JP2001184916A - Plane illumination apparatus - Google Patents

Plane illumination apparatus

Info

Publication number
JP2001184916A
JP2001184916A JP36573399A JP36573399A JP2001184916A JP 2001184916 A JP2001184916 A JP 2001184916A JP 36573399 A JP36573399 A JP 36573399A JP 36573399 A JP36573399 A JP 36573399A JP 2001184916 A JP2001184916 A JP 2001184916A
Authority
JP
Japan
Prior art keywords
light
light guide
particles
light source
source lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36573399A
Other languages
Japanese (ja)
Inventor
Yukitoshi Hattori
幸年 服部
Takeya Sakai
丈也 酒井
Masaya Morino
正哉 森野
Hiroshi Nakayama
博司 中山
Imin Sai
為民 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP36573399A priority Critical patent/JP2001184916A/en
Publication of JP2001184916A publication Critical patent/JP2001184916A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structure of plane illumination apparatus which can achieve a uniformity of brightness of light emitting surface at a high level. SOLUTION: A plane illumination apparatus includes a light guide body having a cross-section cuneiform with a light emitting face and an opposite rear face having an inclination of to the light emitting face, and a light source lamp which is adjacent to the light entering edge face of wider side of the light guide body in view of the cuneiform cross-section of the light guide body. Two kinds of particles are dispersed in the light guide body, one kind with a diameter same or less than the wavelength of the light source lamp, and the other with larger diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液晶表示用の面照明装置
に関するものであり、特に出光面の光源側に生じる輝度
斑(明暗むら)を解消し、輝度の均一性を高めた構成に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface illuminating device for a liquid crystal display, and more particularly to a structure for eliminating unevenness of brightness (uneven brightness) generated on a light source side of a light emitting surface and improving uniformity of brightness.

【0002】[0002]

【従来の技術】従来、液晶表示用に、平板状の導光体の
端面に光源灯を組合わせた面照明装置がある。この種の
面照明装置における導光体は、国際公開番号WO94/
12898などに示されているように透明な母材樹脂の
中に、母材樹脂とは屈折率が異なる微小な粒子を分散し
てなるものであり、あらかじめ微小粒子を分散した母材
樹脂を射出成形などにより、平板状、楔形状等の形状に
成形して得られる。図4にこの種の面光源装置10の一
般的な構造を示す。楔形に成形された導光体11の一表
面を出光面11bとし、少なくとも一端面を入光面11
aとして光源灯12を隣接する。(導光体の他の面11
c、11d、11eは反射シート20で被覆され光の漏
出をおさえる) 光源灯12から導光体11内に入射した光は導光体内を
直進するが、導光体内に分散された粒子pに入射する
と、この粒子の作用にて散乱し、進行方向が変えられて
一部成分が出光面11bから導光体外に出射し、残りの
成分はさらに導光体内を直進する。この作用を繰り返す
ことで光源灯の光は導光体の末端11eまで伝播しなが
ら、次第に出光面より導光体外に出射して液晶等の対象
物を面照明する。
2. Description of the Related Art Conventionally, there is a surface illumination device for a liquid crystal display in which a light source lamp is combined with an end face of a flat light guide. The light guide in this type of surface illumination device is disclosed in International Publication No. WO94 /
As shown in 12898 and the like, a transparent base resin is made by dispersing fine particles having a different refractive index from that of the base resin, and a base resin in which fine particles are dispersed in advance is injected. It is obtained by molding into a shape such as a flat plate or a wedge by molding or the like. FIG. 4 shows a general structure of this type of surface light source device 10. One surface of the wedge-shaped light guide 11 is a light exit surface 11b, and at least one end surface is a light entrance surface 11b.
The light source lamp 12 is adjacent as a. (Other surface 11 of light guide)
c, 11d, and 11e are covered with the reflection sheet 20 to prevent light from leaking.) Light incident into the light guide 11 from the light source lamp 12 travels straight through the light guide, but forms particles p dispersed in the light guide. When incident, the particles are scattered by the action of the particles, the traveling direction is changed, and some components are emitted from the light exit surface 11b to the outside of the light guide, and the remaining components further travel straight in the light guide. By repeating this operation, the light from the light source lamp gradually propagates to the outside of the light guide from the light exit surface while propagating to the end 11e of the light guide, and illuminates the object such as the liquid crystal.

【0003】[0003]

【発明が解決しようとする課題】この種の面照明装置に
おいて、導光体の出光面からの光の出射強度の均一性が
要求される。従来の導光体では、これを高い水準で達成
することが困難で、特に出光面の光源の近い側に輝度斑
K(明暗むら)が生じる傾向があった。この輝度斑は、
特願平9−143295号において解析されているよう
に、入光面近傍における次数の少ない反射光によって生
じていると考えられ、導光体の形状を制御することによ
って緩和することができる。本発明では、導光体の形状
によらず、出光面の輝度の均一性を高い水準で達成する
面照明装置の構成を提供する。
In this type of surface illuminating device, uniformity of the intensity of light emitted from the light exit surface of the light guide is required. In a conventional light guide, it is difficult to achieve this at a high level, and there is a tendency that a luminance unevenness K (uneven brightness) is generated particularly on the light exit surface near the light source. This luminance spot is
As analyzed in Japanese Patent Application No. 9-143295, this is considered to be caused by reflected light of a small order near the light incident surface, and can be alleviated by controlling the shape of the light guide. The present invention provides a configuration of a surface lighting device that achieves a high level of uniformity of luminance on a light emitting surface regardless of the shape of a light guide.

【0004】[0004]

【課題を解決する手段】課題を解決する本発明の手段
は、導光体と光源とからなる面照明装置において、導光
体内に径の異なる2種の粒子が分散されてなる面照明装
置により、特に導光体内に分散される径の異なる2種の
粒子が、光源灯の波長と同じかそれより小さい径の粒子
と、光源灯の波長よりも径の大きい粒子である面照明装
置による。導光体内において粒子に入射した光の散乱挙
動は、粒子の径に依存している。発明者らは、特に光の
波長と比較して同じかそれより小さい径の粒子と、光の
波長よりも径の大きい粒子では挙動が大きく異なること
に着目し、これを組合わせることで導光体の出光面の輝
度の均一性を高められることを見出し発明にいたった。
Means for Solving the Problems According to the present invention, there is provided a surface illuminating device comprising a light guide and a light source, wherein the surface illuminating device comprises two kinds of particles having different diameters dispersed in the light guide. In particular, according to the surface illumination device, two kinds of particles having different diameters dispersed in the light guide are particles having a diameter equal to or smaller than the wavelength of the light source lamp and particles having a diameter larger than the wavelength of the light source lamp. The scattering behavior of light incident on particles in the light guide depends on the diameter of the particles. The inventors have focused on the fact that particles having the same or smaller diameter than the light wavelength and particles having a larger diameter than the light wavelength behave significantly differently. The inventors have found that the uniformity of the luminance of the light emitting surface of the body can be improved, and have reached the invention.

【0005】図1(a)に示すように、特定波長の入射
光L0が入射光の波長よりも大きな径の粒子P0に入射し
た場合、出射光L1は進行方向に沿って散乱される(後
方や側方にはほとんど散乱されない)、いわゆるミー散
乱現象がみられる。一方、図1(b)に示すように、特
定波長の入射光L0が入射光の波長と同じかそれよりも
小さな径の粒子P0’に入射した場合、出射光L1’は粒
子を中心としてほぼ均等に散乱される、いわゆるレイリ
ー散乱現象がみられる。導光体内において、ミー散乱が
生じると光を伝播させる作用が高まり、光を光源灯から
遠い導光体の末端まで伝播できるが、光を拡散させる作
用に劣り出光面の光源近傍側に輝度斑が生じやすくな
る。一方レイリー散乱が生じると光を拡散させる作用が
高まり光源近傍の出光面からの光の出射が盛んになる
が、光が光源灯から遠い導光体の末端まで伝播しにくく
なる。いずれの場合でも、出光面全体の高い水準での輝
度の均一化が達成できず、面照明装置の大型化にとって
課題となっていた。本発明では径の異なる粒子の組合わ
せ効果(異なる光散乱の組合わせ効果)によって相互の
課題を相殺して、均一な輝度の面照明装置を得た。
As shown in FIG. 1A, when incident light L 0 having a specific wavelength is incident on particles P 0 having a diameter larger than the wavelength of the incident light, the emitted light L 1 is scattered along the traveling direction. So-called Mie scattering phenomenon (which is hardly scattered backward or sideward). On the other hand, as shown in FIG. 1B, when the incident light L 0 having a specific wavelength is incident on a particle P 0 ′ having a diameter equal to or smaller than the wavelength of the incident light, the outgoing light L 1 ′ impinges on the particle. The so-called Rayleigh scattering phenomenon, which is scattered almost uniformly as the center, is observed. When Mie scattering occurs in the light guide, the effect of propagating the light increases, and the light can propagate to the end of the light guide far from the light source lamp. Is more likely to occur. On the other hand, when Rayleigh scattering occurs, the action of diffusing light increases, and light emission from the light exit surface in the vicinity of the light source becomes active. However, it becomes difficult for the light to propagate to the end of the light guide far from the light source lamp. In any case, it is not possible to achieve uniform luminance at a high level on the entire light emitting surface, which has been a problem for increasing the size of the surface lighting device. In the present invention, a mutual illuminating effect is canceled by a combination effect of particles having different diameters (combination effect of different light scattering), and a surface illumination device having uniform luminance is obtained.

【0006】[0006]

【発明の実施の形態】以下、本発明の好適の実施例を示
す。 (実施例) (導光体)ポリメチルメタクリレート樹脂を母材とし
て、径0.5μmのシリコーン粒子(GE東芝シリコー
ン株式会社製トスパール105)を0.03wt%と、
径4.5μmのシリコーン粒子(GE東芝シリコーン株
式会社製トスパール145)を0.03wt%の比率で
混合し、2軸押出機にてペレットを作製した。該ペレッ
トにて出光面の大きさが47×73mm、厚さが4mm
から0.5mmに漸減する楔形状の導光体を作製した。
該導光体の主表面を出光面とし、楔形断面からみて巾広
側の端面を入光端面として、出光面と入光端面以外は白
色の反射シートで囲い光の漏出を遮断する。 (光源)光源は、波長0.43〜0.75μmの光を出
射する白色LED(発光ダイオード)6個(日亜化学工
業株式会社製)を用い、導光体の入光端面から1.0m
mの距離において、7.0mm等間隔で直線状に配列し
た。実施例では、0.5μmの粒子の径は、光源の波長
0.43〜0.75μmに比較して、おおむね同じオー
ダーにあり、4.5μmの粒子の径は、光源の波長より
はるかに大きいオーダーにある。 (測定)出光面からの光の出射状態を目視により評価す
る(図2(a)に観測状態を示す)。また輝度計により
出射面に対し法線方向の輝度を(図4の矢印のように)
光源に近い側から等間隔で6ポイント測定し図3のグラ
フにプロットした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. (Example) (Light guide) 0.03 wt% of silicone particles (Tospearl 105 manufactured by GE Toshiba Silicone Co., Ltd.) having a diameter of 0.5 μm using a polymethyl methacrylate resin as a base material,
Silicon particles having a diameter of 4.5 μm (Tospearl 145 manufactured by GE Toshiba Silicone Co., Ltd.) were mixed at a ratio of 0.03 wt%, and pellets were produced with a twin-screw extruder. The size of the light emitting surface is 47 × 73 mm and the thickness is 4 mm in the pellet.
A wedge-shaped light guide gradually reduced from 0.5 mm to 0.5 mm was produced.
The main surface of the light guide is defined as a light exit surface, and the end surface on the wide side as viewed from the wedge-shaped cross section is defined as a light incident end surface. (Light source) The light source uses six white LEDs (light emitting diodes) (manufactured by Nichia Corporation) that emit light having a wavelength of 0.43 to 0.75 μm, and is 1.0 m from the light incident end face of the light guide.
At a distance of m, they were linearly arranged at regular intervals of 7.0 mm. In the example, the diameter of the 0.5 μm particles is on the same order compared to the light source wavelength of 0.43-0.75 μm, and the diameter of the 4.5 μm particles is much larger than the wavelength of the light source. In the order. (Measurement) The state of light emission from the light emitting surface is visually evaluated (FIG. 2A shows the observation state). In addition, the luminance in the normal direction to the emission surface is measured by a luminance meter (as indicated by the arrow in FIG. 4).
Six points were measured at equal intervals from the side close to the light source and plotted in the graph of FIG.

【0007】(比較例1〜3)ポリメチルメタクリレー
ト樹脂を母材として、径0.5μmのシリコーン粒子
(GE東芝シリコーン株式会社製トスパール105)を
0.03、0.04、0.05wt%の比率で、それぞ
れを2軸押出機にてペレット化した。それぞれのペレッ
トにて出光面の大きさが47×73mm、厚さが4mm
から0.5mmに漸減する楔形状の導光体を作製した。
該導光体の主表面を出光面とし、楔形断面からみて巾広
側の端面を入光端面として、出光面と入光端面以外は白
色の反射シートで囲い光の漏出を遮断する。 (光源)光源は実施例に同じLEDを同じ配列に用い
た。これらの比較例では、0.5μmの粒子の径が、光
源の波長0.43〜0.75μmに比較して、おおむね
同じオーダーにある。 (測定)出光面からの光の出射状態を目視により評価す
る(図2(b)に0.04wt%の観測状態を示す)。
また輝度計により出射面に対し法線方向の輝度を(図4
の矢印のように)光源に近い側から等間隔で6ポイント
測定し図3のグラフにプロットした。
Comparative Examples 1 to 3 Using a polymethyl methacrylate resin as a base material, silicone particles having a diameter of 0.5 μm (Tospearl 105 manufactured by GE Toshiba Silicone Co., Ltd.) were used in an amount of 0.03, 0.04, and 0.05 wt%. At a ratio, each was pelletized in a twin screw extruder. The size of the light emitting surface of each pellet is 47 × 73 mm and the thickness is 4 mm
A wedge-shaped light guide gradually reduced from 0.5 mm to 0.5 mm was produced.
The main surface of the light guide is defined as a light exit surface, and the end surface on the wide side as viewed from the wedge-shaped cross section is defined as a light incident end surface. (Light source) As a light source, the same LEDs were used in the same arrangement in the examples. In these comparative examples, the diameter of the 0.5 μm particles is substantially in the same order as compared to the wavelength of the light source of 0.43 to 0.75 μm. (Measurement) The state of light emission from the light emitting surface is visually evaluated (FIG. 2B shows an observation state of 0.04 wt%).
The luminance in the direction normal to the emission surface was measured by a luminance meter (FIG. 4).
6 points were measured at equal intervals from the side close to the light source (as indicated by the arrow in FIG. 3) and plotted in the graph of FIG.

【0008】(比較例4〜5)ポリメチルメタクリレー
ト樹脂を母材として、径4.5μmシリコーン粒子(G
E東芝シリコーン株式会社製トスパール145)を0.
05、0.09wt%の比率で、それぞれを2軸押出機
にてペレット化した。それぞれのペレットにて出光面の
大きさが47×73mm、厚さが4mmから0.5mm
に漸減する楔形状の導光体を作製した。楔形状の導光体
を作製した。該導光体の主表面を出光面とし、楔形断面
からみて巾広側の端面を入光端面として、出光面と入光
端面以外は白色の反射シートで囲い光の漏出を遮断す
る。 (光源)光源は実施例に同じLEDを同じ配列に用い
た。これらの比較例では、4.5μmの粒子の径が、光
源の波長0.43〜0.75μmに比較して、はるかに
大きいオーダーにある。 (測定)出光面からの光の出射状態を目視により評価す
る(図2(c)に0.09wt%の観測状態を示す)。
また輝度計により出射面に対し法線方向の輝度を(図4
の矢印のように)光源に近い側から等間隔で6ポイント
測定し図3のグラフにプロットした。
(Comparative Examples 4 and 5) Silicon particles of 4.5 μm in diameter were prepared using polymethyl methacrylate resin as a base material.
E Tospearl 145) manufactured by Toshiba Silicone Co., Ltd.
Each was pelletized with a twin screw extruder at a ratio of 05, 0.09 wt%. The size of the light emitting surface of each pellet is 47 × 73 mm, and the thickness is 4 mm to 0.5 mm.
, A wedge-shaped light guide gradually decreasing. A wedge-shaped light guide was produced. The main surface of the light guide is defined as a light exit surface, and the end surface on the wide side as viewed from the wedge-shaped cross section is defined as a light incident end surface. (Light source) As a light source, the same LEDs were used in the same arrangement in the examples. In these comparative examples, the diameter of the 4.5 μm particles is much larger than the wavelength of the light source of 0.43 to 0.75 μm. (Measurement) The state of light emission from the light emitting surface is visually evaluated (FIG. 2C shows an observation state of 0.09 wt%).
The luminance in the direction normal to the emission surface was measured by a luminance meter (FIG. 4).
6 points were measured at equal intervals from the side close to the light source (as indicated by arrows in FIG. 3) and plotted on the graph of FIG.

【0009】(評価) (目視による評価)図2(b)、(c)の比較例に対し
て、図2(a)の実施例は出光面の輝度の均一性が優る
様子が観測された。導光体に分散された粒子の径が入射
光の波長より小さい(b)では、レイリー散乱により光
を拡散させる作用が高まり、光源近傍の出光面からの光
の出射が盛んであるが、光源灯から遠い導光体の末端ま
で光が伝播せず、末端が暗くなっている。また、導光体
に分散された粒子の径が入射光の波長より大きい(c)
では、ミー散乱により光を伝播させる作用が高まり、光
を光源灯から遠い導光体の末端まで伝播しているが、光
を拡散させる作用に劣り出光面の光源近傍側に顕著な輝
度斑を生じている。
(Evaluation) (Evaluation by visual observation) In comparison with the comparative examples of FIGS. 2 (b) and 2 (c), the embodiment of FIG. . In the case (b), in which the diameter of the particles dispersed in the light guide is smaller than the wavelength of the incident light, the effect of diffusing light by Rayleigh scattering increases, and light emission from the light exit surface near the light source is active. Light does not propagate to the end of the light guide far from the lamp, and the end is dark. The diameter of the particles dispersed in the light guide is larger than the wavelength of the incident light (c).
In the above, the effect of propagating light due to Mie scattering increases, and the light propagates to the end of the light guide far from the light source lamp. Has occurred.

【0010】(輝度の測定)図3に、光源(入光面)か
らの距離における輝度の測定結果を示す。径の異なる粒
子の混合系である実施例では、光源近傍から末端まで輝
度の均一性が高く、輝度自体も高いレベルに保つことが
示された。比較例1〜3の分散される粒子の径が小さい
系では、光源近傍の輝度が高く、光源が遠い末端の輝度
が低下する傾向が顕著である。この傾向は分散させる粒
子の重量分率を少なくすると改善するが、この場合、出
光面全体にわたって輝度が不足した。比較例4〜5の分
散される粒子の径が大きい系では、光源近傍の輝度が山
状に高く輝度斑が生じていることを反映している(分散
させる粒子の重量分率が多い場合)。分散させる粒子の
重量分率を少なくすると光源近傍の輝度が不足した。
(Measurement of Luminance) FIG. 3 shows a measurement result of luminance at a distance from a light source (light incident surface). In the example of the mixed system of particles having different diameters, it was shown that the brightness uniformity was high from the vicinity of the light source to the end and the brightness itself was maintained at a high level. In the systems in which the diameters of the dispersed particles of Comparative Examples 1 to 3 are small, the brightness near the light source is high, and the brightness at the far end of the light source tends to decrease. This tendency is improved by reducing the weight fraction of the dispersed particles, but in this case, the brightness is insufficient over the entire light exit surface. In the systems in which the diameters of the dispersed particles are large in Comparative Examples 4 and 5, the luminance near the light source is high in a mountain-like manner and reflects the occurrence of luminance unevenness (when the weight fraction of the particles to be dispersed is large). . When the weight fraction of the particles to be dispersed was reduced, the brightness near the light source became insufficient.

【0011】[0011]

【発明の効果】上記のとおり、本発明により光源付近の
輝度斑が解消でき、かつ輝度均整度が高い面照明装置が
得られた。また液晶表示装置用の面照明装置では、表示
の中央が明るいものが特によいとされているが、発明の
実施例では出光面の光源近傍で光の出射量(輝度)が抑
えられたため、中央部の輝度が高い値となり用途に適す
るものになる。本発明は、光源の照度の不均一による輝
度むら(たとえば光源が冷陰極管の場合、電極に近い部
分の照度が一般部に比較して低く、また光源がLEDを
直線配列したものである場合、LEDとLEDの間の照
度が低下)にも効果がある。一般に光源の照度の不均一
による輝度むらは、導光体の光源に近い側で顕著に生じ
るが、本発明によればこの部分で入射光の散乱性を高め
ることができるので、光源の照度に不均一があっても光
の早期の散乱によって、この種の輝度むらを大幅に緩和
できる。径が小さい粒子を分散した系では、母材に対す
る粒子の濃度(重量%)がわずかに変わるだけで輝度の
バランスが大きく変化して濃度調整上の問題が生じがち
であったが、径がより大きい粒子との混合系にすること
で濃度の変化に対する輝度変化が少なくなり、濃度調整
がしやすいという効果も現れた。
As described above, according to the present invention, a surface illuminating device which can eliminate luminance unevenness near the light source and has high luminance uniformity can be obtained. In the surface illumination device for the liquid crystal display device, it is particularly preferable that the center of the display is bright. However, in the embodiment of the invention, the amount of emitted light (luminance) near the light source on the light emitting surface is suppressed, so The brightness of the portion becomes a high value, which is suitable for use. The present invention is directed to a case in which luminance unevenness due to non-uniform illuminance of a light source (for example, when the light source is a cold cathode tube, the illuminance near an electrode is lower than that of a general part, and when the light source is a linear array of LEDs) , The illuminance between the LEDs decreases). Generally, luminance unevenness due to non-uniform illuminance of the light source is remarkably generated on the side of the light guide close to the light source, but according to the present invention, the scattering of incident light can be increased at this portion, so that the illuminance of the light source Even if there is non-uniformity, early scattering of light can greatly alleviate this kind of luminance unevenness. In a system in which particles having a small diameter are dispersed, a slight change in the concentration (% by weight) of the particles with respect to the base material tends to greatly change the luminance balance and cause a problem in density adjustment. By adopting a mixed system with large particles, the change in luminance with respect to the change in density is reduced, and the effect of easily adjusting the density also appears.

【図面の簡単な説明】[Brief description of the drawings]

【図1】径の異なる粒子に入射した光の散乱状態を模式
的に示す。
FIG. 1 schematically shows a scattering state of light incident on particles having different diameters.

【図2】導光体の出光面からの光の出射状態を示す。FIG. 2 shows a state of light emission from a light exit surface of a light guide.

【図3】導光体の出光面における光源からの距離と輝度
の関係を示す。
FIG. 3 shows a relationship between a distance from a light source on a light exit surface of a light guide and luminance.

【図4】面光源装置を示す斜視図。FIG. 4 is a perspective view showing a surface light source device.

【符号の説明】[Explanation of symbols]

10・・・面照明装置 11・・・導光体 12・・・光源 20・・・反射シート K ・・・輝度班 DESCRIPTION OF SYMBOLS 10 ... Surface illumination device 11 ... Light guide 12 ... Light source 20 ... Reflection sheet K ... Luminance group

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // F21Y 101:02 G02F 1/1335 530 (72)発明者 中山 博司 愛知県名古屋市中区上前津1丁目4番5号 林テレンプ株式会社内 (72)発明者 蔡 為民 愛知県名古屋市中区上前津1丁目4番5号 林テレンプ株式会社内 Fターム(参考) 2H038 AA55 BA06 2H042 BA02 BA11 BA13 BA20 2H091 FA23Z FA45Z FD01 LA18Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) // F21Y 101: 02 G02F 1/1335 530 (72) Inventor Hiroshi Nakayama 1-4-5 Kamimaezu, Naka-ku, Nagoya City, Aichi Prefecture No. Hayashi Telemp Co., Ltd. (72) Inventor Cai Tammin 1-4-5 Kamimaezu, Naka-ku, Nagoya-shi, Aichi F-term in Hayashi Telemp Co., Ltd. (Reference) 2H038 AA55 BA06 2H042 BA02 BA11 BA13 BA20 2H091 FA23Z FA45Z FD01 LA18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液晶表示等に用いる面照明装置であっ
て、平板状に成形された導光体と、この導光体の少なく
とも一端面に隣接する光源灯からなり、前記導光体内に
は径の異なる2種の粒子が分散されていることを特徴と
する面照明装置。
1. A surface illumination device used for a liquid crystal display or the like, comprising: a light guide formed in a flat plate shape; and a light source lamp adjacent to at least one end face of the light guide. An area lighting device, wherein two kinds of particles having different diameters are dispersed.
【請求項2】 液晶表示等に用いる面照明装置であっ
て、出光面とこの出光面にある傾きをもって向合う裏面
によって断面を楔形になす導光体と、この導光体の楔形
断面から見て巾広側の入光端面に隣接する光源灯からな
り、前記導光体内には径の異なる2種の粒子が分散され
ていることを特徴とする面照明装置。
2. A surface illumination device used for a liquid crystal display or the like, comprising: a light guide having a light emitting surface and a back surface facing the light emitting surface with an inclination, the light guide having a wedge-shaped cross section; A surface lighting device comprising a light source lamp adjacent to a light-incident end face on the wide side and wherein two kinds of particles having different diameters are dispersed in the light guide.
【請求項3】 前記導光体内に分散される径の異なる2
種の粒子は、光源灯の波長と同じかそれより小さい径の
粒子と、光源灯の波長よりも径の大きい粒子であること
を特徴とする請求項1または請求項2に記載の面照明装
置。
3. A light guide having two different diameters dispersed in the light guide.
3. The surface lighting device according to claim 1, wherein the seed particles are particles having a diameter equal to or smaller than the wavelength of the light source lamp and particles having a diameter larger than the wavelength of the light source lamp. .
【請求項4】 前記導光体内に分散される径の異なる2
種の粒子は、1種の粒子の径が0.1〜1μm、多種の
粒子の径が2〜50μmの範囲内にあることを特徴とす
る請求項1〜請求項3に記載の面照明装置。
4. A light guide having two different diameters dispersed in the light guide.
4. The surface lighting device according to claim 1, wherein a diameter of one kind of particles is 0.1 to 1 μm, and a diameter of many kinds of particles is 2 to 50 μm. 5. .
【請求項5】 前記、光源灯が0.38〜0.78μm
の特定波長の光を出射する発光ダイオードであることを
特徴とする請求項1または請求項2に記載の面照明装
置。
5. The method according to claim 1, wherein the light source lamp is 0.38 to 0.78 μm.
The surface illumination device according to claim 1, wherein the surface illumination device is a light-emitting diode that emits light having a specific wavelength.
JP36573399A 1999-12-24 1999-12-24 Plane illumination apparatus Pending JP2001184916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36573399A JP2001184916A (en) 1999-12-24 1999-12-24 Plane illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36573399A JP2001184916A (en) 1999-12-24 1999-12-24 Plane illumination apparatus

Publications (1)

Publication Number Publication Date
JP2001184916A true JP2001184916A (en) 2001-07-06

Family

ID=18484986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36573399A Pending JP2001184916A (en) 1999-12-24 1999-12-24 Plane illumination apparatus

Country Status (1)

Country Link
JP (1) JP2001184916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7022260B2 (en) 2002-09-20 2006-04-04 Sharp Kabushiki Kaisha Fluorescent member, and illumination device and display device including the same
JP2007505461A (en) * 2003-09-11 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Lamp system
US8287760B2 (en) 2002-08-23 2012-10-16 Sharp Kabushiki Kaisha Light-emitting apparatus, phosphorescent portion, and method of producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287760B2 (en) 2002-08-23 2012-10-16 Sharp Kabushiki Kaisha Light-emitting apparatus, phosphorescent portion, and method of producing the same
US7022260B2 (en) 2002-09-20 2006-04-04 Sharp Kabushiki Kaisha Fluorescent member, and illumination device and display device including the same
JP2007505461A (en) * 2003-09-11 2007-03-08 コニンクリユケ フィリップス エレクトロニクス エヌ.ブイ. Lamp system

Similar Documents

Publication Publication Date Title
KR100934885B1 (en) Light source device
JP3843393B2 (en) Surface lighting device
US7507011B2 (en) Surface light source equipment and apparatus using the same
JP3427636B2 (en) Surface light source device and liquid crystal display device
US6406158B1 (en) Surface light source device of side light type
US7223010B2 (en) Light guide panel of edge-light type backlight system and edge-light type backlight system employing the same
JP3781441B2 (en) Light scattering light guide light source device and liquid crystal display device
US8684588B2 (en) Light guide elements for display device
US6568819B1 (en) Guide plate, surface light source device of side light type and liquid crystal display
US9798068B2 (en) Illumination module
US20070109810A1 (en) Light guide panel
WO2009104793A1 (en) Light guide body, backlight system and portable terminal
KR100643120B1 (en) Display screen with backlight, and an optical guide plate
US6816214B1 (en) Guide plate, surface light source device of side light type and liquid crystal display
TWI274941B (en) Back light system
JPH0642028B2 (en) Flat light source
JP2000231814A (en) Planar lighting system
JP2001110220A (en) Planar lighting device
JP2001184916A (en) Plane illumination apparatus
JPH11345512A (en) Surface light source device
JP2004265646A (en) Backlight for optical element
JP2005025972A (en) Surface lighting system and liquid crystal display device
JP2007225741A (en) Light control sheet, surface light source device, and transmission type display device
JP2009110860A (en) Surface light source device
JPH09160035A (en) Side light type surface light source device