JP2001172754A - Method of manufacturing for high purity aluminum foil for electrolytic capacitor - Google Patents

Method of manufacturing for high purity aluminum foil for electrolytic capacitor

Info

Publication number
JP2001172754A
JP2001172754A JP35406199A JP35406199A JP2001172754A JP 2001172754 A JP2001172754 A JP 2001172754A JP 35406199 A JP35406199 A JP 35406199A JP 35406199 A JP35406199 A JP 35406199A JP 2001172754 A JP2001172754 A JP 2001172754A
Authority
JP
Japan
Prior art keywords
aluminum foil
cold
electrolytic capacitor
hot
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35406199A
Other languages
Japanese (ja)
Other versions
JP4060501B2 (en
Inventor
Akihiro Yamaguchi
昭弘 山口
Toshio Saito
寿雄 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP35406199A priority Critical patent/JP4060501B2/en
Publication of JP2001172754A publication Critical patent/JP2001172754A/en
Application granted granted Critical
Publication of JP4060501B2 publication Critical patent/JP4060501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing for a high purity aluminum foil capable of giving an electrode foil for electrolytic capacitor having high electrostatic capacity. SOLUTION: An aluminum ingot of >=99.97% purity is prepared. After homogenizing treatment, the ingot is subjected to hot rolling at 99.2-99.8% hot draft, then to cold rolling at 75.0-97.0% cold draft without being process annealed in the course of cold rolling, and finally to final annealing, by which the high purity aluminum foil for electrolytic capacitor is obtained. To be in concrete, an aluminum ingot of 400-600 mm thick is homogenized, hot rolled to a hot rolled sheet of 1.3-3.0 mm thick and then cold rolled without process annealing in the course of cold rolling into a cold rolled aluminum foil of 0.09-0.30 mm thick, and final annealing is applied to this foil, by which the high purity aluminum foil for electrolytic capacitor can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、静電容量の高い電
解コンデンサ用電極箔を得ることのできる電解コンデン
サ用高純度アルミニウム箔の製造方法に関する。特に、
直流エッチング法で静電容量の高い電解コンデンサ高圧
用陽極箔を得ることのできる電解コンデンサ用高純度ア
ルミニウム箔の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity aluminum foil for an electrolytic capacitor capable of obtaining an electrode foil for an electrolytic capacitor having a high capacitance. In particular,
The present invention relates to a method for producing a high-purity aluminum foil for an electrolytic capacitor, which can obtain a high-capacity anode foil for an electrolytic capacitor having a high capacitance by a DC etching method.

【0002】[0002]

【従来の技術】従来より、電解コンデンサ用電極箔を製
造するためには、電解コンデンサ用アルミニウム箔にエ
ッチング処理を施し、箔表面に微細な孔を多数形成し
て、箔表面の表面積を拡大することが行なわれている。
特に、電解コンデンサ高圧用陽極箔を製造するには、電
解コンデンサ用高純度アルミニウム箔に直流エッチング
処理を施し、箔表面に多数の厚み方向に進行する微細な
孔(いわゆるトンネルピット)を形成して、箔表面の表
面積を拡大することが行なわれている。この表面積の拡
大は、電解コンデンサ高圧用陽極箔の静電容量を高める
ためには、最も有効な方法である。
2. Description of the Related Art Conventionally, in order to manufacture an electrode foil for an electrolytic capacitor, an aluminum foil for an electrolytic capacitor is subjected to an etching treatment to form a large number of fine holes in the foil surface, thereby increasing the surface area of the foil surface. Things are going on.
In particular, in order to manufacture an anode foil for an electrolytic capacitor high voltage, a high-purity aluminum foil for an electrolytic capacitor is subjected to a DC etching treatment to form a number of fine holes (so-called tunnel pits) which progress in the thickness direction on the foil surface. It has been practiced to increase the surface area of the foil surface. This increase in surface area is the most effective method for increasing the capacitance of the anode foil for electrolytic capacitor high voltage.

【0003】このようなトンネルピットは、電解コンデ
ンサ用高純度アルミニウム箔表面に生成している(10
0)方位を持つ結晶粒を核として形成される。従って、
アルミニウム箔表面に高密度で多数の(100)方位を
持つ結晶粒が生成しているほど、エッチングによる表面
積の拡大が図れるのである。なお、(100)方位を持
つ結晶粒は、アルミニウム箔表面から裏面に貫通した状
態で存在する場合が多く、エッチング処理が施される
と、アルミニウム箔表面の(100)方位を持つ結晶粒
の部位を核として、トンネルピットが形成されるのであ
る。
[0003] Such tunnel pits are formed on the surface of a high-purity aluminum foil for electrolytic capacitors (10).
0) Crystals having orientations are formed as nuclei. Therefore,
The higher the density of crystal grains having a large number of (100) orientations on the surface of the aluminum foil, the greater the surface area can be increased by etching. The crystal grains having the (100) orientation are often present in a state penetrating from the front surface to the rear surface of the aluminum foil. Tunnel pits are formed around the nucleus.

【0004】このため、従来より、アルミニウム箔に高
密度で多数の(100)方位を持つ結晶粒を生成させる
方法として、以下のような方法が提案されている。即
ち、アルミニウム鋳塊に均質化処理及び熱間圧延を施し
た後、高冷間加工率で冷間圧延し、中間焼鈍を施した後
に、低冷間加工率の仕上冷間圧延を施し、そのあと最終
焼鈍を施して、電解コンデンサ用高純度アルミニウム箔
を得る方法が提案されている。この方法は、高冷間加工
率での冷間圧延後の中間焼鈍で、(100)方位を持つ
結晶粒の核を生成させ、低冷間加工率での仕上冷間圧延
により、核成長の駆動力を大きくすれば、最終焼鈍によ
り、アルミニウム箔に多数の(100)方位を持つ結集
粒を生成させうるとの知見に基づくものである。
[0004] For this reason, the following methods have been conventionally proposed as a method for generating crystal grains having a large number of (100) orientations in an aluminum foil at high density. That is, after subjecting the aluminum ingot to homogenization and hot rolling, cold-rolling at a high cold-working rate, and performing intermediate annealing, then performing finish cold-rolling at a low cold-working rate. A method has been proposed in which a final annealing is performed to obtain a high-purity aluminum foil for an electrolytic capacitor. According to this method, nuclei of crystal grains having a (100) orientation are generated by intermediate annealing after cold rolling at a high cold working rate, and finish cold rolling at a low cold working rate is used to grow nuclei. It is based on the finding that if the driving force is increased, agglomerated grains having a large number of (100) orientations can be generated in the aluminum foil by final annealing.

【0005】具体的には種々の方法が開示されており、
例えば、特公平1−33546号公報には、以下のよう
な方法が開示されている。即ち、厚さ400mmのアル
ミニウム鋳塊に、均質化処理を施し、次いで熱間圧延を
施して厚さ5mm(熱間加工率98.8%)の熱間圧延
上がり板を得る。この熱間圧延上がり板を冷間圧延によ
り0.140mm(冷間加工率97.2%)とした後、
250℃×10時間の条件で中間焼鈍を施す。この後、
仕上冷間圧延を施して、厚さ0.1mm(冷間加工率2
8.6%)にした後、600℃×4時間の条件で最終焼
鈍を施して、電解コンデンサ用高純度アルミニウム箔を
得る方法が開示されている。また、特公昭54−112
42号公報には、高冷間加工率で冷間圧延を終えた冷間
圧延材に、180〜350℃の温度で中間焼鈍を施した
後、冷間加工率5〜35%の仕上冷間圧延を行い、30
0〜650℃の温度で最終焼鈍を行う方法が開示されて
いる。
Specifically, various methods have been disclosed.
For example, Japanese Patent Publication No. 33546/1990 discloses the following method. That is, a 400 mm-thick aluminum ingot is subjected to a homogenization treatment and then hot-rolled to obtain a hot-rolled finished plate having a thickness of 5 mm (hot-working rate of 98.8%). After the hot-rolled sheet is cold-rolled to 0.140 mm (cold working rate of 97.2%),
Intermediate annealing is performed at 250 ° C. × 10 hours. After this,
Finish cold rolling is performed to a thickness of 0.1 mm (cold working rate of 2
8.6%), followed by final annealing at 600 ° C. for 4 hours to obtain a high-purity aluminum foil for electrolytic capacitors. Also, Japanese Patent Publication No. 54-112
No. 42 discloses that a cold-rolled material that has been cold-rolled at a high cold-working rate is subjected to intermediate annealing at a temperature of 180 to 350 ° C., and then to a finish cold-working rate of 5 to 35%. Rolling, 30
A method for performing final annealing at a temperature of 0 to 650 ° C is disclosed.

【0006】[0006]

【発明が解決しようとする課題】ところが、本発明者等
が種々実験を行なっていたところ、このような技術的常
識を覆す結果を得た。即ち、必ずしも冷間加工率が高く
なくても、熱間圧延における熱間加工率がある程度高け
れば、アルミニウム箔に多数の(100)方位を持つ結
晶粒を十分に生成させうることが判明した。本発明者等
は、この知見に基づき、既に特願平10−368791
号に係る発明を提案している。この発明は、純度99.
97%以上のアルミニウム鋳塊に、熱間加工率99.3
〜99.8%の条件で熱間圧延を施した後、冷間圧延,
中間焼鈍,仕上冷間圧延及び最終焼鈍を施すことを特徴
とする電解コンデンサ用高純度アルミニウム箔の製造方
法というものである。
However, the inventors of the present invention have conducted various experiments, and have obtained a result that overturns such technical common sense. That is, it has been found that even if the cold working ratio is not necessarily high, if the hot working ratio in hot rolling is high to some extent, it is possible to sufficiently generate crystal grains having a large number of (100) orientations in the aluminum foil. Based on this finding, the present inventors have already filed Japanese Patent Application No. 10-368791.
The invention according to the above item is proposed. The present invention provides a purity of 99.
99.3% or more of aluminum ingot, hot working ratio 99.3
After performing hot rolling under the condition of 9999.8%,
A method for producing a high-purity aluminum foil for an electrolytic capacitor, which comprises performing intermediate annealing, finish cold rolling, and final annealing.

【0007】本発明者等は、上記した知見に基づき更に
研究を進めた結果、熱間圧延における熱間加工率及び冷
間圧延における冷間加工率の両者を一定の範囲内に調整
すると、中間焼鈍及びそれに続く仕上冷間圧延を施さな
くても、アルミニウム箔に多数の(100)方位を持つ
結晶粒を十分に生成させうることが判明した。本発明
は、このような知見に基づいてなされたものであり、特
願平10−368791号に係る発明で得られるアルミ
ニウム箔と同等のものを、他の方法で得られるようにし
たものである。
As a result of further studies based on the above findings, the present inventors have found that when both the hot working ratio in hot rolling and the cold working ratio in cold rolling are adjusted within a certain range, the intermediate It has been found that the crystal grains having a large number of (100) orientations can be sufficiently generated in the aluminum foil without performing the annealing and the subsequent finish cold rolling. The present invention has been made based on such knowledge, and is intended to obtain, by another method, an aluminum foil equivalent to the aluminum foil obtained by the invention according to Japanese Patent Application No. 10-368791. .

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、純度9
9.97%以上のアルミニウム鋳塊に、均質化処理を施
した後、熱間加工率99.2〜99.8%の条件で熱間
圧延を施し、その後、冷間圧延途中に中間焼鈍を施すこ
となく、冷間加工率75.0〜97.0%の条件で冷間
圧延を施し、次いで最終焼鈍を施すことを特徴とする電
解コンデンサ用高純度アルミニウム箔の製造方法に関す
るものである。
That is, the present invention provides a compound having a purity of 9%.
After applying a homogenization treatment to an aluminum ingot of 9.97% or more, hot rolling is performed under the conditions of a hot working rate of 99.2 to 99.8%, and then intermediate annealing is performed during cold rolling. The present invention relates to a method for producing a high-purity aluminum foil for an electrolytic capacitor, which comprises performing cold rolling under the condition of a cold working ratio of 75.0 to 97.0% without performing the same and then performing final annealing.

【0009】まず、本発明で用いるアルミニウム鋳塊
は、純度が99.97%以上のものである。純度が9
9.97%未満であると、本発明の方法を適用しても、
(100)方位を持つ結晶粒を十分に生成させうること
が困難となる。また、本発明で用いるアルミニウム鋳塊
には、従来、電解コンデンサ用アルミニウム箔を製造す
る際に添加されているFe,Si,Cu等の元素が任意
量添加されていても良い。なお、(100)方位を持つ
結晶粒の生成が十分であるか否かの判断基準は、一応、
アルミニウム箔表面において(100)方位を持つ結晶
粒の占める面積割合(以下、「(100)面占有率」と
言う。)が90%以上であるか否かを目安としている
が、95%以上であれば(100)方位を持つ結晶粒の
生成が十分であると言える。
First, the aluminum ingot used in the present invention has a purity of 99.97% or more. Purity 9
When it is less than 9.97%, even if the method of the present invention is applied,
It is difficult to sufficiently generate crystal grains having the (100) orientation. Further, the aluminum ingot used in the present invention may be added with an arbitrary amount of elements such as Fe, Si, and Cu which have been conventionally added when manufacturing an aluminum foil for an electrolytic capacitor. The criterion for determining whether the generation of crystal grains having the (100) orientation is sufficient is as follows.
It is based on whether or not the area ratio of crystal grains having the (100) orientation on the aluminum foil surface (hereinafter, referred to as “(100) plane occupancy”) is 90% or more. If so, it can be said that the generation of crystal grains having the (100) orientation is sufficient.

【0010】アルミニウム鋳塊の厚さは任意であるが、
一般的に400〜600mmの範囲である。これは、市
場に提供されるアルミニウム鋳塊の厚さが、この範囲の
ものが多いからである。
Although the thickness of the aluminum ingot is arbitrary,
Generally, it is in the range of 400 to 600 mm. This is because the thickness of the aluminum ingot provided on the market is often in this range.

【0011】このアルミニウム鋳塊には、従来公知の温
度条件及び時間で均質化処理が施され、続いて、従来公
知の温度条件で熱間圧延が施される。ただ、本発明にお
いては、この熱間圧延における熱間加工率を、従来公知
の条件よりも高くしているところに特徴がある。即ち、
従来公知の熱間加工率は、概ね98%前後であったの
を、本発明においては、99.2〜99.8%にすると
ころに特徴がある。熱間加工率が99.2%未満になる
と、得られるアルミニウム箔表面の(100)面占有率
が低下する。また、熱間加工率が99.8%を超えるよ
うにすることは、熱間圧延設備を極めて大きな馬力で作
動させなければならず、現実的ではない。なお、熱間加
工率とは、熱間圧延を行なう前のアルミニウム鋳塊の厚
さをt0とし、熱間圧延を終えた熱間圧延上がり板の厚
さをt1とした場合、〔(t0−t1)/t0〕×100で
算出されるものである。
The aluminum ingot is subjected to a homogenizing treatment under a conventionally known temperature condition and time, and then subjected to hot rolling under a conventionally known temperature condition. However, the present invention is characterized in that the hot working ratio in the hot rolling is set higher than conventionally known conditions. That is,
In the present invention, the conventionally known hot working ratio is about 98%, but the present invention is characterized in that it is 99.2 to 99.8%. If the hot working ratio is less than 99.2%, the (100) plane occupation ratio of the obtained aluminum foil surface decreases. Further, making the hot working ratio exceed 99.8% is not realistic because the hot rolling equipment must be operated with extremely large horsepower. In the case with the hot processing rate, the thickness of the aluminum ingot prior to the hot rolling and t 0, the thickness of the hot-rolled sheet having been subjected to the hot rolling was set to t 1, [( t 0 −t 1 ) / t 0 ] × 100.

【0012】一般の400〜600mm厚さのアルミニ
ウム鋳塊を用いた場合、熱間圧延によって、厚さ1.3
〜3.0mmの熱間圧延上がり板を得るのが好ましい。
熱間圧延上がり板の厚さが3.0mmを超えると、得ら
れるアルミニウム箔表面の(100)面占有率が低下す
る傾向が生じる。また、熱間圧延上がり板の厚さを1.
3mm未満にすることは、現状の熱間圧延設備では現実
的ではない。
When a general aluminum ingot having a thickness of 400 to 600 mm is used, a thickness of 1.3 is obtained by hot rolling.
It is preferable to obtain a hot-rolled finished plate of up to 3.0 mm.
When the thickness of the hot-rolled sheet exceeds 3.0 mm, the occupancy of the (100) plane of the surface of the obtained aluminum foil tends to decrease. Further, the thickness of the hot-rolled finished plate is set to 1.
Making it less than 3 mm is not realistic with current hot rolling equipment.

【0013】熱間圧延を終えた熱間圧延上がり板には、
冷間圧延が施される。この冷間圧延における冷間加工率
は、75.0〜97.0%とする。冷間加工率が97.
0%を超えると、熱間圧延時に生成した(100)方位
を持つ結晶粒の核が崩れて、(100)面占有率が低下
する。また、冷間加工率を75.0%未満とすると、一
般に市場に提供されている電解コンデンサ用電極箔の厚
さとならないので、現実的ではない。具体的には、熱間
圧延上がり板の厚さを1.3〜3.0mmとした場合、
これに冷間圧延を施して、厚さ0.09〜0.30mm
の冷間圧延上がりアルミニウム箔を得るのが好ましい。
なお、冷間圧延における冷間加工率とは、冷間圧延が施
される前の熱間圧延上がり板の厚さをt1とし、冷間圧
延上がりアルミニウム箔の厚さをt2とした場合、
〔(t1−t2)/t1〕×100で算出されるものであ
る。また、本発明の範囲外ではあるが、将来、熱間圧延
設備の改良によって、熱間圧延上がり板の厚さを1.3
mm未満の厚さとすることができれば、冷間加工率を7
5.0%未満、例えば10%前後にすることも可能と考
えられる。何故なら、冷間加工率は、熱間圧延時に生成
した(100)方位を持つ結晶粒の核に駆動力を与え、
成長させることのできる程度であれば良いからである。
[0013] The hot-rolled finished plate after hot rolling is:
Cold rolling is performed. The cold working rate in this cold rolling is 75.0 to 97.0%. Cold working rate is 97.
If it exceeds 0%, the nuclei of the crystal grains having the (100) orientation generated during hot rolling collapse, and the (100) plane occupancy decreases. On the other hand, if the cold working ratio is less than 75.0%, the thickness of the electrode foil for an electrolytic capacitor generally provided on the market does not become the thickness, which is not practical. Specifically, when the thickness of the hot-rolled finished sheet is set to 1.3 to 3.0 mm,
This is subjected to cold rolling to a thickness of 0.09 to 0.30 mm
It is preferable to obtain an aluminum foil after cold rolling.
Note that the cold working ratio in the cold rolling, the thickness of the hot-rolled plate before the cold rolling is performed as t 1, when the thickness of the cold-rolled aluminum foil was t 2 ,
It is calculated by [(t 1 −t 2 ) / t 1 ] × 100. Further, although it is outside the scope of the present invention, in the future, the thickness of the hot-rolled finished sheet will be reduced to 1.3 by improving hot rolling equipment.
If the thickness can be reduced to less than 7 mm, the cold working rate can be reduced to 7
It is thought that it can be less than 5.0%, for example, around 10%. This is because the cold working rate gives a driving force to the nuclei of the (100) crystal grains generated during hot rolling,
This is because it is only necessary to be able to grow.

【0014】冷間圧延の後、中間焼鈍及びそれに続く仕
上冷間圧延を施すことなく、冷間圧延上がりアルミニウ
ム箔に最終焼鈍が施される。最終焼鈍の温度条件は、従
来採用されている条件で良い。具体的には、530〜5
80℃であるのが好ましい。また、最終焼鈍の時間も、
従来採用されている時間で良く、具体的には3〜10時
間程度である。この最終焼鈍によって、(100)方位
を持つ結晶粒がアルミニウム箔に高密度に生成するので
ある。
After cold rolling, final annealing is performed on the cold-rolled aluminum foil without performing intermediate annealing and subsequent finish cold rolling. The temperature conditions for the final annealing may be those conventionally employed. Specifically, 530-5
Preferably it is 80 ° C. Also, the time of final annealing,
The time conventionally used may be sufficient, and specifically, about 3 to 10 hours. By this final annealing, crystal grains having the (100) orientation are formed at a high density in the aluminum foil.

【0015】更に、最終焼鈍の昇温速度を50〜500
℃/hとするのが好ましい。最終焼鈍時に、この範囲内
の昇温速度を採用すると、得られる電解コンデンサ用高
純度アルミニウム箔表面の(100)面占有率をより高
めることができ、例えば、97.0%以上にしやすくな
る。昇温速度が50℃/h未満であると、(100)面
占有率が若干低下し、95.0〜97.0%程度になり
やすい。また、昇温速度が500℃/hを超えると、
(100)方位以外の異方位を持つ粗大な結晶粒が成長
する恐れがあり、(100)面占有率が低下する傾向が
生じる。
Further, the rate of temperature rise in the final annealing is 50 to 500.
C / h is preferred. At the time of the final annealing, if the heating rate within this range is adopted, the (100) plane occupancy of the surface of the high-purity aluminum foil for an electrolytic capacitor to be obtained can be further increased, for example, to 97.0% or more. If the rate of temperature rise is less than 50 ° C./h, the (100) plane occupancy slightly decreases and tends to be about 95.0 to 97.0%. Also, if the heating rate exceeds 500 ° C./h,
Coarse crystal grains having a different orientation other than the (100) orientation may grow, and the (100) plane occupancy tends to decrease.

【0016】以上のようにして得られた、電解コンデン
サ用高純度アルミニウム箔には、従来公知のエッチング
処理が施され、電解コンデンサ用電極箔として用いられ
る。特に、直流エッチング処理を施し、電解コンデンサ
高圧用陽極箔として好適に用いられる。なお、最終的に
得られる電解コンデンサ用高純度アルミニウム箔の厚さ
は、一般的に、90〜300μm程度である。
The high-purity aluminum foil for an electrolytic capacitor obtained as described above is subjected to a conventionally known etching treatment and used as an electrode foil for an electrolytic capacitor. In particular, it is subjected to a DC etching treatment, and is suitably used as an anode foil for a high voltage electrolytic capacitor. In addition, the thickness of the high-purity aluminum foil for an electrolytic capacitor finally obtained is generally about 90 to 300 μm.

【0017】[0017]

【実施例】以下、実施例に基づいて本発明を説明する
が、本発明は実施例に限定されるものではない。本発明
は、熱間圧延における熱間加工率及び冷間圧延における
冷間加工率の両者を一定の範囲内に調整すると、従来の
技術的常識に反して、中間焼鈍及びそれに続く仕上冷間
圧延を施さなくても、(100)面占有率の高いアルミ
ニウム箔が得られるとの知見に基づいてなされたもので
あるとして、解釈されるべきである。
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples. When the present invention adjusts both the hot working ratio in the hot rolling and the cold working ratio in the cold rolling within a certain range, contrary to the conventional technical knowledge, the intermediate annealing and the subsequent finish cold rolling Should be interpreted as having been made based on the finding that an aluminum foil having a high (100) plane occupancy ratio can be obtained without performing the above.

【0018】実施例1 Fe:10ppm,Si:12ppm,Cu:50pp
m,Pb:0.5ppm及びその他の不可避不純物を含
む99.99%純度のアルミニウム鋳塊(厚さ500m
m,巾1050mm,長さ3000mm)に、600℃
にて5時間の均質化処理を施した後、熱間圧延を繰り返
し施して、熱間加工率が99.6%となるようにし、厚
さ2.0mmの熱間圧延上がり板を得た。この熱間圧延
上がり板に、冷間圧延を繰り返し施して、冷間加工率が
94.7%となるようにし、厚さ0.106mmの冷間
圧延上がりアルミニウム箔を得た。その後、この冷間圧
延上がりアルミニウム箔に、昇温速度を100℃/hと
し、温度550℃で5時間の条件で最終焼鈍を施し、電
解コンデンサ用高純度アルミニウム箔を得た。
Example 1 Fe: 10 ppm, Si: 12 ppm, Cu: 50 pp
m, Pb: 99.99% pure aluminum ingot containing 0.5 ppm and other unavoidable impurities (thickness: 500 m
m, width 1050mm, length 3000mm) and 600 ℃
After performing a homogenization treatment for 5 hours, hot rolling was repeatedly performed so that the hot working ratio was 99.6%, and a hot-rolled finished plate having a thickness of 2.0 mm was obtained. The hot-rolled finished sheet was repeatedly subjected to cold rolling so that the cold-working rate became 94.7%, and a cold-rolled aluminum foil having a thickness of 0.106 mm was obtained. Thereafter, the cold-rolled aluminum foil was subjected to final annealing at a temperature rising rate of 100 ° C./h at a temperature of 550 ° C. for 5 hours to obtain a high-purity aluminum foil for an electrolytic capacitor.

【0019】この電解コンデンサ用高純度アルミニウム
箔表面の(100)面占有率を測定するために、箔表面
を化学エッチングして結晶粒を現出させ、顕微鏡写真を
撮影した。この顕微鏡写真に基づいて、一定面積に占め
る(100)方位を持つ結晶粒の面積を測定することに
よって、アルミニウム箔表面の(100)面占有率を求
め、その結果を表1に示した。
In order to measure the (100) plane occupancy of the surface of the high-purity aluminum foil for an electrolytic capacitor, the foil surface was chemically etched to reveal crystal grains, and a micrograph was taken. Based on this micrograph, the area of the crystal grains having the (100) orientation occupying a certain area was measured to determine the (100) plane occupancy of the aluminum foil surface, and the results are shown in Table 1.

【0020】実施例2 熱間圧延上がり板の厚さを3.0mmとし、冷間圧延上
がりアルミニウム箔の厚さを0.30mmとする他は、
実施例1と同様の方法により、電解コンデンサ用高純度
アルミニウム箔を得た。
Example 2 Except that the thickness of the hot-rolled sheet was 3.0 mm and the thickness of the cold-rolled aluminum foil was 0.30 mm,
A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1.

【0021】実施例3 冷間圧延上がりアルミニウム箔の厚さを0.09mmと
する他は、実施例2と同様の方法により、電解コンデン
サ用高純度アルミニウム箔を得た。
Example 3 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 2 except that the thickness of the cold-rolled aluminum foil was changed to 0.09 mm.

【0022】実施例4 熱間圧延上がり板の厚さを1.3mmとする他は、実施
例2と同様の方法により、電解コンデンサ用高純度アル
ミニウム箔を得た。
Example 4 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 2 except that the thickness of the hot-rolled finished plate was 1.3 mm.

【0023】実施例5 冷間圧延上がりアルミニウム箔の厚さを0.09mmと
する他は、実施例4と同様の方法により、電解コンデン
サ用高純度アルミニウム箔を得た。
Example 5 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 4, except that the thickness of the cold-rolled aluminum foil was 0.09 mm.

【0024】実施例6 最終焼鈍の昇温速度を50℃/hとする他は、実施例1
と同様の方法により、電解コンデンサ用高純度アルミニ
ウム箔を得た。
Example 6 Example 1 was repeated except that the heating rate of the final annealing was set to 50 ° C./h.
A high-purity aluminum foil for electrolytic capacitors was obtained in the same manner as described above.

【0025】実施例7 最終焼鈍の昇温速度を500℃/hとする他は、実施例
1と同様の方法により、電解コンデンサ用高純度アルミ
ニウム箔を得た。
Example 7 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1, except that the rate of temperature rise in the final annealing was 500 ° C./h.

【0026】実施例8 最終焼鈍の昇温速度を20℃/hとする他は、実施例1
と同様の方法により、電解コンデンサ用高純度アルミニ
ウム箔を得た。
Example 8 Example 1 was repeated except that the heating rate of the final annealing was set at 20 ° C./h.
A high-purity aluminum foil for electrolytic capacitors was obtained in the same manner as described above.

【0027】実施例9 鋳塊厚さを600mm、熱間圧延上がり板の厚さを3.
0mm、冷間圧延上がりアルミニウム箔の厚さを0.1
06mmとする他は、実施例1と同様の方法により、電
解コンデンサ用高純度アルミニウム箔を得た。
Example 9 The thickness of the ingot was 600 mm, and the thickness of the hot-rolled sheet was 3.
0 mm, cold-rolled aluminum foil thickness of 0.1
A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1 except that the thickness was set to 06 mm.

【0028】実施例10 鋳塊厚さを400mm、熱間圧延上がり板の厚さを3.
0mm、冷間圧延上がりアルミニウム箔の厚さを0.1
06mmとする他は、実施例1と同様の方法により、電
解コンデンサ用高純度アルミニウム箔を得た。
Example 10 The thickness of the ingot was 400 mm, and the thickness of the hot-rolled sheet was 3.
0 mm, cold-rolled aluminum foil thickness of 0.1
A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1 except that the thickness was set to 06 mm.

【0029】実施例11 Fe,Si,Cu,Pb及びその他の不可避不純物を含
む99.97%純度のアルミニウム鋳塊を用い、最終焼
鈍の昇温速度を50℃/hとする他は、実施例1と同様
の方法により、電解コンデンサ用高純度アルミニウム箔
を得た。
Example 11 An aluminum ingot having a purity of 99.97% containing Fe, Si, Cu, Pb and other unavoidable impurities was used, and the heating rate of the final annealing was set at 50 ° C./h. In the same manner as in Example 1, a high-purity aluminum foil for an electrolytic capacitor was obtained.

【0030】比較例1 Fe,Si,Cu,Pb及びその他の不可避不純物を含
む99.92%純度のアルミニウム鋳塊を用いる他は、
実施例1と同様の方法により、電解コンデンサ用高純度
アルミニウム箔を得た。
Comparative Example 1 An aluminum ingot of 99.92% purity containing Fe, Si, Cu, Pb and other unavoidable impurities was used.
A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 1.

【0031】比較例2 熱間圧延上がり板の厚さを5.0mmとする他は、実施
例2と同様の方法により、電解コンデンサ用高純度アル
ミニウム箔を得た。
Comparative Example 2 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 2 except that the thickness of the hot-rolled finished plate was 5.0 mm.

【0032】比較例3 冷間圧延上がりアルミニウム箔の厚さを0.07mmと
する他は、実施例2と同様の方法により、電解コンデン
サ用高純度アルミニウム箔を得た。
Comparative Example 3 A high-purity aluminum foil for an electrolytic capacitor was obtained in the same manner as in Example 2 except that the thickness of the cold-rolled aluminum foil was changed to 0.07 mm.

【0033】なお、実施例2〜11及び比較例1〜3の
各々においても、熱間加工率及び冷間加工率を、表1に
示しておいた。また、各々の例においても、実施例1と
同様にして、アルミニウム箔表面の(100)面占有率
を測定し、その結果を表1に示しておいた。
In each of Examples 2 to 11 and Comparative Examples 1 to 3, the hot working ratio and the cold working ratio are shown in Table 1. Also in each example, the (100) plane occupancy of the aluminum foil surface was measured in the same manner as in Example 1, and the results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果から明らかなように、実施例に
係る方法で得られた電解コンデンサ用高純度アルミニウ
ム箔は、比較例に係る方法で得られた電解コンデンサ用
高純度アルミニウム箔に比べて、その表面における(1
00)面占有率が高く、エッチング処理したとき、表面
積をより拡大することができ、高静電容量の電解コンデ
ンサ用電極箔が得られることが分かる。
As is clear from the results in Table 1, the high-purity aluminum foil for an electrolytic capacitor obtained by the method according to the example is higher than the high-purity aluminum foil for an electrolytic capacitor obtained by the method according to the comparative example. , On its surface (1
00) It can be seen that the surface occupancy is high, the surface area can be further increased when the etching treatment is performed, and an electrode foil for an electrolytic capacitor having a high capacitance can be obtained.

【0036】[0036]

【作用】本発明において、熱間圧延における熱間加工率
をある程度高くし、その後、適切な冷間加工率で冷間圧
延を行うと、中間焼鈍を省略しても、得られるアルミニ
ウム箔表面における(100)面占有率が高くなる理由
は定かではない。しかしながら、上記実施例及び比較例
に見られるように、現実に、熱間加工率を一定の範囲で
高くし、且つ、冷間加工率を一定の範囲で行えば、中間
焼鈍を省略しても、アルミニウム箔表面における(10
0)面占有率が高くなっている。
In the present invention, if the hot working ratio in hot rolling is increased to some extent and then cold rolling is performed at an appropriate cold working ratio, even if the intermediate annealing is omitted, the surface of the obtained aluminum foil can be obtained. It is not clear why the (100) plane occupancy increases. However, as can be seen in the above Examples and Comparative Examples, actually, if the hot working ratio is increased in a certain range, and if the cold working ratio is performed in a certain range, the intermediate annealing can be omitted. , On the aluminum foil surface (10
0) The surface occupancy is high.

【0037】[0037]

【発明の効果】従って、本発明に係る方法を採用すれ
ば、表面における(100)面占有率の高い電解コンデ
ンサ用高純度アルミニウム箔を得ることができ、エッチ
ングによる表面積の拡大を図ることができ、高静電容量
を持つ電解コンデンサ用電極箔が得られるという効果を
奏する。特に、直流エッチングにより、トンネルピット
を多数且つ高密度に形成させることができ、高静電容量
を持つ電解コンデンサ高圧用陽極箔が得られるという効
果を奏する。
Therefore, by employing the method according to the present invention, it is possible to obtain a high-purity aluminum foil for an electrolytic capacitor having a high (100) plane occupancy on the surface, and to increase the surface area by etching. This has the effect that an electrode foil for an electrolytic capacitor having a high capacitance can be obtained. In particular, a large number and high density of tunnel pits can be formed by DC etching, and an effect is obtained that an anode foil for electrolytic capacitor high voltage having high capacitance can be obtained.

【0038】また、本発明に係る方法を採用すれば、中
間焼鈍及びそれに続く仕上冷間圧延を省略することがで
き、エッチング性の良好な電解コンデンサ用高純度アル
ミニウム箔の製造を合理化しうるという効果をも奏す
る。
Further, if the method according to the present invention is adopted, the intermediate annealing and the subsequent finish cold rolling can be omitted, and the production of high-purity aluminum foil for electrolytic capacitors with good etching properties can be rationalized. It also has an effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 680 C22F 1/00 686Z 686 691A 691 691B 694A 694 H01G 9/04 337 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 680 C22F 1/00 686Z 686 691A 691 691B 694A 694 H01G 9/04 337

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 純度99.97%以上のアルミニウム鋳
塊に、均質化処理を施した後、熱間加工率99.2〜9
9.8%の条件で熱間圧延を施し、その後、冷間圧延途
中に中間焼鈍を施すことなく、冷間加工率75.0〜9
7.0%の条件で冷間圧延を施し、次いで最終焼鈍を施
すことを特徴とする電解コンデンサ用高純度アルミニウ
ム箔の製造方法。
An aluminum ingot having a purity of 99.97% or more is subjected to a homogenization treatment, and then a hot working ratio of 99.2 to 9 is obtained.
Hot rolling is performed under the condition of 9.8%, and thereafter, the cold working rate is 75.0 to 9 without performing intermediate annealing during cold rolling.
A method for producing a high-purity aluminum foil for electrolytic capacitors, wherein cold rolling is performed under the condition of 7.0%, and then final annealing is performed.
【請求項2】 純度99.97%以上で厚さ400〜6
00mmのアルミニウム鋳塊に、均質化処理を施した
後、熱間圧延を施して、厚さ1.3〜3.0mmの熱間
圧延上がり板を得、次いで該熱間圧延上がり板に、途中
に中間焼鈍を施すことなく冷間圧延を施して、厚さ0.
09〜0.30mmの冷間圧延上がりアルミニウム箔を
得た後、最終焼鈍を施すことを特徴とする電解コンデン
サ用高純度アルミニウム箔の製造方法。
2. A thickness of 400 to 6 with a purity of 99.97% or more.
The aluminum ingot of 00 mm is subjected to a homogenization treatment and then subjected to hot rolling to obtain a hot-rolled sheet having a thickness of 1.3 to 3.0 mm. Cold-rolled without intermediate annealing to a thickness of 0.1 mm.
A method for producing a high-purity aluminum foil for an electrolytic capacitor, comprising subjecting a cold-rolled aluminum foil of 09 to 0.30 mm to final annealing.
【請求項3】 最終焼鈍の温度条件が530〜580℃
であり、その昇温速度を50〜500℃/hとする請求
項1又は2記載の電解コンデンサ用高純度アルミニウム
箔の製造方法。
3. The final annealing temperature condition is 530 to 580 ° C.
The method for producing a high-purity aluminum foil for an electrolytic capacitor according to claim 1 or 2, wherein the heating rate is 50 to 500 ° C / h.
JP35406199A 1999-12-14 1999-12-14 Method for producing high-purity aluminum foil for electrolytic capacitors Expired - Fee Related JP4060501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35406199A JP4060501B2 (en) 1999-12-14 1999-12-14 Method for producing high-purity aluminum foil for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35406199A JP4060501B2 (en) 1999-12-14 1999-12-14 Method for producing high-purity aluminum foil for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2001172754A true JP2001172754A (en) 2001-06-26
JP4060501B2 JP4060501B2 (en) 2008-03-12

Family

ID=18435041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35406199A Expired - Fee Related JP4060501B2 (en) 1999-12-14 1999-12-14 Method for producing high-purity aluminum foil for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP4060501B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153347A (en) * 2006-12-15 2008-07-03 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor and its manufacturing method
CN100441714C (en) * 2003-03-07 2008-12-10 东洋铝株式会社 Aluminium foil for electrolytic capacitor, and producing method thereof
JP2009062594A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material
JP2009062595A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material
JP2009120963A (en) * 2002-08-21 2009-06-04 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode
CN114669622A (en) * 2022-03-22 2022-06-28 浙江永杰铝业有限公司 Preparation method of battery aluminum foil and battery aluminum foil

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120963A (en) * 2002-08-21 2009-06-04 Showa Denko Kk Manufacturing method of aluminum material for electrolytic capacitor electrode
CN100441714C (en) * 2003-03-07 2008-12-10 东洋铝株式会社 Aluminium foil for electrolytic capacitor, and producing method thereof
JP2008153347A (en) * 2006-12-15 2008-07-03 Mitsubishi Alum Co Ltd Aluminum foil for electrolytic capacitor and its manufacturing method
JP2009062594A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material
JP2009062595A (en) * 2007-09-07 2009-03-26 Sumitomo Light Metal Ind Ltd Aluminum foil material
CN114669622A (en) * 2022-03-22 2022-06-28 浙江永杰铝业有限公司 Preparation method of battery aluminum foil and battery aluminum foil
CN114669622B (en) * 2022-03-22 2023-09-29 浙江永杰铝业有限公司 Preparation method of battery aluminum foil and battery aluminum foil

Also Published As

Publication number Publication date
JP4060501B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP2004250772A (en) Aluminum material for electrolytic capacitor electrode, manufacturing method therefor and electrolytic capacitor
JP2001172754A (en) Method of manufacturing for high purity aluminum foil for electrolytic capacitor
JPH05279815A (en) Production of aluminum foil for electrolytic capacitor anode
JP2803762B2 (en) Manufacturing method of aluminum foil for electrolytic capacitor
JPH1136054A (en) Production of aluminum foil for electrode of electrolytic capacitor
JPH02270928A (en) Aluminum foil for anode of chemical condenser and its manufacture
JP3776788B2 (en) Aluminum foil for electrolytic capacitor electrode and manufacturing method thereof
JP3959106B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP2000192207A (en) Production of high purity aluminum foil for electrolytic capacitor
JP2002173748A (en) Method for producing high purity aluminum foil
JPH06145923A (en) Manufacture of aluminum foil for electrolytic condenser anode
JP4916605B2 (en) Aluminum material for electrolytic capacitor electrode, aluminum foil, and method for producing aluminum foil
JP3496160B2 (en) Method for producing aluminum alloy foil for electrolytic capacitor electrode
JP2907392B2 (en) Manufacturing method of aluminum foil for cathode of electrolytic capacitor
JP2000144352A (en) Production of aluminum foil for electrode of electrolytic capacitor
JP3244131B2 (en) Aluminum alloy foil for electrolytic capacitor electrode and method for producing the same
JP5053539B2 (en) Aluminum alloy material for electrolytic capacitor and method for producing the same, method for producing electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPH0133546B2 (en)
JP3203666B2 (en) Manufacturing method of aluminum alloy foil for anode of electrolytic capacitor
JP4539911B2 (en) Aluminum foil for electrode capacitor anode and manufacturing method thereof
JP3899479B2 (en) Aluminum foil for electrolytic capacitor electrode
JPH05311360A (en) Manufacture of aluminum alloy foil for electrode of electrolytic capacitor
JP4993809B2 (en) Hard aluminum foil for electrolytic capacitor electrodes
JP2006144122A (en) Aluminum material for electrolytic capacitor and its production method, production method of electrode material for electrolytic capacitor, anode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP3865817B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4060501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees