JP2001172793A - ELECTRODE AND Sn PLATING DEVICE USING THE ELECTRODE - Google Patents

ELECTRODE AND Sn PLATING DEVICE USING THE ELECTRODE

Info

Publication number
JP2001172793A
JP2001172793A JP35210699A JP35210699A JP2001172793A JP 2001172793 A JP2001172793 A JP 2001172793A JP 35210699 A JP35210699 A JP 35210699A JP 35210699 A JP35210699 A JP 35210699A JP 2001172793 A JP2001172793 A JP 2001172793A
Authority
JP
Japan
Prior art keywords
electrode
plating
discharge
gap
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35210699A
Other languages
Japanese (ja)
Other versions
JP3409003B2 (en
Inventor
Hironobu Miyazaki
博信 宮崎
Hirokatsu Shimizu
宏勝 清水
Akira Takayasu
彰 高安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPF Co Ltd
Nippon Steel Corp
Osaka Soda Co Ltd
Original Assignee
SPF Co Ltd
Daiso Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPF Co Ltd, Daiso Co Ltd, Nippon Steel Corp filed Critical SPF Co Ltd
Priority to JP35210699A priority Critical patent/JP3409003B2/en
Publication of JP2001172793A publication Critical patent/JP2001172793A/en
Application granted granted Critical
Publication of JP3409003B2 publication Critical patent/JP3409003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode having a structure by which a negative pressure is hardly generated in a gap between the electrode and an article to be plated even when the electrode is applied to a line on which the article is moved at a high speed and hardly causing such a trouble as short circuiting. SOLUTION: A liquid (electrolyte) is circulated between the front side and rear side of an electrode 1 through the communicating part 7 of a discharge member 35 and the through part 6 of an electrode substrate 30 even if a member to be treated such as a steel strip is confronted with the discharge face and moved at a high speed to generate a liquid stream, and a negative pressure is hardly generated between the member and electrode 1. As a result, although the member and electrode 1 tend to be attracted and brought close to each other to cause a deficiency of short circuiting, etc., the deficiency is effectively prevented. Further, since the generation of a negative pressure is reduced, the feed rate of the member is increased, and the efficiency in electrochemical treatment such as plating and electrolytic pickling using the electrode is drastically improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理部材に対し
メッキあるいは電解酸洗処理等の電気化学処理を行うた
めの電極に関する。
The present invention relates to an electrode for performing an electrochemical treatment such as plating or electrolytic pickling on a member to be treated.

【0002】[0002]

【従来の技術】従来より、例えば鋼板ストリップにS
n、Zn、Cr等の金属を連続的にメッキするラインに
おいては、メッキ用電極として鉛電極が使用されていた
が、鉛電極は消耗が速く、溶け出した鉛による電解液の
汚染やメッキ被膜の劣化を招きやすい欠点があった。ま
た、環境保全上の観点から、電極材料としてなるべくP
bを使用しない電極に対する需要も高まっている。そこ
で、近年では非消耗性の電極として、Ti等の耐食性金
属で構成された電極基体にセグメント状の放電部材(板
状陽極)を取り付けたものが多く使用されるようになっ
てきている。このようなメッキ電極においては放電部材
として、Ti等の耐食性金属板の表面に、放電活性を付
与するための導電性活物質(IrO等)を被覆したも
のが使用される。
2. Description of the Related Art Conventionally, for example, S
In a line for continuously plating metals such as n, Zn, and Cr, a lead electrode was used as a plating electrode. However, the lead electrode is quickly consumed, so that the dissolved lead causes contamination of the electrolytic solution and plating film. There is a disadvantage that deterioration of the glass is likely to occur. Also, from the viewpoint of environmental conservation, it is preferable to use P
There is also an increasing demand for electrodes that do not use b. Therefore, in recent years, a non-consumable electrode in which a segment-shaped discharge member (plate-shaped anode) is attached to an electrode base made of a corrosion-resistant metal such as Ti has been widely used. In such a plated electrode, a discharge member in which a surface of a corrosion-resistant metal plate such as Ti is coated with a conductive active material (IrO 2 or the like) for imparting discharge activity is used as a discharge member.

【0003】ところで、鋼板等の連続メッキラインで使
用される電極は、一般にその1枚当りの有効電極面積が
1〜3mという極めて大型のものが使用されている
が、IrO等の導電性活物質層は、該当する金属の化
合物を含有する溶液を塗布して焼成する工程を多数回繰
り返して形成される関係上、大面積のものを一度に形成
することは困難である。また、大面積の放電板を一体形
成した場合、導電性活物質層の一部にのみ損傷が生じて
も、健全部を含めた放電板の全体を交換しなければなら
ないため不経済である。そこで通常は、比較的小面積の
Ti板に各々導電性活物質層を形成した放電部材のセグ
メントを必要な枚数だけ製造し、これを電極基体上にね
じ止め等で固定する方法がとられている。
Meanwhile, the electrodes used in a continuous plating line for steel sheet or the like, generally although effective electrode area of the per sheet is used. For very large as 1 to 3 m 2, conductive, such as IrO 2 Since the active material layer is formed by repeating the process of applying and firing a solution containing the metal compound many times, it is difficult to form a large-area active material layer at a time. Further, when a large-area discharge plate is integrally formed, even if only a part of the conductive active material layer is damaged, it is uneconomical because the entire discharge plate including the sound part must be replaced. Therefore, usually, a method of manufacturing a required number of segments of a discharge member in which a conductive active material layer is formed on a Ti plate having a relatively small area, and fixing the segments on an electrode base by screwing or the like is adopted. I have.

【0004】[0004]

【発明が解決しようとする課題】上記従来の電極におい
て、放電部材のセグメントを取り付ける電極基体は、そ
の多くが製作上の容易性を考慮して、Tiのムク材ある
いはTiライニングを施した鋼材等により、一体中実の
板状に形成されていた。また、放電部材のセグメント
は、継ぎ目部分におけるメッキ厚不均一等を防止する観
点から、隣接するセグメント間になるべく隙間が生じな
いよう、密に配列した形で電極基体に取り付けるように
していた。このような電極を、例えば鋼板ストリップ等
を被メッキ物とする連続メッキラインにて使用する場
合、図12(a)に示すように、被メッキ物Sは、狭い
隙間Gを隔てて電極Eの放電面に対向しつつ、比較的大
きな速度にて送られる。その結果、被メッキ物Sと電極
Eとの間には、被メッキ物Sに連れ送りされる電解液E
Lの流れが生ずる。この電解液ELの流速が大きくなる
と、隙間G内に負圧が生じ、図12(b)に示すよう
に、被メッキ物Sが電極E側に吸い寄せられて、ショー
トやそれに伴うメッキ不良等のトラブルを招く場合があ
る。また、このような不具合を解消するために、被メッ
キ物Sの送り速度を小さくすると、当然のことながらメ
ッキ処理の能率低下を招くこととなる。
In the above-mentioned conventional electrodes, most of the electrode bases on which the segments of the discharge member are mounted are made of Ti-Muku material or Ti-lined steel material in consideration of easiness in production. Thereby, it was formed in the shape of a solid plate. In addition, from the viewpoint of preventing unevenness in plating thickness at a joint portion, the segments of the discharge member are attached to the electrode base in a densely arranged form so that a gap is not formed between adjacent segments as much as possible. When such an electrode is used in a continuous plating line using, for example, a steel plate strip or the like as an object to be plated, the object to be plated S is separated from the electrode E with a small gap G as shown in FIG. It is sent at a relatively high speed while facing the discharge surface. As a result, between the plating object S and the electrode E, the electrolytic solution E sent along with the plating object S
A flow of L occurs. When the flow rate of the electrolytic solution EL is increased, a negative pressure is generated in the gap G, and as shown in FIG. 12B, the object S to be plated is attracted to the electrode E side, and short-circuiting and accompanying plating failure are caused. May cause trouble. Further, if the feeding speed of the plating object S is reduced to solve such a problem, the efficiency of the plating process is naturally reduced.

【0005】なお、上記の課題を解決するために、本件
出願人は、実登第3006846号公報にて、通電バー
に電極活性層を有する横長の金属電極板を所定の間隔を
おいて複数個取付けた構造の電極を提案している。この
構成によれば、金属電極板間に形成される隙間(以下、
極板間隙間という)を電解液が流通できるので被メッキ
物と電極との間に負圧が生じにくくなり、上記の吸い付
き等の問題が解消される。しかしながら、該公報の図1
に開示された電極は、極板間隙間の幅が金属電極板の幅
とほぼ同等あるいはそれ以上の大きさを有し、電極に形
成される連通部空隙率は40%以上にも達する。これで
は、電極板から極板間隙間に回り込む電流の発生を考慮
しても、被メッキ物Sとの間に発生するメッキ電流は極
めて不均一となり、得られるメッキ面にメッキ厚むらあ
るいは色むら等が生じやすくなるという欠点を有する。
このような傾向は、連続メッキラインにおいて、被メッ
キ物の送り速度が大きくなった場合に特に顕著となる。
In order to solve the above-mentioned problem, the applicant of the present invention disclosed in Japanese Utility Model Publication No. 3006864 a plurality of horizontally elongated metal electrode plates having an electrode active layer on a current-carrying bar at predetermined intervals. An electrode with an attached structure is proposed. According to this configuration, the gap formed between the metal electrode plates (hereinafter, referred to as a gap)
Since the electrolyte can flow through the gap between the electrode plates), a negative pressure is less likely to be generated between the object to be plated and the electrode, and the above-described problem such as sticking is solved. However, FIG.
The width of the gap between the electrode plates is substantially equal to or larger than the width of the metal electrode plate, and the porosity of the communicating portion formed in the electrode reaches 40% or more. In this case, even when the generation of a current flowing between the electrode plate and the gap between the electrode plates is taken into consideration, the plating current generated between the electrode plate and the object to be plated S is extremely non-uniform. And the like, which is liable to occur.
Such a tendency is particularly remarkable when the feed rate of the object to be plated is increased in the continuous plating line.

【0006】一方、別の問題としては、例えばSnメッ
キ等に上記電極を使用した場合に、Tiで構成された電
極基材の表面にメッキ金属の結晶が析出することがある
(例えばホイスカー(ウィスカー)と呼ばれるひげ状単
結晶)。この金属結晶は細くて折れやすいため、メッキ
液の流れや他の要因による衝撃により脱落しやすく、例
えばメッキ浴中にて浮遊する金属結晶の破片がストリッ
プと送りロール等との間に巻き込まれ、メッキ面に凹み
や傷などのマークを付けてしまう不具合を生ずることが
ある。従来は、電極基材の露出部分を樹脂製カバー等に
より覆うことで、このような金属結晶析出に対する防止
策が講じられていたが、カバー等を設ける分だけ電極構
造が複雑化し、コストアップが避けがたかった。
On the other hand, another problem is that when the above-mentioned electrode is used for, for example, Sn plating, a crystal of a plating metal is deposited on the surface of an electrode substrate made of Ti (for example, whisker (whisker)). )). Since this metal crystal is thin and easy to break, it easily falls off due to the impact of plating solution flow and other factors, for example, fragments of the metal crystal floating in the plating bath are caught between the strip and the feed roll, In some cases, a mark such as a dent or a scratch may be formed on the plated surface. Conventionally, measures to prevent such metal crystal precipitation have been taken by covering the exposed portion of the electrode base material with a resin cover or the like.However, the provision of the cover or the like complicates the electrode structure and increases the cost. It was inevitable.

【0007】本発明の課題の第一は、被処理物が高速移
動するラインに適用した場合でも、電極と被処理物との
間の隙間に負圧が発生しにくく、ショート等のトラブル
が生じにくい構造を有し、かつメッキむら等の少ない良
好なメッキが可能な電極を提供することにある。また、
課題の第二は、電極基材表面にメッキ金属の析出が生じ
にくい構造の電極を提供することにある。
A first object of the present invention is that even when the present invention is applied to a line in which a workpiece moves at a high speed, a negative pressure hardly occurs in a gap between the electrode and the workpiece, and a trouble such as a short circuit occurs. An object of the present invention is to provide an electrode having a difficult structure and capable of performing good plating with little plating unevenness. Also,
A second object of the present invention is to provide an electrode having a structure in which plating metal is unlikely to be deposited on the surface of an electrode substrate.

【0008】[0008]

【課題を解決するための手段及び作用・効果】上記の課
題を解決するために本発明の電極の第一は、少なくとも
表層部が耐食性金属で構成された電極基体と、少なくと
も表層部が耐食性金属で構成されて電極基体の被処理部
材に対向する側に配置され、裏面側にて電極基体に電気
的に導通するように該電極基体に固定されるとともに、
放電面となる表面側がPt属金属又はその酸化物を主体
に構成された導電性活物質被覆層で覆われた放電部材と
を備え、電極基体には、放電部材の取り付けられる側か
らその反対側に向けてこれを貫通する貫通部が形成され
る一方、放電部材は、複数枚のセグメントに分割された
形で電極基体に取り付けられるとともに、セグメント内
又は隣接するセグメント間において厚さ方向に、該セグ
メントの表面側から電極基体の貫通部に連通する連通部
が形成されており、かつ連通部を含めた放電面の総面積
をS1、該放電面に対する連通部の開口面積の合計をS2
として、開口率K=S2/S1を0.025〜0.35と
したことを特徴とする。
Means for Solving the Problems and Functions / Effects In order to solve the above-mentioned problems, a first aspect of the electrode of the present invention is to provide an electrode substrate having at least a surface layer made of a corrosion-resistant metal, and an electrode base having at least a surface layer made of a corrosion-resistant metal. Is arranged on the side of the electrode substrate facing the member to be processed, and is fixed to the electrode substrate so as to be electrically connected to the electrode substrate on the back surface side,
A discharge member having a surface side serving as a discharge surface covered with a conductive active material coating layer mainly composed of a Pt group metal or an oxide thereof; The discharge member is attached to the electrode base in a form divided into a plurality of segments, and the discharge member is attached to the electrode base in a thickness direction within the segment or between adjacent segments. A communication portion communicating from the surface side of the segment to the through portion of the electrode base is formed, and the total area of the discharge surface including the communication portion is S1, and the total opening area of the communication portion with respect to the discharge surface is S2.
The aperture ratio K = S2 / S1 is set to 0.025 to 0.35.

【0009】該本発明の電極の第一の構成においては、
放電面に面した状態で鋼材ストリップ等の被処理部材が
高速移動して液流が発生しても、放電部材の連通部と電
極基体の貫通部とを介して電極表面側と裏面側とで液体
(例えばメッキ液等の電解液)が流通可能となっている
ので、被処理部材と電極との間に負圧が発生しにくい。
その結果、負圧発生により被処理部材と電極とが吸引・
接近してショート等のトラブルを招く不具合を、極めて
効果的に防止することができる。また、負圧発生の心配
が軽減されることから、被処理部材の送り速度を増大さ
せることが可能となり、該電極を用いたメッキや電解酸
洗等の電気化学処理の能率を大幅に向上させることがで
きる。そして、連通部を含めた放電面の総面積をS1、
該放電面に対する連通部の開口面積の合計をS2とし
て、開口率K=S2/S1を0.025〜0.35の範囲
に限定することで、連通部形成によるメッキ電流の不均
一が生じにくく、メッキ厚や色むらの少ない良好なメッ
キが可能となる。すなわち、本発明の課題の第一が解決
される。
In the first configuration of the electrode of the present invention,
Even if a member to be processed such as a steel strip moves at a high speed in a state facing the discharge surface and a liquid flow is generated, the electrode surface side and the back surface side communicate with each other through the communication portion of the discharge member and the through portion of the electrode base. Since a liquid (for example, an electrolytic solution such as a plating solution) can flow, a negative pressure is hardly generated between the member to be processed and the electrode.
As a result, the member to be processed and the electrode are attracted and sucked by the negative pressure.
It is possible to extremely effectively prevent a problem that causes a trouble such as a short circuit due to approach. In addition, since the concern about the occurrence of negative pressure is reduced, it is possible to increase the feed speed of the member to be processed, and to greatly improve the efficiency of electrochemical treatment such as plating and electrolytic pickling using the electrode. be able to. Then, the total area of the discharge surface including the communication part is S1,
By limiting the opening ratio K = S2 / S1 to the range of 0.025 to 0.35 with the total opening area of the communicating part with respect to the discharge surface as S2, unevenness of plating current due to the formation of the communicating part is less likely to occur. Good plating with less plating thickness and color unevenness is possible. That is, the first object of the present invention is solved.

【0010】なお、上記の開口率K=S2/S1が0.0
25未満になると、連通部における液流通量が不十分と
なり、被処理部材と電極との間に負圧が発生して吸い付
き等の問題を発生しやすくなる。他方、開口率が0.3
5を超えるとメッキ電流密度に不均一が生じやすくな
り、メッキ厚むらや色むら等が発生しやすくなる。な
お、開口率Kは、より望ましくは0.1〜0.2とする
のがよい。
The above-mentioned opening ratio K = S2 / S1 is 0.0
If it is less than 25, the flow rate of the liquid in the communicating portion becomes insufficient, and a negative pressure is generated between the member to be processed and the electrode, so that a problem such as sticking tends to occur. On the other hand, the aperture ratio is 0.3
If it exceeds 5, the plating current density tends to be non-uniform, and uneven plating thickness or color tends to occur. The aperture ratio K is more desirably 0.1 to 0.2.

【0011】また、本発明の電極の第二は、少なくとも
表層部が耐食性金属で構成された電極基体と、少なくと
も表層部が耐食性金属で構成されて前記電極基体の前記
被処理部材に対向する側に配置され、裏面側にて前記電
極基体に電気的に導通するように該電極基体に固定され
るとともに、放電面となる表面側がPt属金属又はその
酸化物を主体に構成された導電性活物質被覆層で覆われ
た放電部材とを備え、前記電極基体は、少なくともその
表層部がTi又はTi合金で構成されたTi系金属部と
され、そのTi系金属部の表面に、カチオン成分の主体
がTiであるTi系酸化物層が、厚さ0.1〜50μm
の範囲にて形成されていることを特徴とする。
A second aspect of the electrode of the present invention is an electrode substrate having at least a surface layer portion made of a corrosion-resistant metal, and a side of the electrode substrate having at least a surface layer portion made of a corrosion-resistant metal and facing the member to be processed. And is fixed to the electrode base so as to be electrically connected to the electrode base on the back side, and the conductive side mainly composed of a Pt group metal or its oxide on the front side serving as a discharge surface. A discharge member covered with a substance coating layer, wherein the electrode substrate is a Ti-based metal portion having at least a surface layer portion thereof made of Ti or a Ti alloy, and a surface of the Ti-based metal portion contains a cationic component. The Ti-based oxide layer mainly composed of Ti has a thickness of 0.1 to 50 μm.
Is formed in the range of.

【0012】上記本発明の電極の第二の構成では、電解
液中での耐食性向上のため、電極基体の少なくともその
表層部を、Ti又はTi合金で構成されたTi系金属部
とする。そして、そのTi系金属部の表面に、カチオン
成分の主体がTiであるTi系酸化物層(例えば酸化T
i層)を、厚さ0.1〜50μmの範囲にて形成するこ
とで、特に電解液としてメッキ液を使用する場合、Ti
系金属部の表面へのメッキ金属の析出を効果的に防止な
いし抑制することができる。これにより、例えば脱落し
た析出物の被処理物メッキ層への巻込みや、それによる
傷等の発生といった不具合が極めて生じにくくなる。こ
の効果は、ホイスカーと呼ばれるひげ状の結晶が成長し
やすいSnメッキ処理に適用した場合にとりわけ顕著で
ある。また、Ti系酸化物層は、Ti系酸化物に転化で
きる物質(例えばブチルチタネート等のアルキルチタネ
ートや、Tiアルコキシドなど)の溶液を塗布して適当
な雰囲気にて仮焼したり、あるいは酸化雰囲気中にてT
i系金属部表面を直接熱処理することで簡単に形成で
き、従来のように樹脂製カバーを電極基体に被せる方式
と比較して構造を大幅に単純化できる。
In the second configuration of the electrode according to the present invention, at least the surface portion of the electrode substrate is made of a Ti-based metal portion made of Ti or a Ti alloy in order to improve corrosion resistance in an electrolytic solution. Then, on the surface of the Ti-based metal part, a Ti-based oxide layer (for example, oxide T
By forming the i-layer) with a thickness in the range of 0.1 to 50 μm, particularly when a plating solution is used as the electrolytic solution, Ti
Precipitation of plating metal on the surface of the system metal part can be effectively prevented or suppressed. This makes it extremely unlikely that defects such as the fall-off of the precipitates being caught in the plating layer of the object to be treated and the occurrence of scratches or the like caused thereby will occur. This effect is particularly remarkable when applied to a Sn plating process called a whisker in which a whisker-like crystal is likely to grow. The Ti-based oxide layer is formed by applying a solution of a substance that can be converted to a Ti-based oxide (for example, an alkyl titanate such as butyl titanate or a Ti alkoxide) and calcining in a suitable atmosphere, or oxidizing atmosphere. T in
It can be easily formed by directly heat-treating the surface of the i-based metal part, and the structure can be greatly simplified as compared with the conventional method in which a resin cover is covered on the electrode substrate.

【0013】なお、この本発明の電極の第二の構成は、
前記した第一の構成に組み合わせることも可能である。
第一の構成においては、被処理部材の送り速度を増大で
きる利点があることをすでに述べたが、被処理部材の送
り速度が増大すると、電極基材表面にメッキ金属の析出
物が生じていた場合に、液流によってこれが脱落する不
具合が生じやすくなる。そこで第二の構成を組み合わせ
れば、電極基材表面にメッキ金属の析出物が生じにくく
なるので、被処理部材の送り速度を増大させても上記の
ような不具合を生ずる心配がなくなる。
The second structure of the electrode of the present invention is as follows.
It is also possible to combine with the first configuration described above.
In the first configuration, it has already been described that there is an advantage that the feed speed of the member to be processed can be increased.However, when the feed speed of the member to be processed is increased, a deposit of the plating metal is generated on the surface of the electrode substrate. In such a case, a problem that the liquid is dropped off easily occurs. Therefore, if the second configuration is combined, a deposit of the plating metal is less likely to be generated on the surface of the electrode base material, and thus, even if the feed speed of the member to be processed is increased, the above-described problem does not occur.

【0014】なお、放電部材も、少なくともその表層部
を、Ti又はTi合金で構成されたTi系金属部とする
ことができる。この場合、そのTi系金属部の表面の、
導電性活物質被覆層で覆われる以外の部分をTi系酸化
物層にて覆うことで、同様の効果を奏することができ
る。なお、電極基体及び/又は放電部材のTi系金属部
の表面をTi系酸化物層にて覆う場合、電極基体と放電
部材との電気的な導通接触部には、接触不良等の発生を
防止するために、上記Ti系酸化物層は形成しないこと
が望ましい。具体的な態様として、放電部材の少なくと
もその表層部がTi又はTi合金で構成されたTi系金
属部とし、かつ、そのTi系金属部の、前記導電性活物
質被覆層の形成部と前記電極基体との重なり部とを除く
表面に、カチオン成分の主体がTiであるTi系酸化物
層を形成することができる。
The discharge member may have at least a surface layer made of a Ti-based metal portion made of Ti or a Ti alloy. In this case, the surface of the Ti-based metal part
A similar effect can be obtained by covering the portion other than the portion covered with the conductive active material covering layer with the Ti-based oxide layer. When the surface of the electrode base and / or the Ti-based metal portion of the discharge member is covered with a Ti-based oxide layer, the occurrence of poor contact or the like is prevented at the electrically conductive contact portion between the electrode base and the discharge member. Therefore, it is desirable not to form the Ti-based oxide layer. As a specific mode, at least the surface layer of the discharge member is a Ti-based metal portion made of Ti or a Ti alloy, and the Ti-based metal portion includes the conductive active material coating layer forming portion and the electrode. A Ti-based oxide layer in which the main component of the cation component is Ti can be formed on the surface excluding the overlapping portion with the substrate.

【0015】ここで、形成するTi系酸化物層の厚さが
0.1μm未満になると、Ti金属部表面へのメッキ金
属析出抑制効果が不十分となる。また、50μmを越え
てTi系酸化物層を形成すると、酸化物層中の応力が増
加しやすくなり、ひび割れ等の欠陥が生じやすくなる。
該厚さは、望ましくは5〜20μmの範囲で調整するの
がよい。
Here, if the thickness of the Ti-based oxide layer to be formed is less than 0.1 μm, the effect of suppressing the deposition of plated metal on the surface of the Ti metal portion becomes insufficient. Further, when the Ti-based oxide layer is formed with a thickness exceeding 50 μm, stress in the oxide layer tends to increase, and defects such as cracks are likely to occur.
The thickness is desirably adjusted in the range of 5 to 20 μm.

【0016】上記のような電極は、例えばSnメッキラ
インに有効に適用できる。例えば、Snメッキ液中に
て、長手方向に連続搬送される鋼材ストリップに対し、
被メッキ面となる板面に放電面が対向する形で配置し、
電極側をアノード、鋼材ストリップ側をカソードとして
Snメッキ液を介して通電することにより、鋼材ストリ
ップの表面に連続Snメッキ処理するとともに、鋼材ス
トリップの搬送速度が5m/s以上に設定される高速S
nメッキラインに適用した場合、第一の構成の電極で
は、鋼材ストリップの搬送速度が大きいにも拘わらず、
吸い付き現象やメッキむらあるいは色むらといった問題
が生じにくい。他方、第二の構成では、ホイスカーの発
生自体を極めて効果的に抑制できるため、良好なメッキ
品を高能率で製造できる他、ホイスカーの液流によるそ
の折損・巻き込みに対する根本的な懸念が解消されるの
で、メッキラインのさらなる高速化にも柔軟に対応でき
るようになる。
The above-mentioned electrodes can be effectively applied to, for example, a Sn plating line. For example, in a Sn plating solution, for a steel strip continuously conveyed in the longitudinal direction,
Disposed so that the discharge surface faces the plate surface to be plated,
By energizing through the Sn plating solution with the electrode side as the anode and the steel strip side as the cathode, the surface of the steel strip is continuously Sn-plated, and the high-speed S at which the transport speed of the steel strip is set to 5 m / s or more.
When applied to an n-plating line, in the electrode of the first configuration, despite the high transport speed of the steel strip,
Problems such as a sticking phenomenon and uneven plating or uneven color hardly occur. On the other hand, in the second configuration, since the generation of whiskers can be extremely effectively suppressed, a good plated product can be manufactured with high efficiency, and the fundamental concern about the breakage and entrainment due to the whisker liquid flow is eliminated. Therefore, it is possible to flexibly cope with further speeding up of the plating line.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に示す実施例を参照して説明する。図1は、本発明の
一実施例たる電極1の正面図((a))及び側面図
((b))である。電極1は、少なくとも表層部(この
実施例ではその全体)が、耐食性金属であるTi又はT
i合金(以下、これらを総称してTi系金属という)に
て構成された電極基体30を有する。また、この電極基
体30の被処理部材に対向する側には、少なくとも表層
部、この実施例ではその全体が耐食性金属であるTi系
金属にて構成され、裏面側にて電極基体30に電気的に
導通するようにこれに固定される放電部材35とを備え
る。この放電部材35は、少なくとも表層部、例えば全
体がTi系金属からなる本体部に対し、放電面となる表
面側がPt属金属又はその酸化物、例えばIrOを主
体に構成された導電性活物質被覆層で覆われている。
Embodiments of the present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 is a front view ((a)) and a side view ((b)) of an electrode 1 according to one embodiment of the present invention. The electrode 1 has at least a surface layer portion (in this embodiment, the whole) of Ti or T which is a corrosion-resistant metal.
The electrode base 30 includes an i-alloy (hereinafter, these are collectively referred to as Ti-based metal). Further, at least the surface layer portion, in this embodiment, the entirety thereof is made of a Ti-based metal, which is a corrosion-resistant metal, on the side of the electrode base 30 facing the member to be processed. And a discharge member 35 fixed to this so as to conduct the current. The discharge member 35 is a conductive active material mainly composed of a Pt-based metal or an oxide thereof, for example, IrO 2 , on the surface side serving as a discharge surface with respect to at least a surface layer portion, for example, a main body portion entirely made of a Ti-based metal. It is covered with a coating layer.

【0018】電極基体30には、放電部材35の取り付
けられる側からその反対側に向けてこれを貫通する貫通
部6が形成される一方、放電部材35は、複数枚のセグ
メント3に分割された形で電極基体30に取り付けられ
るとともに、それらセグメント3の厚さ方向に、該セグ
メント3の表面側から電極基体30の貫通部6に連通す
る連通部7が形成されている。すなわち、本発明の電極
の第一の構成の要件を満足するものである。
The electrode base 30 has a penetrating portion 6 penetrating therethrough from the side where the discharge member 35 is attached to the opposite side, while the discharge member 35 is divided into a plurality of segments 3. A communication portion 7 is formed in the thickness direction of the segments 3 and is connected to the through portion 6 of the electrode substrate 30 from the surface side of the segment 3. That is, it satisfies the requirements of the first configuration of the electrode of the present invention.

【0019】図6(a)概念的に示すように、上記のよ
うな電極1は、電解液としてのメッキ液SL中を、長手
方向に連続搬送される被処理部材としての鋼材ストリッ
プSに対し、被メッキ面(この実施例では両面)となる
板面に放電面が対向する形で配置される。そして、電極
側をアノード、鋼材ストリップ側をカソードとしてメッ
キ液SLを介して通電することにより、メッキ液SL中
の金属カチオンが鋼材ストリップSの表面に析出し、連
続メッキ処理されることとなる。なお、本実施例では、
鋼材ストリップSにSnメッキする場合を例に取る。
As shown conceptually in FIG. 6A, the electrode 1 as described above is applied to a steel strip S as a member to be processed which is continuously transported in a longitudinal direction in a plating solution SL as an electrolytic solution. The discharge surface is arranged to face the plate surface to be plated (both surfaces in this embodiment). Then, by energizing through the plating solution SL with the electrode side being the anode and the steel strip side being the cathode, metal cations in the plating solution SL are deposited on the surface of the steel strip S, and are subjected to continuous plating. In this embodiment,
The case where the steel strip S is plated with Sn will be described as an example.

【0020】鋼材ストリップSは、送りロール51ある
いはガイドロール50等により、一般には5〜10m/
s(特に8〜10m/s)程度のかなりの高速でメッキ
液SL中を搬送される。また、電極1の放電面と鋼板ス
トリップSの被メッキ面との距離は20〜60mm程度
と小さい。そのため、鋼材ストリップSと電極1Eとの
間には、鋼材ストリップSの送りに伴う流体摩擦により
電解液ELの流れが生ずる。しかしながら、図7に示す
ように、放電部材35のセグメント3の連通部7と電極
基体2の貫通部6とを介して電極1の表面側と裏面側と
でメッキ液SLが流通可能となっているので、鋼材スト
リップSと電極1との間に負圧が発生しにくい。その結
果、負圧発生により鋼材ストリップSと電極1とが吸引
・接近してショートする等のトラブルが、効果的に防止
される。なお、メッキ槽B中のガイドロール50は、形
成されたメッキ層への曲げ応力の付加レベルを軽減する
ために、比較的ロール径の大きなものを1本のみ用いて
いるが、図6(b)に示すように2本のガイドロール5
0,50を用いてもよい。
The steel strip S is generally fed to a feed roll 51 or a guide roll 50 or the like by 5 to 10 m / m.
s (especially 8 to 10 m / s) is transported in the plating solution SL at a considerably high speed. The distance between the discharge surface of the electrode 1 and the surface to be plated of the steel strip S is as small as about 20 to 60 mm. Therefore, between the steel strip S and the electrode 1E, the flow of the electrolytic solution EL occurs due to the fluid friction accompanying the feeding of the steel strip S. However, as shown in FIG. 7, the plating solution SL can flow on the front surface side and the back surface side of the electrode 1 through the communication portion 7 of the segment 3 of the discharge member 35 and the through portion 6 of the electrode base 2. Therefore, a negative pressure is hardly generated between the steel strip S and the electrode 1. As a result, troubles such as a short circuit between the steel strip S and the electrode 1 due to suction and approach due to the generation of a negative pressure are effectively prevented. As the guide roll 50 in the plating tank B, only one having a relatively large roll diameter is used in order to reduce the added level of bending stress to the formed plating layer. ), Two guide rolls 5
0, 50 may be used.

【0021】以下、本実施例の電極1の細部の構造につ
いてさらに詳しく説明する。図1に示すように、放電部
材35のセグメント3は各々板状に形成され、隣接する
縁部間に所定量の隙間が形成されるよう、板面方向に配
列する形態で電極基体30に取り付けられている。そし
て、この隙間が、前記連通部7として機能している(以
下、隙間7とも記す)。本発明者らが鋭意検討した結
果、放電部材のセグメント間には、液流通の確保を目的
とした多少の隙間が形成されていても、従来考えられて
いるほどにはメッキ電流の均一性が損なわれず、メッキ
厚不均一等の不具合が必ずしも顕在化しないことがわか
った。そこで、従来あまり望ましくないと思われていた
セグメント間の隙間を上記構成ではむしろ積極的に形成
し、これを電極の表裏でメッキ液(電解液)を流通させ
る連通部として利用することにより、メッキ厚不均一等
の不具合を生ずることなく、前記した本発明の効果を達
成することが可能となる。
Hereinafter, the detailed structure of the electrode 1 of this embodiment will be described in more detail. As shown in FIG. 1, the segments 3 of the discharge member 35 are each formed in a plate shape, and are attached to the electrode base 30 in a form arranged in the plate surface direction so that a predetermined amount of gap is formed between adjacent edges. Have been. This gap functions as the communication section 7 (hereinafter, also referred to as gap 7). As a result of intensive studies by the present inventors, even if a small gap is formed between the segments of the discharge member for the purpose of ensuring liquid flow, the uniformity of the plating current is as high as conventionally thought. It was found that defects such as nonuniform plating thickness did not always become apparent. Therefore, the gap between the segments, which was considered to be less desirable in the past, is rather positively formed in the above configuration, and is used as a communicating portion for flowing a plating solution (electrolyte solution) on the front and back of the electrode. The above-described effects of the present invention can be achieved without causing problems such as uneven thickness.

【0022】放電部材35においてセグメント3は、隙
間7が、予め定められた1つの方向(この実施例では、
水平方向)に沿って直線形態に延びるもののみが、所定
の間隔で互いにほぼ平行に形成されるように、電極基体
30に取り付けられている。この場合、鋼板ストリップ
(被処理部材)Sの送り方向Yを、該隙間7の延伸方向
と交差する向き(この実施例では、図中矢印で示すよう
に、隙間7とほぼ直交する向き)に設定することで、鋼
板ストリップSの幅方向に、常時隙間7に臨む部分が生
じなくなるので、メッキ厚不均一等の不具合を一層生じ
にくくすることができる。
In the discharge member 35, the segment 3 is formed such that the gap 7 has a predetermined direction (in this embodiment,
Only those extending in a straight line along (horizontal direction) are attached to the electrode base 30 so as to be formed substantially parallel to each other at predetermined intervals. In this case, the feed direction Y of the steel sheet strip (member to be processed) S is set in a direction intersecting with the extending direction of the gap 7 (in this embodiment, a direction substantially orthogonal to the gap 7 as indicated by an arrow in the drawing). By setting, there is no portion that always faces the gap 7 in the width direction of the steel sheet strip S, so that problems such as uneven plating thickness can be further reduced.

【0023】具体的には、セグメント3はそれぞれ、幅
方向両側に互いにほぼ平行な縁を有する長尺板状、本実
施例では横長方形板状に形成され、これらが該幅方向に
配列することで、その隣接する縁部間に隙間7が形成さ
れている。これによれば、セグメント3は、例えばTi
板材からの切り出し等により簡単に形成できて無駄が生
じにくく、また前記した隙間7の形成形態を理想的な形
で実現できる。本実施例において、セグメント3の幅方
向寸法は約100mm、長手方向寸法は約1200mm
であり、厚さは約6mmである。なお、図3(c)に示
すように、隙間7の延伸方向にセグメント3をさらに分
割することも可能である。この場合、隙間7の延伸方向
において、隣接する分割片3c,3c同士は密に接して
配置することができるが、メッキ厚不均一が生じない範
囲で、それら分割片3c,3cの対向縁間に隙間を形成
してもよい。また、隙間7を隔てて隣接するセグメント
3の間で、各セグメントを構成する分割片3c,3cの
突き合わせ縁位置を互いにずらせるようにしてもよい。
More specifically, each of the segments 3 is formed in a long plate shape having substantially parallel edges on both sides in the width direction, in this embodiment, a horizontal rectangular plate shape, and these are arranged in the width direction. Thus, a gap 7 is formed between the adjacent edges. According to this, segment 3 is, for example, Ti
It can be easily formed by cutting out from a plate material and the like, so that waste is hardly generated, and the above-described form of the gap 7 can be realized in an ideal form. In this embodiment, the width of the segment 3 is about 100 mm, and the length thereof is about 1200 mm.
And the thickness is about 6 mm. In addition, as shown in FIG. 3C, the segment 3 can be further divided in the extending direction of the gap 7. In this case, in the extending direction of the gap 7, the adjacent divided pieces 3c, 3c can be arranged in close contact with each other. However, as long as the plating thickness is not uneven, the distance between the opposing edges of the divided pieces 3c, 3c can be reduced. A gap may be formed in the gap. Further, between the segments 3 adjacent to each other with the gap 7 therebetween, the butting edge positions of the divided pieces 3c, 3c constituting each segment may be shifted from each other.

【0024】一方、電極基体30は、バー状又は棒状に
形成された長尺部材2を、その長手方向と交差する向き
に所定の間隔で配列したものとして構成されており、そ
の隣接する長尺部材2,2間に形成される間隙が、前記
した貫通部6として機能している(以下、間隙6とも記
す)。長尺部材2を所定の間隔で配列することで、前記
した貫通部を、その間隙6として簡単に形成することが
できる。また、長尺部材2は、例えばTiの棒材等を長
手方向に切断することで、これも簡単に製造できる。さ
らに、間隙6の形成により、電極基体30ひいては電極
1の全体が軽量化され、例えば電極1のメッキラインへ
の設置や取外しといった作業も楽になる。
On the other hand, the electrode base 30 is constituted by arranging the bar-shaped or rod-shaped long members 2 at predetermined intervals in a direction intersecting with the longitudinal direction. The gap formed between the members 2 and 2 functions as the aforementioned penetrating portion 6 (hereinafter also referred to as the gap 6). By arranging the long members 2 at predetermined intervals, the above-described penetrating portion can be easily formed as the gap 6. The long member 2 can also be easily manufactured by cutting, for example, a Ti bar or the like in the longitudinal direction. Furthermore, the formation of the gap 6 reduces the weight of the electrode base 30 and thus the entire electrode 1, and also facilitates the work of, for example, installing and removing the electrode 1 on a plating line.

【0025】次に、上記電極1は、間隙7(連通部)を
含めた放電面の総面積をS1、該放電面に対する間隙7
の開口面積の合計をS2として、開口率K=S2/S1が
0.025〜0.35の範囲に調整されている。具体的
には、セグメント3の放電面の合計面積をS3、それら
セグメント3間の隙間の合計面積をS4、長尺部材2の
各隙間に露出する部分の合計表面積をS5として、K=
(S4−S5)/(S3+S4)にて開口率Kを表したとき
に、該Kが0.03〜0.35(望ましくは0.1〜
0.2)に調整されている。開口率Kを上記の範囲に限
定することで、連通部形成によるメッキ電流の不均一が
生じにくく、メッキ厚や色むらの少ない良好なメッキが
可能となる。
Next, in the electrode 1, the total area of the discharge surface including the gap 7 (communication portion) is defined as S1, and the gap 7 with respect to the discharge surface is defined as S1.
The opening ratio K = S2 / S1 is adjusted in the range of 0.025 to 0.35, where S2 is the total of the opening areas. Specifically, assuming that the total area of the discharge surfaces of the segments 3 is S3, the total area of the gaps between the segments 3 is S4, and the total surface area of portions exposed to the respective gaps of the long member 2 is S5.
When the aperture ratio K is expressed by (S4−S5) / (S3 + S4), the value of K is 0.03 to 0.35 (preferably 0.1 to
0.2). By limiting the aperture ratio K to the above range, uneven plating current due to the formation of the communicating portion is less likely to occur, and good plating with less plating thickness and color unevenness can be achieved.

【0026】この実施例では、長尺部材2は、幅方向寸
法が厚さ方向寸法よりも大きい縦長板状に形成されてい
る(例えば、幅約100mm、長さ約1500mm、厚
さ約20mm)。このような薄型の長尺部材2の組み合
わせにて電極基体30を構成することで、電極1のさら
なる軽量化が図られている。なお、電極基体30の重量
減少と、よりスムーズな液流通とを図るために、間隙6
の幅はセグメント3,3間の隙間7の幅よりも大きく設
定されている。この実施例では、間隙6の幅は長尺部材
2の幅よりも大きい寸法(例えば約150mm程度)に
設定されている。
In this embodiment, the long member 2 is formed in a vertically long plate shape whose width dimension is larger than its thickness dimension (for example, about 100 mm in width, about 1500 mm in length, and about 20 mm in thickness). . By configuring the electrode base 30 with such a combination of the thin long members 2, the weight of the electrode 1 is further reduced. In order to reduce the weight of the electrode substrate 30 and to achieve a smoother liquid flow, the gap 6
Is set to be larger than the width of the gap 7 between the segments 3. In this embodiment, the width of the gap 6 is set to a dimension (for example, about 150 mm) larger than the width of the long member 2.

【0027】また、前記した開口率Kの範囲を実現する
には、セグメント3の幅をW1、隙間7の幅をW2とした
ときにW2がW1よりも小さくなっていることが必要であ
り、より望ましくはW2/(W1+W2)が0.03〜
0.30となっているのがよい。この実施例では、隙間
7の幅は約10mmであり、開口率Kは約0.049で
ある。
In order to realize the above-described range of the aperture ratio K, when the width of the segment 3 is W1 and the width of the gap 7 is W2, it is necessary that W2 is smaller than W1. More preferably, W2 / (W1 + W2) is 0.03 or more.
It is good to be 0.30. In this embodiment, the width of the gap 7 is about 10 mm, and the aperture ratio K is about 0.049.

【0028】前記したセグメント3は各々、電極基体3
0を構成する長尺部材2に対しそれらに交差する形態
(この実施例では、ほぼ直交する形態)で取り付けられ
ている。このようにすれば、セグメント3と長尺部材2
とを、その重なり部47においてねじ締結あるいは溶接
等により簡単に組み立てることができる。また、隙間7
と間隙6との重なり部分を液の連通部として有効に活用
できる。本実施例では、図2に示すように、セグメント
3と長尺部材2は、その重なり部47においてセグメン
ト3の裏面側に凸設された雄ねじ部10を、長尺部材2
に形成された挿通孔12に挿通し、長尺部材2の裏面側
から雄ねじ部10にナット11を締め込むことにより締
結されている。図1に雄ねじ部10の位置にて示すよう
に、この実施例においては、雄ねじ部10とナット11
とによる締結位置は、セグメント3と長尺部材2との間
に生ずる方形の各重なり部47の一方の対角線に沿って
2ケ所ずつ形成されている。なお、放電部材35の導電
性活物質層が消耗あるいは損傷した場合には、ナット1
1を緩めてその消耗ないし損傷部が生じたセグメント3
を取り外し、新しいものと交換すればよい。
Each of the above-mentioned segments 3 is an electrode substrate 3
0 are attached to the long members 2 constituting the first member 0 in a form intersecting them (in this embodiment, substantially orthogonal). By doing so, the segment 3 and the long member 2
Can be easily assembled at the overlapping portion 47 by screwing or welding. Also, the gap 7
The overlapping portion between the gap and the gap 6 can be effectively used as a liquid communication portion. In the present embodiment, as shown in FIG. 2, the segment 3 and the long member 2 are each provided with an external thread 10 projecting from the back side of the segment 3 at the overlapping portion 47 thereof.
The elongated member 2 is fastened by tightening a nut 11 from the back side of the long member 2 to the male screw portion 10. As shown in FIG. 1 at the position of the male screw part 10, in this embodiment, the male screw part 10 and the nut 11
Are formed at two locations along one diagonal line of each of the rectangular overlapping portions 47 generated between the segment 3 and the long member 2. If the conductive active material layer of the discharge member 35 is worn out or damaged, the nut 1
Segment 3 where 1 has been loosened and its wear or damage has occurred
Remove it and replace it with a new one.

【0029】雄ねじ部10、ナット11はそれぞれTi
又はTi合金に構成され、ナット11は、長尺部材2の
裏面側に形成された座ぐり部12aに収容される。ま
た、雄ねじ部10は、その基端部をセグメント3に形成
された取付孔に挿入し、両者の隙間を溶接にて埋める形
で取り付けられている。セグメント3の放電面側に盛り
上がる溶接部分は例えば研磨にて除去され、その平滑化
された表面に、導電性活物質被覆層20(図3(a))
が形成されている。
The male screw portion 10 and the nut 11 are made of Ti, respectively.
Alternatively, the nut 11 is housed in a counterbore portion 12 a formed on the back surface side of the long member 2. The male screw portion 10 is mounted in such a manner that its base end is inserted into a mounting hole formed in the segment 3 and a gap between the two is filled by welding. The welded portion protruding on the discharge surface side of the segment 3 is removed by, for example, polishing, and the smoothed surface is provided with a conductive active material coating layer 20 (FIG. 3A).
Are formed.

【0030】図3(a)に示すように、この導電性活物
質層20は、Pt属金属の酸化物、例えばIrOを主
体に、各セグメント3の放電面である表(おもて)面全
面を覆う形で形成され、不溶性陽極層として機能するも
のである。その厚さは、例えば概ね1〜25μm(望ま
しくは5〜15μm)の範囲にて調整される。なお、導
電性活物質層20は、Pt又はその合金の層として形成
することも可能である。
As shown in FIG. 3A, the conductive active material layer 20 is mainly composed of an oxide of a metal belonging to the group Pt, for example, IrO 2. It is formed so as to cover the entire surface and functions as an insoluble anode layer. The thickness is adjusted, for example, in a range of about 1 to 25 μm (preferably 5 to 15 μm). Note that the conductive active material layer 20 can also be formed as a layer of Pt or an alloy thereof.

【0031】一方、重なり部47においてセグメント3
と長尺部材2とはそれぞれ電気的に導通しているが、そ
のセグメント3側及び長尺部材2側の各の接触面には、
導通接触状態を良好なものとするために、Pt(又はP
t合金:あるいは、AuやIrなど他の貴金属もしくは
その合金であってもよい)によるメッキ層21,23が
それぞれ形成されている(図3(b)も参照)。
On the other hand, segment 3
And the long member 2 are electrically connected to each other, but the respective contact surfaces on the segment 3 side and the long member 2 side have
In order to improve the conductive contact state, Pt (or Pt
t alloys: or other noble metals such as Au or Ir or alloys thereof may be formed) (see also FIG. 3B).

【0032】また、長尺部材2(電極基材30)の重な
り部47(メッキ層21の形成部分)を除く他の表面は
Ti系酸化物層22により覆われている。このTi系酸
化物層22は、カチオンの主体がTiである金属酸化
物、例えばTiOを主体に構成され、その厚さは0.
1〜50μm(望ましくは5〜15μm)の範囲にて調
整される。さらに、セグメント3(放電部材35)の導
電性活物質層20及び重なり部47(メッキ層23の形
成部分)を除く他の表面も、同様のTi系酸化物層22
に覆われている。すなわち、本発明の電極の第二の構成
の要件を満足している。
The other surface of the long member 2 (electrode substrate 30) except the overlapping portion 47 (the portion where the plating layer 21 is formed) is covered with the Ti-based oxide layer 22. The Ti-based oxide layer 22 is mainly composed of a metal oxide whose main cation is Ti, for example, TiO 2, and has a thickness of 0.1 mm.
It is adjusted in the range of 1 to 50 μm (preferably 5 to 15 μm). Further, the other surface of the segment 3 (discharge member 35) except for the conductive active material layer 20 and the overlapping portion 47 (the portion where the plating layer 23 is formed) is also covered with the same Ti-based oxide layer 22.
Covered in. That is, the requirements of the second configuration of the electrode of the present invention are satisfied.

【0033】上記電極基材30あるいは放電部材35の
ように、TiあるいはTi合金で構成された金属部(T
i系金属部)の表面には、使用するメッキ液の種類によ
っては、メッキ金属の微細な結晶が析出することがあ
る。例えばSnメッキ液の場合、図6(c)に示すよう
に、Ti金属部(図では長尺部材2)の表面にはホイス
カーと呼ばれるひげ状(あるいは針状)の結晶WHKが
析出しやすいことが知られている。この金属結晶WHK
は細くて折れやく、メッキ液の流れや他の要因による衝
撃により折れるとその破片WSK’がメッキ液SL中を
浮遊し、鋼板Sとガイドロール50等との間に巻き込ま
れ、メッキ面に凹みや傷などのマークを付けてしまう不
具合を生ずることがある。
Like the electrode substrate 30 or the discharge member 35, a metal portion (T) made of Ti or a Ti alloy is used.
Fine crystals of the plating metal may precipitate on the surface of the i-based metal part) depending on the type of plating solution used. For example, in the case of the Sn plating solution, as shown in FIG. 6C, a whisker-like (or needle-like) crystal WHK called a whisker is likely to precipitate on the surface of the Ti metal part (the long member 2 in the figure). It has been known. This metal crystal WHK
Is thin and fragile, and when broken by the impact of the flow of plating solution or other factors, the fragments WSK 'float in the plating solution SL and are caught between the steel sheet S and the guide rolls 50, etc., and are dents in the plating surface. In some cases, a defect such as a mark or a scratch may be caused.

【0034】Snメッキ処理中に、Ti系金属部の表面
にSnメッキ金属の結晶が析出しやすい理由について
は、例えば下記のように推測される。例えば電解によっ
て電極1(メッキの場合、アノードとなる)にて発生す
る酸素により、Ti系金属部の表面は酸化されて不働態
化される。しかしながら、Snメッキ工程においては電
流密度が比較的低いため、電極1で発生する酸素量が少
なく、Ti系金属部表面の不働態化が進みにくい傾向に
ある。その結果、不働態被膜が薄く金属地肌露出に近い
状態の表面部分が存在していると、そこにSnメッキ金
属が析出しやすくなることが考えられる。
The reason why Sn plating metal crystals are likely to precipitate on the surface of the Ti-based metal part during the Sn plating process is supposed, for example, as follows. For example, the surface of the Ti-based metal portion is oxidized and passivated by oxygen generated at the electrode 1 (which becomes an anode in the case of plating) by electrolysis. However, since the current density is relatively low in the Sn plating process, the amount of oxygen generated in the electrode 1 is small, and the passivation of the surface of the Ti-based metal portion tends to be difficult to proceed. As a result, if there is a surface portion where the passive film is thin and close to the metal surface exposure, it is considered that the Sn plating metal is likely to be deposited there.

【0035】また、本実施例では、Ti製の電極基材3
0及び放電部材35の重なり部47の表面には、図3
(a)に示すように、前述の通りTiよりもはるかに貴
な金属であるPtのメッキ層21あるいは23が形成さ
れている。Ti系金属部の表面にPt等の貴金属メッキ
層が形成されていると、Ti系金属部と貴金属メッキ層
との間に局部電池が形成され、それにより発生する局部
電流により、電位が負となるTi系金属部の表面にメッ
キ金属が析出しやすくなることも別の要因として考えら
れる。これはSnメッキ処理に限らず、他の金属のメッ
キ処理においても程度の差はあれ発生しうることであ
る。
In this embodiment, the electrode substrate 3 made of Ti is used.
3 and the surface of the overlapping portion 47 of the discharge member 35
As shown in (a), as described above, the plating layer 21 or 23 of Pt, which is a metal much more noble than Ti, is formed. If a noble metal plating layer such as Pt is formed on the surface of the Ti-based metal part, a local battery is formed between the Ti-based metal part and the noble metal plating layer, and the potential is negative due to a local current generated thereby. Another likely factor is that the plating metal tends to precipitate on the surface of the resulting Ti-based metal part. This is not limited to the Sn plating process, but may occur to some extent in other metal plating processes.

【0036】そこで、前記膜厚範囲にてTi系金属部の
表面にTi系酸化物層を形成すれば、例えば電極1で発
生する酸素量が少ない場合においても、Ti系金属部の
表面を十分に不働態化することができ、メッキ金属の析
出を効果的に防止ないし抑制することができる。特に、
本実施例の電極基材30及び放電部材35のように、貴
金属メッキ層により部分的に覆われたTi系金属部の場
合は、前述の通り局部電池形成によりメッキ金属の析出
が促進されやすいことから、Ti系酸化物層による被覆
の効果がとりわけ顕著なものとなる。
Therefore, if a Ti-based oxide layer is formed on the surface of the Ti-based metal portion in the above-mentioned thickness range, the surface of the Ti-based metal portion can be sufficiently formed even when the amount of oxygen generated at the electrode 1 is small, for example. And the deposition of the plating metal can be effectively prevented or suppressed. In particular,
In the case of a Ti-based metal portion partially covered with a noble metal plating layer, such as the electrode base material 30 and the discharge member 35 of the present embodiment, the deposition of the plating metal is likely to be promoted by the formation of the local battery as described above. Therefore, the effect of coating with the Ti-based oxide layer becomes particularly remarkable.

【0037】図4は、放電部材35(セグメント3)に
導電性活物質層20を形成する工程の一例を模式的に示
すものである。まず、Ti系金属からなる本体部3aに
は、貴金属メッキ層21を予め電気メッキ等により形成
しておく。次いで、セグメント本体部3aの放電面とな
る板面に、導電性活物質層20の主成分となる金属、こ
の場合Irの化合物を含有する溶液(例えば塩化イリジ
ウムや塩化イリジウム酸のアルコール溶液)20aを塗
布して炉F内に配し、酸素含有雰囲気中で400〜55
0℃(例えば500℃)にて加熱・焼成することによ
り、IrOを主体とする導電性活物質層20が形成さ
れたセグメント3を得る。なお、1回の塗布・焼成にて
所期の厚さの導電性活物質層20が得られない場合に
は、塗布・焼成工程を複数回繰り返すようにする。
FIG. 4 schematically shows an example of a process for forming the conductive active material layer 20 on the discharge member 35 (segment 3). First, a noble metal plating layer 21 is previously formed on the main body 3a made of a Ti-based metal by electroplating or the like. Next, a solution (for example, iridium chloride or an alcohol solution of iridium chloride) containing a metal serving as a main component of the conductive active material layer 20, in this case, a compound of Ir, is placed on a plate surface serving as a discharge surface of the segment body 3 a. And placed in the furnace F, in an oxygen-containing atmosphere at 400 to 55
By heating and baking at 0 ° C. (for example, 500 ° C.), the segment 3 on which the conductive active material layer 20 mainly composed of IrO 2 is formed is obtained. When the conductive active material layer 20 having a desired thickness cannot be obtained by one application and firing, the application and firing steps are repeated a plurality of times.

【0038】一方、電極基体30(長尺部材2)へのT
i系酸化物層の形成は、例えば以下のようにして行う。
すなわち、図4(a)に示すように、長尺部材2の本体
部2aに予め金属メッキ層23を形成しておき、Ti含
有化合物(例えばブチルチタネート)の溶液22aを、
金属メッキ層23の形成領域を除いた残余の表面に塗布
して炉F内に配し、酸素含有雰囲気中で400〜550
℃(例えば500℃)にて加熱・焼成することにより、
図4(b)に示すように、Ti系酸化物層22が形成さ
れた長尺部材2を得る。この場合、焼成の雰囲気及び温
度として、導電性活物質層20形成時のものとほぼ同様
のものを採用できることから、共通の炉Fにて、放電部
材35(セグメント3)へ導電性活物質層20を形成す
るための焼成と、電極基体30(長尺部材2)へTi系
酸化物層23を形成するための焼成とを同時に行うよう
にすれば能率的である。なお、放電部材35(セグメン
ト3)に対してもTi系酸化物層22は、金属メッキ層
21及び導電性活物質層20の形成領域を除く残余の表
面に溶液22aを塗布して焼成することにより、全く同
様に形成できる。
On the other hand, T is applied to the electrode substrate 30 (long member 2).
The i-type oxide layer is formed, for example, as follows.
That is, as shown in FIG. 4A, a metal plating layer 23 is previously formed on the main body 2a of the long member 2, and a solution 22a of a Ti-containing compound (for example, butyl titanate) is
The coating is applied to the remaining surface excluding the region where the metal plating layer 23 is formed, and is placed in the furnace F.
By heating and firing at 500C (for example, 500C),
As shown in FIG. 4B, the long member 2 on which the Ti-based oxide layer 22 is formed is obtained. In this case, since the firing atmosphere and temperature can be substantially the same as those at the time of forming the conductive active material layer 20, the conductive material layer is transferred to the discharge member 35 (segment 3) in the common furnace F. It is efficient if the firing for forming the electrode 20 and the firing for forming the Ti-based oxide layer 23 on the electrode base 30 (the long member 2) are performed simultaneously. The Ti-based oxide layer 22 is also applied to the discharge member 35 (segment 3) by applying the solution 22a to the remaining surface excluding the region where the metal plating layer 21 and the conductive active material layer 20 are formed, and sintering. Can be formed in exactly the same way.

【0039】なお、図5に示すように、Ti系金属部
(図では長尺部材2の本体部2a)に上記の溶液22a
を塗布せず、酸素含有雰囲気等の酸化雰囲気中にて熱処
理するのみでTi系酸化物層22を形成することも可能
である。また、Ti系酸化物層22は、陽極酸化法等の
電気化学的な手法を用いても形成できる。
As shown in FIG. 5, the solution 22a is placed on a Ti-based metal portion (the main body 2a of the long member 2 in the figure).
It is also possible to form the Ti-based oxide layer 22 only by performing a heat treatment in an oxidizing atmosphere such as an oxygen-containing atmosphere without applying a TiN layer. Further, the Ti-based oxide layer 22 can also be formed by using an electrochemical method such as an anodic oxidation method.

【0040】図1に戻り、上記電極1においては、配列
する長尺部材2の一方の端部側に、これらにまたがる形
態で給電部4が配置され、長尺部材2を経て放電部材3
5(各セグメント3)に給電するようになっている。複
数配列された長尺部材2の一方の端部にまたがる形で給
電部4を配置することで、長尺部材2に取り付けられた
放電部材35に電流を偏りなく供給でき、例えばメッキ
処理の場合は均一で欠陥の少ないメッキ層の形成に貢献
する。一方、長尺部材2の反対側の端部には、やはりこ
れらにまたがる形で、Ti又はTi合金からなる板状の
補強部材5が溶接等により接合されている。
Returning to FIG. 1, in the electrode 1, a power supply section 4 is arranged on one end side of the long members 2 to be arranged so as to straddle them.
5 (each segment 3). By arranging the power supply unit 4 so as to straddle one end of the plurality of elongated members 2, it is possible to uniformly supply current to the discharge members 35 attached to the elongated members 2. Contributes to the formation of a uniform and less defective plating layer. On the other hand, a plate-like reinforcing member 5 made of Ti or a Ti alloy is joined to the opposite end portion of the long member 2 by welding or the like so as to also straddle these members.

【0041】給電部4は、各長尺部材2の端部に対し着
脱可能に取り付けられている。この実施例では、長尺部
材2の端部に給電部4の板状の本体5(例えばTi系金
属で構成される)を重ねてねじ挿通孔5b及び2bを一
致させ、ここに挿通されたボルト14にナット15を締
め込むことで、長尺部材2と本体5とを着脱可能に締結
している。なお、図示はしていないが、長尺部材2と本
体5との当接面には、それぞれPt等の貴金属メッキ層
を形成している。
The power supply 4 is detachably attached to the end of each long member 2. In this embodiment, the plate-shaped main body 5 (for example, made of a Ti-based metal) of the power supply unit 4 is overlapped on the end of the long member 2 so that the screw insertion holes 5b and 2b are aligned with each other. The long member 2 and the main body 5 are detachably fastened by tightening the nut 15 into the bolt 14. Although not shown, a noble metal plating layer such as Pt is formed on the contact surface between the long member 2 and the main body 5.

【0042】ここで、本体5の、長尺部材2が取り付け
られているのと反対側の縁部には、該縁に沿って、Cu
等で構成されたバー状の給電体40がボルト41により
取り付けられている。この給電体40より本体5に通電
がなされる。なお、給電体40の外面は、防食のために
Ti系金属等で構成された耐食性金属ライニング42に
より被覆されている。
Here, along the edge of the main body 5 opposite to the side where the long member 2 is attached, Cu
A bar-shaped power supply body 40 composed of, for example, is attached by a bolt 41. Electric power is supplied to the main body 5 from the power supply body 40. The outer surface of the power supply body 40 is covered with a corrosion-resistant metal lining 42 made of a Ti-based metal or the like for corrosion protection.

【0043】また、給電部4の本体5の裏面側には、鋭
角的な断面形状を有する係合溝19が長手方向に形成さ
れている。そして、メッキ槽側の、対応する断面形状の
フック部18にこの係合溝19を引っ掛けて、本体5と
ブスバー18との一方の側から他方の側に固定ねじ16
をねじ込むことにより、給電部4ひいては電極1をメッ
キ槽に取り付けることができる。なお、この係合溝19
に通電用のブスバーを係合させるようにしてもよい。こ
の場合は、前記した給電体40は省略することができ
る。
An engaging groove 19 having an acute cross section is formed in the longitudinal direction on the back surface side of the main body 5 of the power supply section 4. Then, this engaging groove 19 is hooked on a hook portion 18 having a corresponding sectional shape on the plating tank side, and a fixing screw 16 is connected from one side of the main body 5 and the bus bar 18 to the other side.
, The power supply unit 4 and thus the electrode 1 can be attached to the plating tank. The engagement groove 19
The busbar for energization may be engaged with the. In this case, the power supply 40 described above can be omitted.

【0044】以下、電極1の各種変形例について説明す
る。まず、図8及び図9は、使用する電極基体30のい
くつかの変形例を示すものである。放電部材35を取り
付ける側を表面側、これと反対側を裏面側として、表面
側と裏面側とを連通させる形態であれば、貫通部31を
各種形態に形成できる。図8は、電極基体30を、貫通
部として厚さ方向に多数の孔31を形成した一体の穴空
き部材(この実施例では、孔31を六角断面に形成した
ハニカム部材)により構成した例である。また、図9
は、電極基体30を、窓状の貫通部31を複数有する枠
状に構成した例である。
Hereinafter, various modifications of the electrode 1 will be described. First, FIGS. 8 and 9 show some modified examples of the electrode substrate 30 to be used. The penetrating portion 31 can be formed in various forms as long as the side where the discharge member 35 is attached is the front side and the opposite side is the back side, and the front side and the back side are connected. FIG. 8 shows an example in which the electrode base 30 is formed of an integral holed member having a large number of holes 31 formed in the thickness direction as a penetrating portion (in this embodiment, a honeycomb member having the holes 31 formed in a hexagonal cross section). is there. FIG.
Is an example in which the electrode base 30 is configured in a frame shape having a plurality of window-shaped through portions 31.

【0045】一方、放電部材35の各セグメント3には
連通部として、図10(a)に示すように、セグメント
中に厚さ方向に貫通穴36を孔設することができる。ま
た、同図(b)に示すように、幅方向の少なくとも一方
の縁から板面方向に切れ込む切欠36を形成してもよ
い。これらのいずれの場合においても、幅方向に隣接す
るセグメント3,3は、隙間が形成されないよう密接配
置することが可能である。ただし、液流通がさらに促進
されるように、図1と同様に隙間を形成してもよいこと
はもちろんである。
On the other hand, as shown in FIG. 10A, a through hole 36 can be formed in each segment 3 of the discharge member 35 as a communicating portion in the thickness direction in the segment. Further, as shown in FIG. 6B, a notch 36 that cuts in the plate surface direction from at least one edge in the width direction may be formed. In any of these cases, the segments 3, 3 adjacent in the width direction can be closely arranged so that no gap is formed. However, it goes without saying that a gap may be formed as in FIG. 1 so as to further promote the liquid circulation.

【0046】また、上記の実施例では、長尺部材2ある
いはセグメント3の本体部は、全体がTi系金属にて構
成されていたが、図11に示すように、Cu系あるいは
Fe系材料からなる芯材70の外側を、Ti系金属部と
してのTi系金属ライニング71で覆ったクラッド材に
て構成してもよい。
In the above embodiment, the main body of the long member 2 or the segment 3 is entirely made of a Ti-based metal. However, as shown in FIG. The outside of the core material 70 may be formed of a clad material covered with a Ti-based metal lining 71 as a Ti-based metal part.

【0047】上記の実施例を含め、本発明の電極は、電
解酸洗等のメッキ以外の電気化学処理に適用することも
可能である。また、上記のように、被処理部材を搬送し
ながら処理を行う連続処理ラインの用途に留まらず、例
えば静止メッキ等への適用も図ることができる。そし
て、被処理部材と電極との間に強い液流が生ずる心配が
なければ、放電部材のセグメント間に隙間を形成せず、
これを密接配置する構成も採用できる。ただし、Snメ
ッキ等の場合、電極基体や放電部材のTi金属部にはメ
ッキ金属の析出を防止するために、前述のTi系酸化物
層を形成しておくことが望ましい。他方、鋼板ストリッ
プの連続処理において、図1と同様の形態の電極を使用
することが可能であるが、電解酸洗等の金属析出を伴わ
ない電気化学処理や、電極からの酸素発生が活発でTi
系金属部の表面の不働態化が十分に進行するメッキ処理
においては、電極基体や放電部材のTi金属部には、特
にTi系酸化物層を形成しなくともよい場合がある。こ
のように、本発明の電極の第一及び第二の構成は、状況
に応じて適宜必要なもののみを選択的に使用できる。
Including the above embodiments, the electrode of the present invention can be applied to electrochemical treatments other than plating such as electrolytic pickling. Further, as described above, the present invention can be applied not only to a continuous processing line for performing processing while transporting a member to be processed, but also to, for example, stationary plating. And if there is no fear that a strong liquid flow occurs between the member to be processed and the electrode, no gap is formed between the segments of the discharge member,
A configuration in which these are closely arranged can also be adopted. However, in the case of Sn plating or the like, it is desirable to form the above-described Ti-based oxide layer on the Ti metal portion of the electrode base or the discharge member in order to prevent deposition of the plating metal. On the other hand, in the continuous treatment of the steel sheet strip, it is possible to use an electrode having the same form as that of FIG. 1, but the electrochemical treatment without metal precipitation such as electrolytic pickling and the generation of oxygen from the electrode are active. Ti
In the plating process in which the passivation of the surface of the base metal portion sufficiently proceeds, it may not be necessary to particularly form a Ti-based oxide layer on the Ti metal portion of the electrode substrate or the discharge member. As described above, as the first and second configurations of the electrode of the present invention, only necessary components can be selectively used as appropriate depending on the situation.

【0048】[0048]

【実験例】図6(a)に示すメッキ装置を用い、各種試
験を行った。使用した電極は図1に示すタイプのもので
あり、12枚のセグメント3を用いて電極面の縦方向寸
法L1を1320mm、幅方向寸法L2を1200mmと
している。また、長尺部材2は、幅L3が100mm、
厚さが20mmのTi製で、Ti系酸化物層を厚さ約1
0μmにて形成している。さらに、各セグメント3はT
i製の本体部を有し、導電性活物質層としてIrO
を約12μm(Ir含有率:50g/m)にて形成し
ている。そして、その幅L4の調整により隙間7の幅を
変化させ、電極面の開口率Kを0.02〜0.40の範
囲にて各種設定した。
[Experimental Examples] Various tests were conducted using the plating apparatus shown in FIG. The electrodes used are of the type shown in FIG. 1, and the vertical dimension L1 of the electrode surface is 1320 mm and the width dimension L2 is 1200 mm using twelve segments 3. The long member 2 has a width L3 of 100 mm,
It is made of Ti having a thickness of 20 mm.
It is formed at 0 μm. Further, each segment 3 has T
It has a main body made of i, and is formed with an IrO 2 layer of about 12 μm (Ir content: 50 g / m 2 ) as a conductive active material layer. The width of the gap 7 was changed by adjusting the width L4, and the aperture ratio K of the electrode surface was variously set in the range of 0.02 to 0.40.

【0049】上記の電極4枚を図6(a)の装置にセッ
トし、メッキ槽B内にSnメッキ浴SLを建浴した。た
だし、浴組成は、Snイオン濃度が30g/L、酸濃度
がH SO換算にて15g/Lのフェノールスルホン
酸浴であり、ヒータにより浴温を45℃に維持した。そ
して、幅900mmの炭素鋼板ストリップを各種スピー
ドにて図6(a)に示す形態で搬送しながら、これをカ
ソードとして電極面(隙間7を含む)全体における電流
密度を30A/dmにて通電し、鋼板ストリップの両
面に連続Snメッキを行った。ただし、電極と鋼板面と
の距離は35mmに固定した。そして、メッキ中におい
ては、電極と鋼板ストリップとの間における吸い付き発
生の有無を観察するとともに、メッキ終了後はメッキ面
における色むらの有無を目視確認し、「○」(色むら全
くなし)、「△」(僅かな色むら発生)、「×」(顕著
な色むらが発生)の3段階にて評価した。以上の結果を
表1に示す。
The above four electrodes were set in the apparatus shown in FIG.
Then, a Sn plating bath SL was built in the plating tank B. Was
However, the bath composition has a Sn ion concentration of 30 g / L and an acid concentration of 30 g / L.
Is H 2SO415 g / L phenol sulfone in conversion
The bath was an acid bath, and the bath temperature was maintained at 45 ° C. by a heater. So
To make a 900mm wide carbon steel strip
While transporting it in the form shown in FIG.
Current on the entire electrode surface (including gap 7) as a sword
Density 30A / dm2And turn on both steel strips.
The surface was subjected to continuous Sn plating. However, the electrode and steel plate surface
Was fixed at 35 mm. And smell during plating
Between the electrode and the steel strip.
Observe the presence or absence of rawness, and after plating is finished,
Visually check the presence or absence of color unevenness in
Blemishes), "△" (slight color unevenness), "x" (prominent)
(Uneven color unevenness occurs). The above results
It is shown in Table 1.

【0050】[0050]

【表1】 [Table 1]

【0051】開口率Kを0.025〜0.35の範囲に
調整することで、鋼板ストリップの電極への吸い付きが
起こらず、かつ色むらのない良好なメッキが可能となる
ことがわかる。
By adjusting the aperture ratio K in the range of 0.025 to 0.35, it can be seen that the plating of the steel plate strip does not stick to the electrodes and good plating without color unevenness is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極の一実施例を示す正面図及び側面
図。
FIG. 1 is a front view and a side view showing one embodiment of an electrode of the present invention.

【図2】図1の電極の一部を拡大して示す側面断面図。FIG. 2 is an enlarged side sectional view showing a part of the electrode of FIG. 1;

【図3】放電部材及び電極基体の表面における各種層の
形成形態を模式的に示す断面図、及び放電部材の分割形
態の変形例を示す模式図。
FIG. 3 is a cross-sectional view schematically showing a form of forming various layers on the surfaces of a discharge member and an electrode substrate, and a schematic view showing a modification of a division form of the discharge member.

【図4】導電性活物質層とTi系酸化物層との形成工程
の一例を示す説明図。
FIG. 4 is an explanatory view showing an example of a step of forming a conductive active material layer and a Ti-based oxide layer.

【図5】Ti系酸化物層の形成工程の変形例を示す説明
図。
FIG. 5 is an explanatory view showing a modification of the step of forming a Ti-based oxide layer.

【図6】本発明の電極を使用した連続メッキ工程の概念
を説明する図。
FIG. 6 is a view for explaining the concept of a continuous plating step using the electrode of the present invention.

【図7】図1の電極の作用説明図。FIG. 7 is a diagram illustrating the operation of the electrode of FIG. 1;

【図8】電極基体の変形例を示す斜視図。FIG. 8 is a perspective view showing a modification of the electrode substrate.

【図9】同じく別の変形例を示す斜視図。FIG. 9 is a perspective view showing another modified example.

【図10】放電部材に形成する連通部のいくつかの変形
例を示す正面図。
FIG. 10 is a front view showing some modified examples of the communicating portion formed in the discharge member.

【図11】放電部材あるいは電極基体をクラッド材で構
成する例を示す断面斜視図。
FIG. 11 is a cross-sectional perspective view showing an example in which a discharge member or an electrode base is made of a clad material.

【図12】従来の電極の問題点を示す図。FIG. 12 is a diagram showing a problem of a conventional electrode.

【符号の説明】[Explanation of symbols]

1 電極 2 長尺部材 2a 部材本体 3 セグメント 3a セグメント本体 4 給電部 6 間隙(貫通部) 7 隙間(連通部) 20 導電性活物質被覆層 22 Ti系酸化物層 30 電極基体 31 貫通孔(貫通部) 35 放電部材 36 連通部 S 鋼板ストリップ(被処理部材) REFERENCE SIGNS LIST 1 electrode 2 long member 2 a member main body 3 segment 3 a segment main body 4 power supply section 6 gap (through section) 7 gap (communication section) 20 conductive active material coating layer 22 Ti-based oxide layer 30 electrode base 31 through hole (through) Part) 35 Discharge member 36 Communication part S Steel plate strip (member to be treated)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮崎 博信 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 清水 宏勝 大阪府大阪市西区江戸堀1丁目10番8号 ダイソー株式会社内 (72)発明者 高安 彰 愛知県名古屋市瑞穂区堀田通5丁目1番地 株式会社昭和鉛鉄内 Fターム(参考) 4K024 AA07 AB01 BA03 BC01 CA16 CB03 CB06 CB07 CB08 CB15 CB18 EA03 GA16  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hironobu Miyazaki 1-1 Niwahata Works, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Inside Nippon Steel Corporation Yawata Works (72) Inventor Hirokatsu Shimizu Edobori, Nishi-ku, Osaka-shi, Osaka 1-10-8 Daiso Co., Ltd. (72) Inventor Akira Takayasu 5-1-1, Horitadori, Mizuho-ku, Nagoya-shi, Aichi F-term in Showa Lead Iron Co., Ltd. 4K024 AA07 AB01 BA03 BC01 CA16 CB03 CB06 CB07 CB08 CB15 CB18 EA03 GA16

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 被処理部材に対しメッキあるいは電解酸
洗処理等の電気化学処理を行うための電極であって、 少なくとも表層部が耐食性金属で構成された電極基体
と、 少なくとも表層部が耐食性金属で構成されて前記電極基
体の前記被処理部材に対向する側に配置され、裏面側に
て前記電極基体に電気的に導通するように該電極基体に
固定されるとともに、放電面となる表面側がPt属金属
又はその酸化物を主体に構成された導電性活物質被覆層
で覆われた放電部材とを備え、 前記電極基体には、前記放電部材の取り付けられる側か
らその反対側に向けてこれを貫通する貫通部が形成され
る一方、 前記放電部材は、複数枚のセグメントに分割された形で
前記電極基体に取り付けられるとともに、セグメント内
又は隣接するセグメント間において厚さ方向に、該セグ
メントの表面側から前記電極基体の貫通部に連通する連
通部が形成されており、かつ前記連通部を含めた放電面
の総面積をS1、該放電面に対する前記連通部の開口面
積の合計をS2として、開口率K=S2/S1を0.02
5〜0.35としたことを特徴とする電極。
1. An electrode for performing an electrochemical treatment such as plating or electrolytic pickling on a member to be treated, wherein an electrode substrate having at least a surface layer made of a corrosion-resistant metal, and at least a surface layer made of a corrosion-resistant metal Is arranged on the side of the electrode base facing the member to be processed, and is fixed to the electrode base so as to be electrically connected to the electrode base on the back side, and the front side serving as the discharge surface is A discharge member covered with a conductive active material coating layer mainly composed of a Pt group metal or an oxide thereof, wherein the electrode base is arranged from the side where the discharge member is attached to the opposite side thereof. The discharge member is attached to the electrode base in a form of being divided into a plurality of segments, and is formed inside the segment or between adjacent segments. In the thickness direction, a communication portion communicating from the surface side of the segment to the through portion of the electrode base is formed, and the total area of the discharge surface including the communication portion is S1, and the communication with the discharge surface is S1. The opening ratio K = S2 / S1 is set to 0.02, where S2 is the total opening area of the portion.
An electrode characterized by having a thickness of 5 to 0.35.
【請求項2】 前記放電部材の前記セグメントは各々板
状に形成され、隣接する縁部間に所定量の隙間が形成さ
れるよう、板面方向に配列する形態で前記電極基体に取
り付けられ、該隙間が前記連通部として機能する請求項
1記載の電極。
2. The segment of the discharge member is formed in a plate shape, and is attached to the electrode base in a form arranged in a plate surface direction such that a predetermined amount of gap is formed between adjacent edges. The electrode according to claim 1, wherein the gap functions as the communication part.
【請求項3】 前記放電部材において前記セグメント
は、前記隙間が、予め定められた1つの方向に沿って直
線形態に延びるもののみが、所定の間隔で互いにほぼ平
行に形成されるように前記電極基体に取り付けられてい
る請求項2記載の電極。
3. The electrode of the discharge member, wherein the segments are formed such that only the gaps extending in a straight line along one predetermined direction are formed substantially parallel to each other at a predetermined interval. The electrode according to claim 2, which is attached to a base.
【請求項4】 前記セグメントはそれぞれ、幅方向両側
に互いにほぼ平行な縁を有する長尺板状に形成され、こ
れらが該幅方向に配列することで、その隣接する縁部間
に前記隙間が形成されている請求項3記載の電極。
4. Each of the segments is formed in a long plate shape having edges substantially parallel to each other on both sides in the width direction, and by arranging them in the width direction, the gap is formed between adjacent edges. The electrode according to claim 3, which is formed.
【請求項5】 前記電極基体は、バー状又は棒状に形成
された長尺部材を、その長手方向と交差する向きに所定
の間隔で配列した形で構成され、その隣接する長尺部材
間に形成される間隙が前記貫通部として機能するととも
に、複数の全前記セグメントの放電面の合計面積をS
3、それらセグメント間の隙間の合計面積をS4、前記長
尺部材の各隙間に露出する部分の合計表面積をS5とし
て、 K=(S4−S5)/(S3+S4) にて前記開口率Kを表したときに、該Kが0.03〜
0.30にて調整されている前記請求項1ないし4のい
ずれかに記載の電極。
5. The electrode base is formed by arranging long members formed in a bar shape or a rod shape at predetermined intervals in a direction intersecting with the longitudinal direction thereof, and between the adjacent long members. The formed gap functions as the penetrating portion, and the total area of the discharge surfaces of all the plurality of segments is S
3. The total area of the gaps between the segments is S4, and the total surface area of the portion exposed to each gap of the long member is S5, and the opening ratio K is expressed by K = (S4−S5) / (S3 + S4). When K is 0.03 to
5. The electrode according to claim 1, wherein the electrode is adjusted at 0.30.
【請求項6】 配列する前記長尺部材の一方の端部側
に、これらにまたがる形態で配置され、該長尺部材を経
て前記放電部材に給電するための給電部が形成されてい
る請求項5記載の電極。
6. A power supply portion which is disposed on one end side of the arrayed elongate members so as to straddle the elongate members and supplies electric power to the discharge member via the elongate members. 5. The electrode according to 5.
【請求項7】 幅方向両側に互いにほぼ平行な縁を有す
るとともに、互いにほぼ等しい幅を有する長尺板状の前
記セグメントが各々、前記電極基体を構成する前記長尺
部材に対しそれらに交差する形態で取り付けられてお
り、かつ、前記セグメントの幅をW1、前記隙間の幅を
W2としたときに、W2/(W1+W2)が0.03〜0.
30である請求項5又は6に記載の電極。
7. The elongated plate-shaped segments having substantially parallel edges on both sides in the width direction and having widths substantially equal to each other intersect with the elongated members constituting the electrode base, respectively. When the width of the segment is W1 and the width of the gap is W2, W2 / (W1 + W2) is 0.03-0.
The electrode according to claim 5, wherein the number is 30.
【請求項8】 前記電極基体は、少なくともその表層部
がTi又はTi合金で構成されたTi系金属部とされ、
そのTi系金属部の表面に、カチオン成分の主体がTi
であるTi系酸化物層が、厚さ0.1〜50μmの範囲
にて形成されている請求項1ないし7のいずれかに記載
の電極。
8. The electrode substrate has a Ti-based metal portion at least a surface layer portion of which is made of Ti or a Ti alloy,
The main component of the cation component is Ti
The electrode according to any one of claims 1 to 7, wherein the Ti-based oxide layer having a thickness of 0.1 to 50 µm is formed.
【請求項9】 被処理部材に対しメッキあるいは電解酸
洗処理等の電気化学処理を行うための電極であって、 少なくとも表層部が耐食性金属で構成された電極基体
と、 少なくとも表層部が耐食性金属で構成されて前記電極基
体の前記被処理部材に対向する側に配置され、裏面側に
て前記電極基体に電気的に導通するように該電極基体に
固定されるとともに、放電面となる表面側がPt属金属
又はその酸化物を主体に構成された導電性活物質被覆層
で覆われた放電部材とを備え、 前記電極基体は、少なくともその表層部がTi又はTi
合金で構成されたTi系金属部とされ、そのTi系金属
部の表面に、カチオン成分の主体がTiであるTi系酸
化物層が、厚さ0.1〜50μmの範囲にて形成されて
いることを特徴とする電極。
9. An electrode for performing an electrochemical treatment such as plating or electrolytic pickling treatment on a member to be treated, wherein an electrode substrate having at least a surface layer made of a corrosion-resistant metal, and at least a surface layer made of a corrosion-resistant metal Is arranged on the side of the electrode base facing the member to be processed, and is fixed to the electrode base so as to be electrically connected to the electrode base on the back side, and the front side serving as the discharge surface is A discharge member covered with a conductive active material coating layer mainly composed of a Pt group metal or an oxide thereof, wherein at least a surface portion of the electrode substrate is Ti or Ti
A Ti-based metal layer made of an alloy, and a Ti-based oxide layer in which the main component of the cation component is Ti is formed on the surface of the Ti-based metal section in a thickness of 0.1 to 50 μm. Electrodes.
【請求項10】 前記放電部材の本体部は少なくともそ
の表層部がTi又はTi合金で構成されたTi系金属部
とされ、かつ、そのTi系金属部の、前記導電性活物質
被覆層の形成部と前記電極基体との重なり部とを除く表
面に、カチオン成分の主体がTiであるTi系酸化物層
が、厚さ0.1〜50μmの範囲にて形成されている請
求項8又は9に記載の電極。
10. A body portion of said discharge member is a Ti-based metal portion having at least a surface layer portion thereof made of Ti or a Ti alloy, and said Ti-based metal portion is formed with said conductive active material coating layer. The Ti-based oxide layer in which the main component of the cation component is Ti is formed in a thickness range of 0.1 to 50 μm on the surface excluding the portion and the overlapping portion of the electrode substrate. The electrode according to 1.
【請求項11】 前記電極基体には、前記放電部材の取
り付けられる側からその反対側に向けてこれを貫通する
貫通部が形成される一方、 前記放電部材は、複数枚のセグメントに分割された形で
前記電極基体に取り付けられるとともに、セグメント内
又は隣接するセグメント間において厚さ方向に、該セグ
メントの表面側から前記電極基体の貫通部に連通する連
通部が形成されている請求項10記載の電極。
11. The electrode base is formed with a penetrating portion penetrating therethrough from the side on which the discharge member is mounted to the opposite side, while the discharge member is divided into a plurality of segments. 11. The communication part according to claim 10, wherein the communication part is attached to the electrode base in a form, and a communication part communicating from a surface side of the segment to a through part of the electrode base is formed in a thickness direction in a segment or between adjacent segments. electrode.
【請求項12】 前記電気化学処理は電解Snメッキ処
理である請求項1ないし11のいずれかに記載の電極。
12. The electrode according to claim 1, wherein the electrochemical treatment is an electrolytic Sn plating treatment.
【請求項13】 請求項12記載の電極を、Snメッキ
液中にて、長手方向に連続搬送される鋼材ストリップに
対し、被メッキ面となる板面に放電面が対向する形で配
置し、電極側をアノード、鋼材ストリップ側をカソード
として前記Snメッキ液を介して通電することにより、
鋼材ストリップの表面に連続Snメッキ処理するととも
に、前記鋼材ストリップの搬送速度が5m/s以上に設
定されることを特徴とするSnメッキ装置。
13. The electrode according to claim 12, wherein the electrode is disposed in a Sn plating solution such that a discharge surface faces a plate surface to be plated with respect to a steel strip continuously conveyed in a longitudinal direction, By energizing through the Sn plating solution with the electrode side as the anode and the steel strip side as the cathode,
An Sn plating apparatus, wherein a continuous Sn plating process is performed on a surface of a steel strip, and a conveying speed of the steel strip is set to 5 m / s or more.
JP35210699A 1999-12-10 1999-12-10 Electrode and Sn plating apparatus using the same Expired - Lifetime JP3409003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35210699A JP3409003B2 (en) 1999-12-10 1999-12-10 Electrode and Sn plating apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35210699A JP3409003B2 (en) 1999-12-10 1999-12-10 Electrode and Sn plating apparatus using the same

Publications (2)

Publication Number Publication Date
JP2001172793A true JP2001172793A (en) 2001-06-26
JP3409003B2 JP3409003B2 (en) 2003-05-19

Family

ID=18421829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35210699A Expired - Lifetime JP3409003B2 (en) 1999-12-10 1999-12-10 Electrode and Sn plating apparatus using the same

Country Status (1)

Country Link
JP (1) JP3409003B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281849A (en) * 2004-03-03 2005-10-13 Nozaki Kogyo Kk Insoluble electrode and electrode plate used for the same and its using method
JP2015001006A (en) * 2013-06-14 2015-01-05 カヤバ工業株式会社 Power supply member and high-speed plating apparatus with the same
KR101682519B1 (en) * 2015-06-26 2016-12-07 주식회사 티케이씨 Apparatus for anode of electroplating apparatus
US10006137B2 (en) 2013-06-14 2018-06-26 Kyb Corporation Holding device and high-speed plating machine provided with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006846U (en) 1994-07-18 1995-01-31 ダイソー株式会社 Vertical steel plate plating electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281849A (en) * 2004-03-03 2005-10-13 Nozaki Kogyo Kk Insoluble electrode and electrode plate used for the same and its using method
JP2015001006A (en) * 2013-06-14 2015-01-05 カヤバ工業株式会社 Power supply member and high-speed plating apparatus with the same
US10006137B2 (en) 2013-06-14 2018-06-26 Kyb Corporation Holding device and high-speed plating machine provided with the same
US10006143B2 (en) 2013-06-14 2018-06-26 Kyb Corporation Power supplying member and high-speed plating machine provided with the same
KR101682519B1 (en) * 2015-06-26 2016-12-07 주식회사 티케이씨 Apparatus for anode of electroplating apparatus

Also Published As

Publication number Publication date
JP3409003B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
EP2604725B1 (en) Method of removing oxide film on surface of copper or copper-base alloy.
JP3913782B2 (en) Method and apparatus for electrochemically treating a workpiece with a treatment liquid
TW490510B (en) Method and apparatus for producing electrolytic copper foil
JP4904097B2 (en) Insoluble anode for metal wire plating and metal wire plating method using the same
US4652346A (en) Apparatus and process for the continuous plating of wide delicate metal foil
CA2384249A1 (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method
JP2001172793A (en) ELECTRODE AND Sn PLATING DEVICE USING THE ELECTRODE
JPH06346270A (en) Electroplating method and split insoluble electrode for electroplating
JP2001140100A (en) Device for electrolyzing metallic sheet and electrode for electrolyzing metallic sheet
JP4797635B2 (en) Tin-plated steel strip manufacturing method and tin-plating cell
JPH06146066A (en) Continuous electrolytic processor
JP5084055B2 (en) Electrolytic degreasing apparatus and electrolytic degreasing method
JP2002038291A (en) Anode for manufacturing metallic foil
KR102535569B1 (en) High Efficiency Plating Device for Coil Steel Plates
JP3697447B2 (en) Sn plating electrode and Sn plating method using the same
JP3749417B2 (en) electrode
JP3361203B2 (en) Soluble anode for electroplating equipment
JP4710619B2 (en) Method for producing tin-plated steel strip and tin-plating cell
TW585932B (en) Method of reducing defects caused by conductor roll surface anomalies using high volume bottom sprays
JPS6052599A (en) Electrolytic method for removing metallic plating from plated steel sheet
JP6558418B2 (en) Electroplated steel sheet manufacturing method and electroplated steel sheet manufacturing apparatus
JPH0730690Y2 (en) Split type insoluble electrode for electroplating
JP2868589B2 (en) Neutral salt electrolytic treatment method for stainless steel strip
JPS63293200A (en) Electroplating method
JP2001064797A (en) Metallic sheet electrolyzing treating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030217

R150 Certificate of patent or registration of utility model

Ref document number: 3409003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term