity multilayer capacitor portion is 0.15 mm or more. Is obtained.

【0012】[0012]

【作用】以上のように構成した積層セラミックコンデン
サによれば、電源回路に発生するリンギングを抑制し、
高周波特性が良く、複数の容量の異なる積層セラミック
コンデンサ部が1チップ部品で形成され、実装時の部品
点数及び実装面積を低減することが可能な積層セラミッ
クコンデンサを得ることができる。
According to the multilayer ceramic capacitor configured as described above, ringing generated in the power supply circuit is suppressed,
A multilayer ceramic capacitor having good high-frequency characteristics and a plurality of multilayer ceramic capacitors having different capacities is formed by one chip component, and a multilayer ceramic capacitor capable of reducing the number of components and the mounting area during mounting can be obtained.

【0013】[0013]

【発明の実施の形態】次に、本発明の積層セラミックコ
ンデンサの実施の形態について図面を参照して説明す
る。
Next, an embodiment of the multilayer ceramic capacitor of the present invention will be described with reference to the drawings.

【0014】図1は本発明の第1の実施形態に係わる積
層セラミックコンデンサの斜視図である。図2は図1に
示す積層セラミックコンデンサの断面を示し、(a)は
図1に示すA−A′面での断面図、(b)は図1に示す
B−B′面での断面図である。図1及び図2に示すよう
に、この積層セラミックコンデンサは、誘電体セラミッ
ク層1と内部電極層2を交互に積層し、その後、脱バイ
ンダ、焼結を行って得られたセラミック焼結体(積層
体)10に外部電極6によって電気的に接続するように
したものである。
FIG. 1 is a perspective view of a multilayer ceramic capacitor according to a first embodiment of the present invention. 2A and 2B show a cross section of the multilayer ceramic capacitor shown in FIG. 1, wherein FIG. 2A is a cross sectional view taken along the plane AA 'shown in FIG. 1, and FIG. 2B is a cross sectional view taken along the plane BB' shown in FIG. It is. As shown in FIGS. 1 and 2, this multilayer ceramic capacitor has a ceramic sintered body obtained by alternately stacking dielectric ceramic layers 1 and internal electrode layers 2 and then performing binder removal and sintering. The laminated body 10 is electrically connected by the external electrode 6.

【0015】図2から明らかなように、この積層セラミ
ックコンデンサは、誘電体セラミック層1と内部電極層
2を交互に積層した2つの積層コンデンサ部3,4が積
層体厚み方向に所定の容量部間隔7をおいて離され、そ
の外側に設けた誘電体による2つの保護層5と、積層コ
ンデンサ部3に電気的に接続される高抵抗外部電極8
と、積層コンデンサ部4に電気的に接続される外部電極
6とを有している。ここで、高抵抗外部電極8は、導電
ペーストのガラスフリットを増量したものか、或いはR
uO材料を主成分とする抵抗ペーストを用いてセラ
ミック焼結体10の幅方向の両端面上に形成され、これ
により、セラミック焼結体10の幅方向の両端面上に引
き出されている積層コンデンサ部3の後述する内部電極
引出部分2aと電気的に接続されている。外部電極6
は、セラミック焼結体10の長さ方向の両端面からセラ
ミック焼結体10の幅方向両端面の側縁部に掛けて形成
され、高抵抗外部電極8を覆うように成っている。これ
により、外部電極6は、積層コンデンサ部3と積層コン
デンサ部4を並列に接続し、また、積層コンデンサ部3
と外部電極6との間には、高抵抗外部電極8が介在する
ように成っている。ここで、積層コンデンサ部3は、も
う一方の積層コンデンサ部4に比べて、誘電体層の厚み
が薄く多層構造であるので、高容量を有する。また、高
抵抗外部電極8は、外部電極6と比較して抵抗値が高く
なっている。誘電体セラミック層1の誘電率εは、10
0〜20000とする。内部電極層2は、低融点金属で
あるAg、Ag−Pd、Ni、Cu等の誘電体材料と同
時焼成が可能なものを使用した。
As is apparent from FIG. 2, this multilayer ceramic capacitor comprises two multilayer capacitor portions 3 and 4 in which dielectric ceramic layers 1 and internal electrode layers 2 are alternately stacked, and has a predetermined capacitance portion in the thickness direction of the multilayer body. Two protective layers 5 made of a dielectric material provided outside and spaced apart from each other by a space 7, and a high-resistance external electrode 8 electrically connected to the multilayer capacitor portion 3.
And an external electrode 6 electrically connected to the multilayer capacitor unit 4. Here, the high resistance external electrode 8 is formed by increasing the glass frit of the conductive paste,
Laminated layers formed on both end surfaces in the width direction of the ceramic sintered body 10 by using a resistance paste containing a uO 2 material as a main component and thereby drawn out on both end surfaces in the width direction of the ceramic sintered body 10 It is electrically connected to an internal electrode lead-out portion 2a of the capacitor portion 3 described later. External electrode 6
Are formed so as to extend from both end surfaces in the longitudinal direction of the ceramic sintered body 10 to the side edges of both end surfaces in the width direction of the ceramic sintered body 10 so as to cover the high-resistance external electrode 8. As a result, the external electrode 6 connects the multilayer capacitor unit 3 and the multilayer capacitor unit 4 in parallel.
A high resistance external electrode 8 is interposed between the external electrode 6 and the external electrode 6. Here, the multilayer capacitor part 3 has a high capacity because the thickness of the dielectric layer is thinner and the multilayer structure is smaller than that of the other multilayer capacitor part 4. The high-resistance external electrode 8 has a higher resistance value than the external electrode 6. The dielectric constant ε of the dielectric ceramic layer 1 is 10
0 to 20,000. As the internal electrode layer 2, a material which can be co-fired with a dielectric material such as a low melting point metal such as Ag, Ag-Pd, Ni, and Cu is used.

【0016】図3(a)は図1に示すC−C′面での断
面図であり、積層コンデンサ部3の内部電極パターンを
示したものである。誘電体セラミック層1の上に内部電
極層2が形成されており、この内部電極層2は、誘電体
セラミック層1の長辺に接する内部電極引出部分2aを
有している。従って、この内部電極層2は、セラミック
焼結体10の幅方向両端面上に引き出され、ここで高抵
抗外部電極8に接続され、更に抵抗の低い外部電極6で
覆われた構造に成っている。
FIG. 3A is a cross-sectional view taken along the line CC ′ shown in FIG. 1 and shows the internal electrode pattern of the multilayer capacitor unit 3. An internal electrode layer 2 is formed on the dielectric ceramic layer 1, and the internal electrode layer 2 has an internal electrode lead portion 2 a that is in contact with the long side of the dielectric ceramic layer 1. Therefore, the internal electrode layer 2 is drawn out on both end surfaces in the width direction of the ceramic sintered body 10, connected to the high-resistance external electrode 8, and further covered with the external electrode 6 having a low resistance. I have.

【0017】図3(b)は図1に示すD−D′面での断
面図であり、積層コンデンサ部4の内部電極パターンを
示したものである。誘電体セラミック層1の上に内部電
極層2が形成されており、この内部電極層2は、誘電体
セラミック層1の短辺に接する内部電極引出部分2bを
有している。従って、この内部電極層2は、セラミック
焼結体10の長さ方向両端面上に引き出され、ここで外
部電極6に接続された構造に成っている。
FIG. 3B is a cross-sectional view taken along the line DD ′ shown in FIG. 1, and shows the internal electrode pattern of the multilayer capacitor unit 4. An internal electrode layer 2 is formed on the dielectric ceramic layer 1, and the internal electrode layer 2 has an internal electrode lead portion 2 b in contact with a short side of the dielectric ceramic layer 1. Accordingly, the internal electrode layer 2 is drawn out on both end surfaces in the longitudinal direction of the ceramic sintered body 10 and has a structure connected to the external electrode 6 here.

【0018】次に、本実施形態の積層セラミックコンデ
ンサの周波数−インピーダンス特性について説明する。
図4は図1に示す積層構造を有する積層セラミックコン
デンサの等価回路を示したものである。コンデンサの等
価回路は、一般的に直列のC、L、Rで現わされ、積層
コンデンサ部3の等価回路は、C、L、R
直列共振回路で、積層コンデンサ部4の等価回路は、C
、L、R の直列共振回路でそれぞれ現され、
これらの積層コンデンサ部3,4は、外部電極6で並列
接続される形となる。しかし、本実施形態の積層セラミ
ックコンデンサでは、積層コンデンサ部3の内部電極と
電気的に接続されている高抵抗外部電極8の導体抵抗R
を外部電極6より大きくしているため、積層コンデ
ンサ部3に直列に抵抗が付加された形で表すことができ
る。
Next, the multilayer ceramic capacitor of the present embodiment will be described.
The frequency-impedance characteristics of the sensor will be described.
FIG. 4 shows a multilayer ceramic capacitor having the multilayer structure shown in FIG.
3 shows an equivalent circuit of a capacitor. Capacitors etc.
The value circuit is generally represented by C, L, R in series,
The equivalent circuit of the capacitor section 3 is C1, L1, R1 of
In the series resonance circuit, the equivalent circuit of the multilayer capacitor unit 4 is C
2, L2, R2 Respectively represented by a series resonance circuit of
These multilayer capacitor parts 3 and 4 are connected in parallel with the external electrodes 6.
It will be connected. However, the laminated ceramic of the present embodiment
In a ceramic capacitor, the internal electrodes of the multilayer capacitor unit 3 are
Conductor resistance R of high resistance external electrode 8 electrically connected
3Is larger than the external electrode 6,
It can be expressed in the form of adding a resistor in series to the sensor part 3.
You.

【0019】図5は図1に示す積層セラミックコンデン
サと比較するために、静電容量が10μFのタンタル電
解コンデンサと、静電容量が0.1μFの積層セラミッ
クコンデンサの周波数−インピーダンス特性を示すグラ
フである。
FIG. 5 is a graph showing frequency-impedance characteristics of a tantalum electrolytic capacitor having a capacitance of 10 μF and a multilayer ceramic capacitor having a capacitance of 0.1 μF for comparison with the multilayer ceramic capacitor shown in FIG. is there.

【0020】図6は図1に示す積層セラミックコンデン
サと比較するために、静電容量が10μFと、0.1μ
Fの積層セラミックコンデンサを並列接続したときの周
波数−インピーダンス特性を示すグラフである。
FIG. 6 shows that the capacitance is 10 μF and 0.1 μF for comparison with the multilayer ceramic capacitor shown in FIG.
5 is a graph showing frequency-impedance characteristics when a multilayer ceramic capacitor F is connected in parallel.

【0021】図7は図1に示す積層セラミックコンデン
サの周波数−インピーダンス特性を示すグラフである。
積層セラミックコンデンサの素子形状は、長さ3.2m
m、幅が2.5mmのものを使用し、誘電体セラミック
層1と内部電極層2を交互に積層した2つの積層コンデ
ンサ部3,4の静電容量をそれぞれ10μFと0.1μ
Fとなるように積層数及び誘電体層厚みを設計した。こ
のとき、2つの積層コンデンサ部3,4の間隔は、0.
3mmとした。ここで、小さな容量部の誘電体層厚みが
2つの積層コンデンサ部3,4の距離よりも大きくなっ
ても良い。尚、積層セラミックコンデンサの共振周波数
及びインピーダンス値は、使用する材料の誘電率、抵抗
率及び積層構造によっても変化する。
FIG. 7 is a graph showing frequency-impedance characteristics of the multilayer ceramic capacitor shown in FIG.
The element shape of the multilayer ceramic capacitor is 3.2 m in length.
m and a width of 2.5 mm, and the capacitances of two multilayer capacitor portions 3 and 4 in which dielectric ceramic layers 1 and internal electrode layers 2 are alternately laminated are 10 μF and 0.1 μm, respectively.
The number of layers and the thickness of the dielectric layer were designed to be F. At this time, the interval between the two multilayer capacitor units 3 and 4 is set to 0.
3 mm. Here, the thickness of the dielectric layer of the small capacitance portion may be larger than the distance between the two multilayer capacitor portions 3 and 4. Note that the resonance frequency and the impedance value of the multilayer ceramic capacitor also change depending on the dielectric constant, the resistivity, and the multilayer structure of the material used.

【0022】図7の結果より、タンタル電解と積層セラ
ミックコンデンサを並列接続したものと比較してESR
が低く、積層コンデンサの並列の組合せに対して容量大
部の共振点の急峻な位相の反転が抑えられることが分か
り、従来構造に比較して高周波領域でのインピーダンス
値の向上が図られた。
From the results shown in FIG. 7, the ESR is higher than that obtained by connecting a tantalum electrolytic capacitor and a multilayer ceramic capacitor in parallel.
It was found that the steep phase inversion of the resonance point of the large capacitance portion was suppressed for the parallel combination of the multilayer capacitors, and the impedance value in the high frequency region was improved as compared with the conventional structure.

【0023】図8は本発明の第2の実施形態に係わる積
層セラミックコンデンサの断面を示し、(a)は図3
(a)と同じ部位での断面図、(b)は図3(b)と同
じ部位での断面図である。
FIG. 8 shows a cross section of a multilayer ceramic capacitor according to a second embodiment of the present invention, and FIG.
FIG. 3A is a cross-sectional view at the same site as FIG. 3B, and FIG. 3B is a cross-sectional view at the same site as FIG.

【0024】本実施形態は、第1の実施形態と略同構成
であるので、第1の実施形態と構成の同じ部分或いは同
様の部分については、第1の実施形態と同じ参照番号を
付してその説明を省略し、構成の異なる部分についての
み説明する。
This embodiment has substantially the same configuration as that of the first embodiment. Therefore, the same reference numerals as those in the first embodiment denote the same or similar parts as those in the first embodiment. The description thereof will be omitted, and only different portions will be described.

【0025】第1の実施形態では、セラミック焼結体1
0の長さ方向両端部において、それぞれ、外部電極8を
セラミック焼結体10の幅方向一端面にしか形成してな
いが、本実施形態の場合、セラミック焼結体10の長さ
方向両端部において、それぞれ、外部電極8をセラミッ
ク焼結体10の幅方向両端面に形成してある(このセラ
ミック焼結体10の幅方向両端面に形成された高抵抗外
部電極8の内、一方は、ダミーである)。
In the first embodiment, the ceramic sintered body 1
The external electrodes 8 are formed only on one end surface in the width direction of the ceramic sintered body 10 at both ends in the length direction of the ceramic sintered body 10, respectively. , The external electrodes 8 are formed on both end surfaces in the width direction of the ceramic sintered body 10 (one of the high resistance external electrodes 8 formed on both end surfaces in the width direction of the ceramic sintered body 10, Is a dummy).

【0026】[0026]

【発明の効果】以上、説明したように本発明によれば、
電源回路に発生するリンギングを抑制し、高周波特性が
良く、大きな容量と小さな容量の積層セラミックコンデ
ンサ部が1チップ部品で形成され、実装時の部品点数及
び実装面積の低減を図るための積層セラミックコンデン
サを提供することが可能になった。
As described above, according to the present invention,
A multilayer ceramic capacitor that suppresses ringing generated in the power supply circuit, has high-frequency characteristics, and has a large capacity and a small capacity, is formed by one chip component, and reduces the number of components and mounting area during mounting. It became possible to provide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係わる積層セラミックコ
ンデンサの斜視図である。
FIG. 1 is a perspective view of a multilayer ceramic capacitor according to an embodiment of the present invention.

【図2】図1に示す積層セラミックコンデンサの断面を
示し、(a)は図1に示すA−A′面での断面図、
(b)は図1に示すB−B′面での断面図である。
2 shows a cross section of the multilayer ceramic capacitor shown in FIG. 1, (a) is a cross sectional view taken along the line AA ′ shown in FIG. 1,
FIG. 2B is a cross-sectional view taken along the line BB ′ shown in FIG.

【図3】図1に示す積層セラミックコンデンサの断面を
示し、(a)は図1に示すC−C′面での断面図、
(b)は図1に示すD−D′面での断面図である。
3 shows a cross section of the multilayer ceramic capacitor shown in FIG. 1, (a) is a cross-sectional view taken along the line CC ′ shown in FIG. 1,
FIG. 2B is a cross-sectional view taken along the line DD ′ shown in FIG.

【図4】図1に示す積層構造を有する積層セラミックコ
ンデンサの等価回路図ある。
FIG. 4 is an equivalent circuit diagram of the multilayer ceramic capacitor having the multilayer structure shown in FIG.

【図5】図1に示す積層セラミックコンデンサと比較す
るために、静電容量が10μFのタンタル電解コンデン
サと、静電容量が0.1μFの積層セラミックコンデン
サの周波数−インピーダンス特性を示すグラフである。
5 is a graph showing frequency-impedance characteristics of a tantalum electrolytic capacitor having a capacitance of 10 μF and a multilayer ceramic capacitor having a capacitance of 0.1 μF for comparison with the multilayer ceramic capacitor shown in FIG. 1;

【図6】図1に示す積層セラミックコンデンサと比較す
るために、静電容量が10μFと、0.1μFの積層セ
ラミックコンデンサを並列接続したときの周波数−イン
ピーダンス特性を示すグラフである。
6 is a graph showing frequency-impedance characteristics when a multilayer ceramic capacitor having a capacitance of 10 μF and a capacitance of 0.1 μF are connected in parallel for comparison with the multilayer ceramic capacitor shown in FIG. 1;

【図7】図1に示す積層セラミックコンデンサの周波数
−インピーダンス特性を示すグラフである。
FIG. 7 is a graph showing frequency-impedance characteristics of the multilayer ceramic capacitor shown in FIG.

【図8】図8は本発明の第2の実施形態に係わる積層セ
ラミックコンデンサの断面を示し、(a)は図3(a)
と同じ部位での断面図、(b)は図3(b)と同じ部位
での断面図である。
FIG. 8 shows a cross section of a multilayer ceramic capacitor according to a second embodiment of the present invention, wherein FIG.
FIG. 3B is a cross-sectional view at the same site as FIG. 3B.

【符号の説明】[Explanation of symbols]

1 誘電体セラミック層 2 内部電極層 3 積層コンデンサ部(大きな容量部) 4 積層コンデンサ部(小さな容量部) 5 誘電体による保護層 6 外部電極 7 容量部間隔 8 高抵抗外部電極 10 セラミック焼結体 DESCRIPTION OF SYMBOLS 1 Dielectric ceramic layer 2 Internal electrode layer 3 Multilayer capacitor part (large capacity part) 4 Multilayer capacitor part (small capacity part) 5 Protective layer made of dielectric material 6 External electrode 7 Capacitance part interval 8 High resistance external electrode 10 Ceramic sintered body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 正浩 兵庫県宍粟郡山崎町須賀沢231番地 トー キンセラミクス株式会社内 Fターム(参考) 5E001 AB03 AC02 AC09 AC10 AF00 AF06 AH05 AH09 AJ01 AJ03 AZ01 5E082 AA01 AB03 BB05 BB07 BC40 CC02 DD02 EE04 EE23 EE35 FG26 FG54 GG10 HH43 JJ03 JJ13 JJ23 LL02 MM24 PP02 PP09  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masahiro Murata 231 Sukazawa, Yamazaki-cho, Shiso-gun, Hyogo Tokin Ceramics Co., Ltd. F-term (reference) 5E001 AB03 AC02 AC09 AC10 AF00 AF06 AH05 AH09 AJ01 AJ03 AZ01 5E082 AA01 AB03 BB05 BB07 BC40 CC02 DD02 EE04 EE23 EE35 FG26 FG54 GG10 HH43 JJ03 JJ13 JJ23 LL02 MM24 PP02 PP09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 誘電体セラミック層と内部電極層を交互
に積層して成り、容量の異なる複数の積層コンデンサ部
を有した積層体と、該積層体の外表面上に設けられ、前
記複数の積層コンデンサ部を並列に接続する外部電極と
を含む積層セラミックコンデンサにおいて、前記複数の
積層コンデンサ部の中で最も大容量の積層コンデンサ部
と前記外部電極との間に、高抵抗外部電極が介在してお
り、該高抵抗外部電極は、前記積層体の外表面上に設け
られ、前記外部電極よりも電気抵抗が大きいことを特徴
とする積層セラミックコンデンサ。
1. A laminated body comprising a plurality of laminated capacitor portions having different capacitances, wherein said laminated body is formed by alternately laminating dielectric ceramic layers and internal electrode layers, and said plurality of laminated capacitor portions are provided on an outer surface of said laminated body. In a multilayer ceramic capacitor including an external electrode that connects the multilayer capacitor unit in parallel, a high-resistance external electrode is interposed between the multilayer capacitor unit having the largest capacity among the plurality of multilayer capacitor units and the external electrode. Wherein the high-resistance external electrode is provided on an outer surface of the multilayer body and has a higher electrical resistance than the external electrode.
【請求項2】 所定の積層方向に沿って誘電体セラミッ
ク層と内部電極層を交互に積層して成り、前記積層方向
で並んだ大容量の積層コンデンサ部及び小容量の積層コ
ンデンサ部を有した直方体状の積層体と、該積層体の外
表面上に設けられ、前記大容量の積層コンデンサ部と前
記小容量の積層コンデンサ部を並列に接続する外部電極
とを含む積層セラミックコンデンサにおいて、前記大容
量の積層コンデンサ部と前記外部電極との間に、高抵抗
外部電極が介在しており、該高抵抗外部電極は、前記積
層体の外表面上に設けられ、前記外部電極よりも電気抵
抗が大きいことを特徴とする積層セラミックコンデン
サ。
2. A large-capacity multilayer capacitor portion and a small-capacity multilayer capacitor portion, which are formed by alternately laminating dielectric ceramic layers and internal electrode layers along a predetermined lamination direction, and are arranged in the lamination direction. The multilayer ceramic capacitor includes: a rectangular parallelepiped multilayer body; and an external electrode provided on an outer surface of the multilayer body and connecting the large-capacity multilayer capacitor section and the small-capacity multilayer capacitor section in parallel. A high-resistance external electrode is interposed between the multilayer capacitor portion of the capacitor and the external electrode, and the high-resistance external electrode is provided on an outer surface of the multilayer body and has a higher electrical resistance than the external electrode. Multilayer ceramic capacitors characterized by being large.
【請求項3】 前記大容量の積層コンデンサ部を構成す
る内部電極層が、前記積層体の相対向する第1及び第2
の側面上に引き出されており、前記高抵抗外部電極が、
前記大容量の積層コンデンサ部を構成する内部電極層の
引出部分を覆うように、前記第1及び第2の側面上に設
けられ、前記大容量の積層コンデンサ部を構成する内部
電極層に接続されており、前記小容量の積層コンデンサ
部を構成する内部電極層が、前記積層体の前記第1及び
第2の側面に隣接する第3及び第4の側面上に引き出さ
れており、前記外部電極が、前記第3及び第4の側面か
らそれぞれ前記第1及び第2の側面に掛けて設けられ、
前記小容量の積層コンデンサ部を構成する内部電極層に
接続されると共に前記高抵抗外部電極を覆っていること
を特徴とする請求項2記載の積層セラミックコンデン
サ。
3. An internal electrode layer constituting the large-capacity multilayer capacitor portion includes first and second opposed layers of the multilayer body.
And the high-resistance external electrode is
The first capacitor is provided on the first and second side surfaces so as to cover a lead-out portion of the internal electrode layer forming the large-capacity multilayer capacitor portion, and is connected to the internal electrode layer forming the large-capacity multilayer capacitor portion. An internal electrode layer constituting the small-capacity multilayer capacitor portion is drawn out on third and fourth side surfaces adjacent to the first and second side surfaces of the multilayer body, and the external electrode Are provided on the first and second side surfaces from the third and fourth side surfaces, respectively.
3. The multilayer ceramic capacitor according to claim 2, wherein the multilayer ceramic capacitor is connected to an internal electrode layer forming the small-capacity multilayer capacitor portion and covers the high-resistance external electrode.
【請求項4】 前記大容量の積層コンデンサ部と前記小
容量部の積層コンデンサ部の間隔が、0.15mm以上
であることを特徴とする請求項2又は3記載の積層セラ
ミックコンデンサ。
4. The multilayer ceramic capacitor according to claim 2, wherein an interval between the large-capacity multilayer capacitor portion and the small-capacity multilayer capacitor portion is 0.15 mm or more.
JP37069999A 1999-12-27 1999-12-27 Laminated ceramic capacitor Withdrawn JP2001185449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37069999A JP2001185449A (en) 1999-12-27 1999-12-27 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37069999A JP2001185449A (en) 1999-12-27 1999-12-27 Laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2001185449A true JP2001185449A (en) 2001-07-06

Family

ID=18497446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37069999A Withdrawn JP2001185449A (en) 1999-12-27 1999-12-27 Laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2001185449A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067939A1 (en) * 2004-12-24 2006-06-29 Murata Manufacturing Co., Ltd. Multilayer capacitor and mounting structure of same
JP2006203258A (en) * 2004-12-24 2006-08-03 Murata Mfg Co Ltd Laminated capacitor and packaging structure thereof
JP2006261584A (en) * 2005-03-18 2006-09-28 Tdk Corp Laminated capacitor
JP2006287063A (en) * 2005-04-01 2006-10-19 Murata Mfg Co Ltd Electronic part
JP2006286731A (en) * 2005-03-31 2006-10-19 Tdk Corp Multilayer capacitor
WO2007060817A1 (en) * 2005-11-22 2007-05-31 Murata Manufacturing Co., Ltd. Multilayer capacitor
WO2007060818A1 (en) * 2005-11-22 2007-05-31 Murata Manufacturing Co., Ltd. Multilayer capacitor
WO2007063704A1 (en) * 2005-12-01 2007-06-07 Murata Manufacturing Co., Ltd. Layered capacitor and its mounting structure
JP2007234843A (en) * 2006-03-01 2007-09-13 Fujitsu Ltd Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
JP2008071811A (en) * 2006-09-12 2008-03-27 Tdk Corp Multilayer capacitor and electronic apparatus
JP2009135416A (en) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd Lamination type chip capacitor and circuit board apparatus having the same
JP2010129637A (en) * 2008-11-26 2010-06-10 Murata Mfg Co Ltd Multilayer capacitor
JP2012151397A (en) * 2011-01-21 2012-08-09 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2012156193A (en) * 2011-01-24 2012-08-16 Tdk Corp Stacked capacitor
US20130215552A1 (en) * 2012-02-16 2013-08-22 Taiyo Yuden Co., Ltd. Laminated electronic component and manufacturing method thereof
JP2014096541A (en) * 2012-11-12 2014-05-22 Murata Mfg Co Ltd Multilayer capacitor
KR101546916B1 (en) * 2012-06-12 2015-08-24 가부시키가이샤 무라타 세이사쿠쇼 Mounting structure and mounting method
JP2016187036A (en) * 2016-06-02 2016-10-27 太陽誘電株式会社 Multilayer ceramic capacitor

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310217B2 (en) 2004-12-24 2007-12-18 Murata Manufacturing Co., Ltd. Monolithic capacitor and mounting structure thereof
JP2006203258A (en) * 2004-12-24 2006-08-03 Murata Mfg Co Ltd Laminated capacitor and packaging structure thereof
WO2006067939A1 (en) * 2004-12-24 2006-06-29 Murata Manufacturing Co., Ltd. Multilayer capacitor and mounting structure of same
TWI405227B (en) * 2005-03-18 2013-08-11 Tdk Corp Laminated capacitors
JP2006261584A (en) * 2005-03-18 2006-09-28 Tdk Corp Laminated capacitor
TWI404091B (en) * 2005-03-31 2013-08-01 Tdk Corp Multilayer capacitor
JP2006286731A (en) * 2005-03-31 2006-10-19 Tdk Corp Multilayer capacitor
KR101147626B1 (en) 2005-03-31 2012-05-23 티디케이가부시기가이샤 Multilayer Capacitor
JP2006287063A (en) * 2005-04-01 2006-10-19 Murata Mfg Co Ltd Electronic part
JP4687205B2 (en) * 2005-04-01 2011-05-25 株式会社村田製作所 Electronic components
US7466535B2 (en) 2005-11-22 2008-12-16 Murata Manufacturing Co., Ltd. Multilayer capacitor
WO2007060817A1 (en) * 2005-11-22 2007-05-31 Murata Manufacturing Co., Ltd. Multilayer capacitor
US7508647B2 (en) 2005-11-22 2009-03-24 Murata Manufacturing Co., Ltd. Multilayer capacitor
WO2007060818A1 (en) * 2005-11-22 2007-05-31 Murata Manufacturing Co., Ltd. Multilayer capacitor
KR100976347B1 (en) * 2005-11-22 2010-08-16 가부시키가이샤 무라타 세이사쿠쇼 Multilayer capacitor
KR100976711B1 (en) * 2005-11-22 2010-08-18 가부시키가이샤 무라타 세이사쿠쇼 Multilayer capacitor
JP4911036B2 (en) * 2005-12-01 2012-04-04 株式会社村田製作所 Multilayer capacitor and its mounting structure
WO2007063704A1 (en) * 2005-12-01 2007-06-07 Murata Manufacturing Co., Ltd. Layered capacitor and its mounting structure
JP2007234843A (en) * 2006-03-01 2007-09-13 Fujitsu Ltd Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
JP2008071811A (en) * 2006-09-12 2008-03-27 Tdk Corp Multilayer capacitor and electronic apparatus
US7667950B2 (en) 2006-09-12 2010-02-23 Tdk Corporation Multilayer capacitor and electronic device
KR101386948B1 (en) * 2006-09-12 2014-04-21 티디케이가부시기가이샤 Multi-layer capacitor and an electronic machine
JP2009135416A (en) * 2007-11-30 2009-06-18 Samsung Electro-Mechanics Co Ltd Lamination type chip capacitor and circuit board apparatus having the same
US8050012B2 (en) 2007-11-30 2011-11-01 Samsung Electro-Mechanics Co., Ltd. Multilayer chip capacitor and circuit board device including the same
US8315033B2 (en) 2008-11-26 2012-11-20 Murata Manufacturing Co., Ltd. Multilayer capacitor having low ESL and easily controllable ESR
JP2010129637A (en) * 2008-11-26 2010-06-10 Murata Mfg Co Ltd Multilayer capacitor
US9111682B2 (en) * 2011-01-21 2015-08-18 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
JP2012151397A (en) * 2011-01-21 2012-08-09 Murata Mfg Co Ltd Laminated ceramic electronic component
US20130020905A1 (en) * 2011-01-21 2013-01-24 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component
KR101321836B1 (en) * 2011-01-21 2013-10-28 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic electronic component
JP2012156193A (en) * 2011-01-24 2012-08-16 Tdk Corp Stacked capacitor
US8659872B2 (en) 2011-01-24 2014-02-25 Tdk Corporation Multilayer capacitor that includes a capacitor element body and at least four terminal units
US20130215552A1 (en) * 2012-02-16 2013-08-22 Taiyo Yuden Co., Ltd. Laminated electronic component and manufacturing method thereof
KR101546916B1 (en) * 2012-06-12 2015-08-24 가부시키가이샤 무라타 세이사쿠쇼 Mounting structure and mounting method
US9313876B2 (en) 2012-06-12 2016-04-12 Murata Manufacturing Co., Ltd. Mounting structure and mounting method
JP2014096541A (en) * 2012-11-12 2014-05-22 Murata Mfg Co Ltd Multilayer capacitor
JP2016187036A (en) * 2016-06-02 2016-10-27 太陽誘電株式会社 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
KR101983154B1 (en) Multi-Layered Ceramic Capacitor
US7420796B2 (en) Multilayer capacitor
KR101412950B1 (en) Multilayer ceramic capacitor
JP2001185449A (en) Laminated ceramic capacitor
JP4374041B2 (en) Multilayer capacitor
US20070279836A1 (en) Monolithic capacitor and mounting structure thereof
JP6342286B2 (en) Multilayer ceramic capacitor
JP2004140183A (en) Multilayer capacitor
JP2006186353A (en) Stacked capacitor and printed circuit board incorporated therewith
JP5949476B2 (en) Multilayer capacitor
WO2008050657A1 (en) Laminate capacitor
JP2001185446A (en) Laminated ceramic capacitor
JP6233887B2 (en) Multilayer ceramic capacitor and its mounting board
KR101051620B1 (en) Multilayer capacitor
US10104777B2 (en) Multilayer capacitor and board having the same
US20080225463A1 (en) Layered capacitor and mounting structure
JP4925779B2 (en) Multilayer capacitor
JP2010034272A (en) Multilayer capacitor and method for adjusting equivalent series resistance value of multilayer capacitor
JP2000223348A (en) Multilayer ceramic capacitor
JP2005260137A (en) Antistatic electricity component
JP2001044074A (en) Multilayer ceramic capacitor
JP2001015384A (en) Multilayer ceramic capacitor
KR20140143341A (en) Multi-layered ceramic capacitor and board for mounting the same
US8098477B2 (en) Feedthrough multilayer capacitor with capacitance components connected in parallel
US7948737B2 (en) Multilayer capacitor array

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050720