JP2001183327A - Method for manufacturing thin film gas sensor - Google Patents

Method for manufacturing thin film gas sensor

Info

Publication number
JP2001183327A
JP2001183327A JP36926899A JP36926899A JP2001183327A JP 2001183327 A JP2001183327 A JP 2001183327A JP 36926899 A JP36926899 A JP 36926899A JP 36926899 A JP36926899 A JP 36926899A JP 2001183327 A JP2001183327 A JP 2001183327A
Authority
JP
Japan
Prior art keywords
film
gas
sensing
thin
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36926899A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓弥 鈴木
Katsumi Onodera
克己 小野寺
Fumihiro Inoue
文宏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP36926899A priority Critical patent/JP2001183327A/en
Publication of JP2001183327A publication Critical patent/JP2001183327A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To assure a predetermined gas sensitivity even by an ultra-thin film gas sensor having an interval of sensing electrodes of 200 μm. SOLUTION: After the sensing electrodes 6 are formed, the surfaces of the electrodes 6 are cleaned by irradiating with an ultraviolet ray. Then, a sensing film 7 is formed. Contact resistance between the sensing film and the electrodes is reduced, and the predetermined gas sensitivity is assured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電池駆動を念頭
に置いた低消費電力型薄膜ガスセンサの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low-power thin-film gas sensor with battery operation in mind.

【0002】[0002]

【従来の技術】一般的にガスセンサは、ガス漏れ警報器
などの用途に用いられ、ある特定ガス、例えばCO,C
4,C38,CH3OH等に選択的に感応するデバイス
であり、その性格上、高感度,高選択性,高応答性,高
信頼性,低消費電力が必要不可欠である。ところで、家
庭用として普及しているガス漏れ警報器には、都市ガス
用やプロパンガス用の可燃性ガス検知を目的とするもの
と、燃焼機器の不完全燃焼ガス検知を目的とするもの、
または、両方の機能をあわせ持ったものなどがあるが、
いずれもコストや設置性の問題から普及率はそれほど高
くない。
2. Description of the Related Art Generally, a gas sensor is used for an application such as a gas leak alarm, and a specific gas such as CO, C
It is a device that selectively responds to H 4 , C 3 H 8 , CH 3 OH, and the like. Due to its characteristics, high sensitivity, high selectivity, high response, high reliability, and low power consumption are indispensable. By the way, gas leak alarms that are widespread for home use include those for detecting flammable gas for city gas and propane gas, those for detecting incomplete combustion gas in combustion equipment,
Or there are things that have both functions together,
In each case, the penetration rate is not so high due to cost and installation problems.

【0003】かかる事情から、普及率の向上をはかるべ
く、設置性の改善、具体的には電池駆動としコードレス
化することが望まれている。電池駆動を実現するために
は低消費電力化が最も重要であるが、接触燃焼式や半導
体式のガスセンサでは、200℃〜500℃の高温に加
熱し検知する必要がある。このことから、SnO2など
の粉体を燒結する従来の方法では、スクリーン印刷等の
方法を用いても厚みを薄くするには限界があり、電池駆
動に用いるには熱容量が大きすぎた。そこで、ヒータ
ー,感応膜(感知膜ともいう)を1μm以下の薄膜で形
成し、さらに、微細加工プロセスによりダイヤフラム構
造などの低熱容量構造とした薄膜ガスセンサの出現が待
たれている。
[0003] Under such circumstances, in order to improve the spread rate, it is desired to improve the installation property, specifically, to use a battery to make it cordless. Low power consumption is the most important for realizing battery driving, but it is necessary to detect by heating to a high temperature of 200 ° C. to 500 ° C. in a catalytic combustion type or semiconductor type gas sensor. For this reason, in the conventional method of sintering powder such as SnO 2 , there is a limit in reducing the thickness even by a method such as screen printing or the like, and the heat capacity is too large for use in driving a battery. Therefore, the emergence of a thin film gas sensor in which a heater and a sensitive film (also referred to as a sensing film) are formed of a thin film of 1 μm or less, and a low heat capacity structure such as a diaphragm structure by a fine processing process is expected.

【0004】[0004]

【発明が解決しようとする課題】センサを電池駆動する
場合、低熱容量,高応答性の要求から、センサの長さ
(電極間隔)は200μm以下である必要がある。この
センサ形状の微小化により、センサ・電極間のコンタク
ト抵抗の割合が増加し、ガス感度が低下すると言う問題
があった。以下、センサの長さ(電極間隔)を200μ
m以下とする理由について説明する。ガス漏れ警報器が
対象とするCO,CH4等の可燃性ガスと酸素との反応
は30ms以内であるため、ヒーターによる昇温時間は
少なくとも30ms以内であることが要求される。通
常、ガス漏れ警報器は20〜60秒の一定周期に1回の
検知が必要であり、この周期に合わせ検知部を室温から
200℃〜500℃の高温に加熱する。ヒーターの応答
が遅い場合はガス検知に遅れが生じ、ヒーターのオン時
間をそれだけ長くしなければならない。ヒーターのオン
時間が長くなる分、オフ時間も含めた平均消費電力が増
大し、電池寿命を低下させることになる。
When the sensor is driven by a battery, the length of the sensor (electrode interval) needs to be 200 μm or less due to the requirement of low heat capacity and high responsiveness. Due to the miniaturization of the sensor shape, there is a problem that the ratio of the contact resistance between the sensor and the electrode increases and the gas sensitivity decreases. Hereinafter, the length of the sensor (electrode interval) is set to 200 μ
The reason for setting m or less will be described. Since the reaction between the flammable gas such as CO and CH 4 and the oxygen, which is the target of the gas leak alarm, is within 30 ms, the heating time by the heater is required to be at least within 30 ms. Normally, the gas leak alarm needs to be detected once in a fixed cycle of 20 to 60 seconds, and in accordance with this cycle, the detector is heated from room temperature to a high temperature of 200 to 500C. If the response of the heater is slow, a delay occurs in gas detection, and the ON time of the heater must be lengthened accordingly. As the on time of the heater increases, the average power consumption including the off time increases, and the battery life decreases.

【0005】ここで、発熱部は円盤状でダイヤフラムの
中心にあると考えた場合、発熱部の半径をrh、ヒータ
ーへの投入パワーをPとすると、発熱部をΔTだけ昇温
するのに要する時間thは、投入パワー×時間=熱容量
×温度変化の関係から、th=CΔTrh 2/P(C:比
例定数)となる。したがって、応答時間は発熱部の半径
の二乗に比例して決まる。th=30msでrh=200
μmであることから、ヒーター部の大きさ以下であるべ
きセンサ部は、200μm以下である必要がある。
[0005] Here, if the heating unit is considered to be the center of the diaphragm in a disk shape, the radius of the heat generating portion r h, when the input power to the heater is P, the heat generating portion to be only heating ΔT The required time t h is given by: t h = CΔTr h 2 / P (C: proportional constant) from the relationship of input power × time = heat capacity × temperature change. Therefore, the response time is determined in proportion to the square of the radius of the heat generating portion. r h = 200 at t h = 30 ms
Since the size is μm, the size of the sensor portion that should be smaller than the size of the heater portion needs to be 200 μm or less.

【0006】また、半導体ガス感知膜からなるセンサ部
と金属電極との境界には、通常ショットキーバリアーが
形成され、センサ部の2つの電極間の抵抗は、センサ−
電極間のコンタクト抵抗の和となる。センサ部の電極間
隔が十分大きいときには、センサ抵抗に対しコンタクト
抵抗は十分無視できるほど小さいが、電極間隔が200
μm以下では全抵抗に対しコンタクト抵抗の割合が無視
できないほど大きくなる。コンタクト抵抗はガスによっ
て変化しないために、ガス感度は低下してしまう。した
がって、この発明の課題は、センサ部の長さ(電極間
隔)が200μm以下という微少なガスセンサでも、ガ
ス感度を確保できるようにすることにある。
In addition, a Schottky barrier is usually formed at the boundary between the sensor portion made of the semiconductor gas sensing film and the metal electrode, and the resistance between the two electrodes of the sensor portion is changed by the sensor.
It is the sum of the contact resistance between the electrodes. When the electrode spacing of the sensor section is sufficiently large, the contact resistance is sufficiently small to be negligible with respect to the sensor resistance.
Below μm, the ratio of the contact resistance to the total resistance becomes so large that it cannot be ignored. Since the contact resistance does not change depending on the gas, the gas sensitivity decreases. Therefore, an object of the present invention is to make it possible to secure gas sensitivity even with a minute gas sensor having a sensor section length (electrode interval) of 200 μm or less.

【0007】[0007]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、薄膜状の支持膜の外周部
または両端部をSi基板により支持し、外周部または両
端部が厚く中央部が薄く形成されたダイヤフラム様の支
持基板上に、薄膜のヒーターを形成し、この薄膜のヒー
ターを電気絶縁膜で覆い、その上に半導体薄膜によりガ
ス感知膜を形成し、このガス感知膜に接して所定間隔を
置いて1対の感知電極を設けてなる薄膜ガスセンサの製
造方法において、前記感知電極の形成後、感知電極の表
面に紫外線を照射し清浄化した後に、ガス感知膜を形成
することを特徴とする。この請求項1の発明において
は、前記紫外線の照射と同時に、オゾンを感知電極の表
面に暴露させることができる(請求項2の発明)。
In order to solve such a problem, according to the first aspect of the present invention, the outer peripheral portion or both ends of the thin support film is supported by a Si substrate, and the outer peripheral portion or both ends is thickened. A thin-film heater is formed on a diaphragm-like supporting substrate having a thin central portion, and the thin-film heater is covered with an electric insulating film, and a gas thin film is formed on the thin film with a semiconductor thin film. A method of manufacturing a thin-film gas sensor comprising a pair of sensing electrodes provided at predetermined intervals in contact with a substrate, wherein after forming the sensing electrodes, the surface of the sensing electrodes is irradiated with ultraviolet rays to be cleaned, and then a gas sensing film is formed. It is characterized by doing. In the first aspect of the present invention, ozone can be exposed to the surface of the sensing electrode simultaneously with the irradiation of the ultraviolet rays (the second aspect of the invention).

【0008】すなわち、感知電極を形成後、感知電極の
表面に紫外線を照射して清浄化した後、感知膜を形成す
ることにより、電極表面に付着している有機物等の汚染
物質が除去され、感知膜と感知電極膜との間のコンタク
ト抵抗が低減されることにより、感度向上を図る。有機
汚染物質に紫外線を照射することにより、種々の分子結
合を分解する。さらに、これら励起状態の物質、または
光分解反応で生成した汚染物質のフリーラジカル(活性
化成分)とオゾンが反応し、CO,HO,NOのような
分子を形成して気相化させ、汚染物質を除去する。
That is, after forming the sensing electrode, the surface of the sensing electrode is irradiated with ultraviolet rays to be cleaned, and then the sensing film is formed, thereby removing contaminants such as organic substances adhering to the electrode surface. The sensitivity is improved by reducing the contact resistance between the sensing film and the sensing electrode film. By irradiating the organic pollutant with ultraviolet light, various molecular bonds are decomposed. Furthermore, ozone reacts with free radicals (activating components) of these excited state substances or pollutants generated by the photodecomposition reaction to form molecules such as CO, HO, and NO to form a gas phase, thereby contaminating the substance. Remove material.

【0009】[0009]

【発明の実施の形態】図1はこの発明の実施の形態を説
明するための説明図である。両面に熱酸化膜が付いたS
i基板1上に、ダイヤフラム構造の支持膜および熱絶縁
膜2としてSi3N4とSiO2膜を、順次プラズマCV
D法にて形成する。次に、Ni−Crヒーター膜3、S
iO2絶縁膜4の順にスパッタ法で形成する。その上
に、接合膜5,感知電極膜6,感知膜7を形成する。成
膜はRFマグネトロンスパッタリング装置を用い、通常
のスパッタリング方法によって行なう。成膜条件は接合
膜(TaまたはTi)5、感知電極膜(PtまたはA
u)6とも同じで、Arガス圧力1Pa、基板温度30
0℃、RFパワー2W/cm2、膜厚は接合膜/感知電
極膜=500Å/2000Åである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram for explaining an embodiment of the present invention. S with thermal oxide film on both sides
On a substrate 1, a Si 3 N 4 and a SiO 2 film are sequentially formed as a support film having a diaphragm structure and a thermal insulating film 2 by plasma CV.
Formed by method D. Next, the Ni-Cr heater film 3, S
The iO 2 insulating film 4 is formed in this order by a sputtering method. A bonding film 5, a sensing electrode film 6, and a sensing film 7 are formed thereon. The film is formed by an ordinary sputtering method using an RF magnetron sputtering apparatus. The film forming conditions are a bonding film (Ta or Ti) 5 and a sensing electrode film (Pt or A).
u) Same as 6, Ar gas pressure 1 Pa, substrate temperature 30
0 ° C., RF power 2 W / cm 2 , thickness: bonding film / sensing electrode film = 500 ° / 2000 °.

【0010】その後、この発明に係る紫外線照射を行な
う。波長185nmの紫外線を、1〜2mW/cm2
パワー密度で、30秒〜2分照射する。次に、SnO2
からなる感知膜7を、順に成膜する。成膜はRFマグネ
トロンスパッタリング装置を用い、反応性スパッタリン
グ方法によって行なう。成膜条件はいずれもAr+O2
ガス圧力2Pa、基板温度150〜300℃、RFパワ
ー2W/cm2である。ターゲットは、コンタクト層に
はpure−SnO2を、感知層にはPt6.0wt%
を有するSnO2を用いる。膜厚は感知膜=5000Å
である。最後に、基板裏面から周縁部を残してエッチン
グによりSiを除去し、ダイヤフラム構造とした。
After that, ultraviolet irradiation according to the present invention is performed. Irradiation with ultraviolet light having a wavelength of 185 nm is performed at a power density of 1 to 2 mW / cm 2 for 30 seconds to 2 minutes. Next, SnO 2
Are sequentially formed. The film is formed by a reactive sputtering method using an RF magnetron sputtering apparatus. The film formation conditions were Ar + O 2
The gas pressure is 2 Pa, the substrate temperature is 150 to 300 ° C., and the RF power is 2 W / cm 2 . The target is pure-SnO 2 for the contact layer and 6.0 wt% of Pt for the sensing layer.
Is used. The film thickness is 5000mm
It is. Lastly, Si was removed by etching leaving a peripheral portion from the back surface of the substrate to obtain a diaphragm structure.

【0011】以上のように作製された薄膜ガスセンサの
特性について、以下に説明する。表1は、作製したサン
プルにおける感知電極膜の間隔,紫外線照射処理(単
に、紫外線処理ともいう)の有無,CH4ガスの200
0ppmでのガス感度およびガス中のセンサ(感知膜)
抵抗値を示す。感知膜の幅は、全て200μmである。
また、ガス感度=Ro/Rg(Ro:空気中の抵抗、R
g:ガス中のセンサ抵抗)と定義する。
The characteristics of the thin-film gas sensor manufactured as described above will be described below. Table 1 shows the distance between the sensing electrode films in the manufactured samples, the presence or absence of ultraviolet irradiation treatment (also simply referred to as ultraviolet treatment), and 200 of CH 4 gas.
Gas sensitivity at 0 ppm and sensor in gas (sensing membrane)
Indicates the resistance value. The widths of the sensing films are all 200 μm.
Gas sensitivity = Ro / Rg (Ro: resistance in air, R
g: sensor resistance in gas).

【表1】 [Table 1]

【0012】紫外線処理をしない比較例1〜3では、電
極間隔が狭いほどガス感度が低く、電極間隔の大きい比
較例3に対し、電極間隔の小さい比較例1はガス感度が
1/3程度に低下してしまっている。一方、紫外線処理
を施した実施例1〜3では、電極間隔によるガス感度の
変化が少なく、電極間隔=100μmの場合でも十分な
感度が得られることが分かる。
In Comparative Examples 1 to 3 in which no ultraviolet treatment is performed, the gas sensitivity is lower as the electrode interval is smaller, and in Comparative Example 1 in which the electrode interval is smaller, the gas sensitivity is reduced to about 1/3. It has dropped. On the other hand, in Examples 1 to 3 where the ultraviolet treatment was performed, the change in gas sensitivity due to the electrode interval was small, and it was found that sufficient sensitivity was obtained even when the electrode interval was 100 μm.

【0013】図2に、表1に示す実施例1〜3および比
較例1〜3の、CH4ガスの2000ppmでのRgと
電極間隔Lとの関係を示す。図2(a)は特性図全体
を、同(b)はその部分拡大図を示す。紫外線処理をし
ない場合(点線参照)、グラフにY切片(感度直線とR
g軸との交点)があることが分かる。このY切片は、電
極間隔によらない抵抗分であり、センサ(感知膜)と電
極との界面に存在するコンタクト抵抗と考えられる。こ
のコンタクト抵抗は、L=2000μmのRgに対して
1/7程度であり十分小さいが、L≦200μm以下で
はRgの1/2程度以上を占めており、これは空気中,
還元ガス中によらず存在するため、L≦200μm以下
で感度低下を引き起こしているものと考えられる。一
方、紫外線処理を施した場合(実線参照)、Y切片が1
/10程度に低下していることが分かる。つまり、紫外
線処理を施したことでコンタクト抵抗が1/10程度に
低下し、その結果、ガス感度を確保できるものと考えら
れる。
FIG. 2 shows the relationship between Rg at 2000 ppm of CH 4 gas and the electrode spacing L in Examples 1 to 3 and Comparative Examples 1 to 3 shown in Table 1. 2A shows the entire characteristic diagram, and FIG. 2B shows a partially enlarged view thereof. When no UV treatment is performed (see the dotted line), the Y intercept (sensitivity line and R
(intersection with the g-axis). This Y intercept is a resistance component that does not depend on the electrode interval, and is considered to be a contact resistance existing at the interface between the sensor (sensing film) and the electrode. This contact resistance is about 1/7 of Rg of L = 2000 μm, which is sufficiently small, but occupies about 1/2 or more of Rg when L ≦ 200 μm or less.
It is considered that the sensitivity is reduced when L ≦ 200 μm or less because it exists regardless of the reducing gas. On the other hand, when UV treatment was performed (see the solid line), the Y intercept was 1
It can be seen that it has decreased to about / 10. That is, it is considered that the contact resistance is reduced to about 1/10 by performing the ultraviolet treatment, and as a result, the gas sensitivity can be secured.

【0014】なお、有機汚染物質に照射する紫外線の波
長を選択するなどすることにより、励起状態の物質また
は光分解反応で生成した汚染物質のフリーラジカルとオ
ゾンの反応、およびCO,HO,NOのような分子の気
相化が促進され、汚染物質の除去効果をより向上させる
ことができる。
By selecting the wavelength of ultraviolet light to be irradiated on the organic contaminant, the reaction between ozone and free radicals of the contaminant in the excited state or the contaminant generated by the photolysis reaction, and the reaction of CO, HO, NO Gasification of such molecules is promoted, and the effect of removing contaminants can be further improved.

【0015】[0015]

【発明の効果】この発明によれば、感知電極の形成後、
感知電極の表面を紫外線を照射して清浄化した後に、感
知膜を形成することで、電極表面に付着している有機物
等の汚染物質が除去され、感知膜と感知電極膜との間の
コンタクト抵抗が低減されることにより、センサの長さ
(電極間隔)が200μm以下というような微少なセン
サでも、ガス感度を確保することが可能となる利点が得
られる。また、上記紫外線照射の際にオゾンをより多く
発生させるようにすれば、コンタクト抵抗の低減効果を
より向上させることができる。
According to the present invention, after forming the sensing electrode,
After the surface of the sensing electrode is cleaned by irradiating ultraviolet rays, a sensing film is formed, thereby removing contaminants such as organic substances adhering to the electrode surface, and contact between the sensing film and the sensing electrode film. By reducing the resistance, there is obtained an advantage that gas sensitivity can be ensured even with a minute sensor having a sensor length (electrode interval) of 200 μm or less. Further, if more ozone is generated during the above-mentioned ultraviolet irradiation, the effect of reducing the contact resistance can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を説明する説明図であ
る。
FIG. 1 is an explanatory diagram illustrating an embodiment of the present invention.

【図2】電極間隔とガス中のセンサ抵抗との関係を説明
するための説明図である。
FIG. 2 is an explanatory diagram for explaining a relationship between an electrode interval and a sensor resistance in a gas.

【符号の説明】[Explanation of symbols]

1…Si(基板)、2…支持層、3…ヒーター層、4…
絶縁層、5…接合層、6…感知電極膜、7…感知膜。
1 ... Si (substrate), 2 ... support layer, 3 ... heater layer, 4 ...
Insulating layer, 5: bonding layer, 6: sensing electrode film, 7: sensing film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 文宏 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 2G046 AA11 AA19 AA21 AA24 BA01 BA09 BB02 BB04 BE03 BE08 EA02 EA09 FB00 FB02 FB06 FE00 FE10 FE25 FE31 FE38 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Fumihiro Inoue 1-1, Tanabeshinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term in Fuji Electric Co., Ltd. 2G046 AA11 AA19 AA21 AA24 BA01 BA09 BB02 BB04 BE03 BE08 EA02 EA09 FB00 FB02 FB06 FE00 FE10 FE25 FE31 FE38

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 薄膜状の支持膜の外周部または両端部を
Si基板により支持し、外周部または両端部が厚く中央
部が薄く形成されたダイヤフラム様の支持基板上に、薄
膜のヒーターを形成し、この薄膜のヒーターを電気絶縁
膜で覆い、その上に半導体薄膜によりガス感知膜を形成
し、このガス感知膜に接して所定間隔を置いて1対の感
知電極を設けてなる薄膜ガスセンサの製造方法におい
て、 前記感知電極の形成後、感知電極の表面に紫外線を照射
し清浄化した後に、ガス感知膜を形成することを特徴と
する薄膜ガスセンサの製造方法。
1. A thin-film heater is formed on a diaphragm-like support substrate in which a peripheral portion or both ends of a thin film-like support film is supported by a Si substrate, and a peripheral portion or both ends is thick and a central portion is thin. Then, the thin-film heater is covered with an electric insulating film, a gas sensing film is formed on the thin film by a semiconductor thin film, and a pair of sensing electrodes are provided at predetermined intervals in contact with the gas sensing film. A method of manufacturing a thin film gas sensor, comprising: after forming the sensing electrode, irradiating the surface of the sensing electrode with ultraviolet rays to clean the surface, and then forming a gas sensing film.
【請求項2】 前記紫外線の照射と同時に、オゾンを感
知電極の表面に暴露させることを特徴とする請求項1に
記載の薄膜ガスセンサの製造方法。
2. The method according to claim 1, wherein the surface of the sensing electrode is exposed to ozone simultaneously with the irradiation of the ultraviolet light.
JP36926899A 1999-12-27 1999-12-27 Method for manufacturing thin film gas sensor Pending JP2001183327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36926899A JP2001183327A (en) 1999-12-27 1999-12-27 Method for manufacturing thin film gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36926899A JP2001183327A (en) 1999-12-27 1999-12-27 Method for manufacturing thin film gas sensor

Publications (1)

Publication Number Publication Date
JP2001183327A true JP2001183327A (en) 2001-07-06

Family

ID=18494001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36926899A Pending JP2001183327A (en) 1999-12-27 1999-12-27 Method for manufacturing thin film gas sensor

Country Status (1)

Country Link
JP (1) JP2001183327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279061A (en) * 2007-06-19 2007-10-25 Osaka Gas Co Ltd Pulse-driven thin-film gas sensor and manufacturing method therefor
CN104407033A (en) * 2014-11-13 2015-03-11 无锡信大气象传感网科技有限公司 Preparation method of thin film chip gas-sensor
CN105651835A (en) * 2014-11-12 2016-06-08 长沙理工大学 Methanol gas sensor and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279061A (en) * 2007-06-19 2007-10-25 Osaka Gas Co Ltd Pulse-driven thin-film gas sensor and manufacturing method therefor
CN105651835A (en) * 2014-11-12 2016-06-08 长沙理工大学 Methanol gas sensor and preparation method thereof
CN104407033A (en) * 2014-11-13 2015-03-11 无锡信大气象传感网科技有限公司 Preparation method of thin film chip gas-sensor

Similar Documents

Publication Publication Date Title
Wöllenstein et al. A novel single chip thin film metal oxide array
Tao et al. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining
JP2007024508A (en) Membrane gas sensor
Kiriakidis et al. Ultra-low gas sensing utilizing metal oxide thin films
JP5961016B2 (en) Gas detector
JPS6351501B2 (en)
JP2001183327A (en) Method for manufacturing thin film gas sensor
JP5041837B2 (en) Thin film gas sensor and manufacturing method thereof
JP4022822B2 (en) Thin film gas sensor
JP2007024509A (en) Thin film gas sensor
JP2005017182A (en) Thin film gas sensor and method for manufacturing the same
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2006003153A (en) Hydrogen gas sensing element, hydrogen gas sensor and hydrogen gas sensing method
JP6397072B2 (en) Inspection method for thin film gas sensor
JP4103027B2 (en) Thin film gas sensor
JP4764981B2 (en) Method for manufacturing thin film gas sensor
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP2004061306A (en) Manufacturing method of gas sensor
JP3931473B2 (en) Thin film gas sensor
JPH06148112A (en) Hydrogen gas detecting element
JP2006226741A (en) Manufacturing method of thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP2005098947A (en) Thin-film gas sensor
JP4401145B2 (en) Method for manufacturing thin film gas sensor
JP4851610B2 (en) Thin film gas sensor