JP2001172752A - Nonoriented silicon steel sheet for magnet-embedded-type motor, and its manufacturing method - Google Patents

Nonoriented silicon steel sheet for magnet-embedded-type motor, and its manufacturing method

Info

Publication number
JP2001172752A
JP2001172752A JP35807299A JP35807299A JP2001172752A JP 2001172752 A JP2001172752 A JP 2001172752A JP 35807299 A JP35807299 A JP 35807299A JP 35807299 A JP35807299 A JP 35807299A JP 2001172752 A JP2001172752 A JP 2001172752A
Authority
JP
Japan
Prior art keywords
steel sheet
oxide layer
iron
magnet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35807299A
Other languages
Japanese (ja)
Other versions
JP4116748B2 (en
Inventor
Takahide Shimazu
高英 島津
Hiroaki Sato
浩明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35807299A priority Critical patent/JP4116748B2/en
Publication of JP2001172752A publication Critical patent/JP2001172752A/en
Application granted granted Critical
Publication of JP4116748B2 publication Critical patent/JP4116748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented silicon steel sheet in which a problem of positive utilization of scrap iron required from the standpoint of global environmental problem is solved and also problems of rigidity, punchability, magnetic properties, etc., of nonoriented silicon steel sheet as intrinsic problems of a rotor of a magnet-embedded-type motor are solved, and its manufacturing method. SOLUTION: The nonoriented silicon steel sheet for a magnet-emedded-type motor has a composition consisting of, by weight, <=0.005%; C, 1.6-2.8% Si, <=0.5% Mn, <=0.05% P, <=0.002% S, 1-4% Al, <=0.004% N, 0.05-0.7% Cu, 0.01-0.2% Ni, 0.01-0.2% Cr, 0.003-0.1% Sn and the balance essentially iron and also has 80-170 μm grain size, <=0.5 μm thickness of internal oxidized layer, and (260 to 370) N/mm2 yield point strength. This steel sheet is manufactured by subjecting a hot rolled plate to annealing, to cold rolling, and then to annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄リサイクルを可
能にする成分系を前提とした、磁石埋設型のモータに最
適な無方向性電磁鋼板に関し、特に、従来の課題であっ
た打ち抜き加工性や磁気特性の向上を図った磁石埋設型
モータ用無方向性電磁鋼板及びその製造方法に係るもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet which is optimal for a magnet embedded type motor on the premise of a component system capable of recycling iron, and more particularly to a punching workability which has been a conventional problem. The present invention relates to a non-oriented electrical steel sheet for an embedded magnet type motor with improved magnetic properties and a method for manufacturing the same.

【0002】[0002]

【従来の技術】地球資源が枯渇するかも知れないとの近
未来的な状況の中で、色々な分野で資源の再利用の動き
が急である。このため、鉄鋼業でも各種の鉄スクラッ
プ、例えば自動車、洗濯機、エアコンなどを製鉄原料と
して利用する必要が生じてきている。このためには、従
来有害とされてきたCu,Ni,Cr,Snなどのスク
ラップに含有する成分を積極利用しなければならない。
2. Description of the Related Art In a near-futuristic situation where global resources may be depleted, there is a rapid movement to reuse resources in various fields. For this reason, in the iron and steel industry, it has become necessary to use various iron scraps, for example, automobiles, washing machines, air conditioners, and the like as iron raw materials. For this purpose, components contained in scrap, such as Cu, Ni, Cr, and Sn, which have conventionally been regarded as harmful, must be actively used.

【0003】一方で、同じ地球資源問題から、エネルギ
ーの無駄使いをなくそうとの動きも強まっている。モー
タの分野でも、例えば一般家庭用のエアコンに見られる
ように、消費電力低下による電気代が安いものが求めら
れている。このため、モータの設計においても消費電力
を少なくすべく改良が計られてきた。従来のモータは殆
どが誘導モータであり、この誘導モータは回転子にアル
ミダイキャストを施し、このアルミに誘導電流を流す方
式であった。しかしながら、近年の日本においては、効
率の観点からインバータ制御化が進み、更には回転子に
永久磁石を埋め込んだ、いわゆる磁石埋設型DCインバ
ータ制御モータと呼ばれる形式に変わりつつある。
On the other hand, due to the same problem of earth resources, there is a growing movement to eliminate waste of energy. In the field of motors as well, for example, as seen in general household air conditioners, there is a demand for ones that reduce power consumption due to reduced power consumption. For this reason, improvements have been made in motor design to reduce power consumption. Most conventional motors are induction motors, and this induction motor employs a method in which an aluminum die-cast is applied to a rotor and an induction current is caused to flow through the aluminum. However, in recent years in Japan, inverter control has been advanced from the viewpoint of efficiency, and furthermore, it has been changed to a so-called magnet embedded type DC inverter control motor in which a permanent magnet is embedded in a rotor.

【0004】ところで、今までこの磁石埋設型回転子に
用いられる無方向性電磁鋼板の第一の課題は、高速回転
での遠心力で磁石が飛び出してモータが破壊されないた
めの必要最低限の強度である。このためには、降伏点強
度で260Mpa以上が必要とされている。高強度にす
るために、従来はSi量を上げて固溶体強化を行う手段
が採用されていた。しかしながらSiが増加すると、打
ち抜き金型の摩耗が激しくなって打ち抜き作業性が劣化
していた。これが第二の課題であった。即ち、Siの活
用によるモータの破壊防止と打抜き性の改善とは二律相
反する現象であった。更に、第三の課題はモータ効率改
善、特に固定子(ステータ)でのインバータ制御での高
周波鉄損の更なる低減である。なお、回転子と固定子は
通常、同一のコイルから打ち抜かれることが多いので、
回転子と固定子との両者を満足させる特性が無方向性電
磁鋼板には要求される。
[0004] The first problem of the non-oriented electrical steel sheet used in the magnet-embedded rotor is that it has the minimum necessary strength to prevent the motor from being broken by the centrifugal force of high-speed rotation, which causes the magnet to fly out. It is. For this purpose, a yield point strength of 260 Mpa or more is required. Conventionally, a means for strengthening a solid solution by increasing the amount of Si has been employed to increase the strength. However, when the amount of Si increases, the abrasion of the punching die becomes severe, and the punching workability deteriorates. This was the second task. In other words, prevention of motor destruction and improvement of punching performance by utilizing Si are two mutually exclusive phenomena. Further, a third problem is to improve motor efficiency, particularly to further reduce high-frequency iron loss in inverter control in a stator (stator). Since the rotor and the stator are usually punched from the same coil,
Characteristics that satisfy both the rotor and the stator are required for non-oriented electrical steel sheets.

【0005】一方、上記したように地球環境問題から不
純物とされてきたCu,Ni,Cr,Snなどを積極活
用しなければならないが、上記の磁石埋設型モータ用無
方向性電磁鋼板などの超高級機能性鋼板に、これらのC
u,Ni,Cr,Snなどを含有させることは従来、疵
の問題や磁気特性への懸念から不可能と考えられてき
た。その理由の一つとしては、実験室レベルでの研究で
はうまく行っても、実際の工場を通板してみると打抜き
性や高周波鉄損特性に劣化の大きいものがしばしば発生
して、その原因が究明出来ていなかったためである。即
ち、これらの課題を同時に解決する無方向性電磁鋼板は
今まで提案されていなかった。
On the other hand, Cu, Ni, Cr, Sn, etc., which have been considered as impurities due to global environmental problems as described above, must be actively utilized. These C
It has heretofore been considered impossible to contain u, Ni, Cr, Sn and the like due to the problem of flaws and concerns about magnetic properties. One of the reasons is that even if the research at the laboratory level works well, when passing through an actual factory, the punching properties and high-frequency iron loss characteristics often deteriorate greatly, Was not ascertained. That is, a non-oriented electrical steel sheet that simultaneously solves these problems has not been proposed.

【0006】なお特開平8−97023号公報では、S
bを添加することで酸化層を少なくして磁気特性を改善
することが開示されている。しかし、Sbは高価な上、
人体に有害でもあること、また熱延板もしくは熱延板焼
鈍後のスケール残り量が議論されているが、それは最表
層に存在する酸化層のことであり、本発明で重要なイン
バータ制御用の高周波用途には意味のない酸化層であっ
たため、利用されることがなかった。また、K.Matsmura
とB.Fukuda:IEEE Trans.mag.20(1984)1533でも酸化層の
ことが述べられているが、これも最表層から存在する酸
化層のことであった。なお、無方向性電磁鋼板として知
られる製品板厚は0.1〜1mmである。
In Japanese Patent Application Laid-Open No. Hei 8-97023, S
It is disclosed that the addition of b improves the magnetic properties by reducing the oxide layer. However, Sb is expensive and
It is also harmful to the human body, and the amount of scale remaining after hot-rolled sheet or hot-rolled sheet annealing is discussed. Since the oxide layer was meaningless for high frequency applications, it was not used. Also, K. Matsmura
And B. Fukuda: IEEE Trans.mag. 20 (1984) 1533 also mentions an oxide layer, but this was also an oxide layer existing from the outermost layer. The thickness of a product known as a non-oriented electrical steel sheet is 0.1 to 1 mm.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、地球環境問題からの鉄スクラップの積極活用課題を
解決し、更には磁石埋設型モータの固有問題であった無
方向性電磁鋼板の剛性、打抜き性、磁気特性などを抜本
的に解決する無方向性電磁鋼板、及びその製造方法を提
供するものである。
SUMMARY OF THE INVENTION In view of the above, the present invention solves the problem of actively utilizing steel scrap from global environmental issues, and furthermore, a non-oriented electrical steel sheet which is an inherent problem of a magnet embedded type motor. The present invention provides a non-oriented electrical steel sheet that fundamentally solves the rigidity, punching property, magnetic characteristics, and the like of a steel sheet, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明の要旨とするところは以下の通りである。 (1)重量%で、 C ≦0.005%、 Si:1.6〜2.8%、 Mn≦0.5%、 P ≦0.05%、 S ≦0.002%、 Al:1〜4%、 N ≦0.004%、 Cu:0.05〜0.7%、 Ni:0.01〜0.2%、 Cr:0.01〜0.2%、 Sn:0.003〜0.1% を含有し、残部が実質的に鉄からなり、結晶粒径が80
〜170μmで、内部酸化層厚み≦0.5μm、降伏点
強度:260〜370N/mm2 、であることを特徴とする
磁石埋設型のモータ用無方向性電磁鋼板。 (2)重量%で、 C ≦0.005%、 Si:1.6〜2.8%、 Mn≦0.5%、 P ≦0.05%、 S ≦0.002%、 Al:1〜4%、 N ≦0.004%、 Cu:0.05〜0.7%、 Ni:0.01〜0.2%、 Cr:0.01〜0.2%、 Sn:0.003〜0.1% を含有し、残部が実質的に鉄からなる熱延板を焼鈍し、
冷延を行ってから、焼鈍して、結晶粒径を80〜170
μmとし、内部酸化層厚み≦0.5μm、降伏点強度:
260〜370N/mm2 とすることを特徴とする磁石埋設
型のモータ用無方向性電磁鋼板の製造方法。
The gist of the present invention to solve the above problems is as follows. (1) By weight%, C ≦ 0.005%, Si: 1.6-2.8%, Mn ≦ 0.5%, P ≦ 0.05%, S ≦ 0.002%, Al: 1 4%, N ≦ 0.004%, Cu: 0.05 to 0.7%, Ni: 0.01 to 0.2%, Cr: 0.01 to 0.2%, Sn: 0.003 to 0 0.1%, the balance substantially consisting of iron and having a crystal grain size of 80%.
A non-oriented electrical steel sheet for a motor with an embedded magnet, characterized in that the thickness of the inner oxide layer is 0.5 μm or less and the yield strength is 260 to 370 N / mm 2 . (2) In terms of% by weight, C ≦ 0.005%, Si: 1.6 to 2.8%, Mn ≦ 0.5%, P ≦ 0.05%, S ≦ 0.002%, Al: 1 to 1 4%, N ≦ 0.004%, Cu: 0.05 to 0.7%, Ni: 0.01 to 0.2%, Cr: 0.01 to 0.2%, Sn: 0.003 to 0 A hot-rolled sheet containing 0.1%, with the balance substantially consisting of iron,
After cold rolling, annealing is performed to reduce the crystal grain size to 80 to 170.
μm, internal oxide layer thickness ≦ 0.5 μm, yield point strength:
A method for producing a non-oriented electrical steel sheet for a motor with embedded magnets, wherein the non-oriented electrical steel sheet has a thickness of 260 to 370 N / mm 2 .

【0009】本発明のポイントは3点ある。一つは、打
抜き性の金型摩耗を少なくするには鋼板の降伏点を小さ
くすべきこと、このためにはSiよりもAlを積極活用
したほうが良いこと、更には、Cu,Ni,Cr,Sn
の4種を含有する鋼板で発生しやすい内部酸化層を少な
くすることが重要である。二点目は、鉄損を改善するに
は、従来公知の結晶粒径制御以外に内部酸化層も効いて
いること、特に高周波鉄損にこの内部酸化層が重要であ
る。三点目は、これらの降伏点、内部酸化層などを制御
することは、工業的に充分可能なことである。
There are three points of the present invention. One is that the yield point of the steel sheet should be reduced in order to reduce the die wear of the punching property. For this purpose, it is better to utilize Al rather than Si. Sn
It is important to reduce the internal oxide layer that is likely to be generated in a steel sheet containing the above four types. Secondly, in order to improve iron loss, an internal oxide layer is effective in addition to the conventionally known control of crystal grain size, and this internal oxide layer is particularly important for high-frequency iron loss. Third, it is industrially sufficiently possible to control these yield points, internal oxide layers, and the like.

【0010】[0010]

【発明の実施の形態】以下、本発明の限定理由について
説明する。成分含有量は重量%である。C量は、0.0
05%以下とする。C量が0.005%を超えると、磁
気時効問題があるため低周波鉄損が増加するためであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the present invention will be described below. Component content is% by weight. C content is 0.0
It shall be not more than 05%. If the C content exceeds 0.005%, there is a problem of magnetic aging, so that low-frequency iron loss increases.

【0011】Si量は、1.6〜2.8%に制限する。
Siは鋼板剛性を増加させるのに有効で、1.6%未満
では降伏点が低すぎて不満で、また2.8%超では、降
伏点が高すぎ金型摩耗が大きく不可である。
The amount of Si is limited to 1.6 to 2.8%.
Si is effective in increasing the rigidity of the steel sheet. If it is less than 1.6%, the yield point is too low and it is unsatisfactory, and if it is more than 2.8%, the yield point is too high and mold wear is too large.

【0012】Mn量は、0.5%以下とする。Mnは熱
間割れを防止する効果があるが、多すぎると添加コスト
の問題があるので0.5%以下とする。
[0012] The amount of Mn is 0.5% or less. Mn has an effect of preventing hot cracking, but if it is too much, there is a problem of addition cost, so Mn is made 0.5% or less.

【0013】P量は、0.05%以下に制限する。Pも
結晶粒成長を阻害して、製品結晶粒径を細粒化するため
少ない方が好ましいが、この限界が0.05%である。
The amount of P is limited to 0.05% or less. P is also preferably small in order to inhibit the crystal grain growth and reduce the product crystal grain size, but the limit is 0.05%.

【0014】S量は、0.002%以下とする。Sは硫
化物を形成して鉄損を劣化させる。この限界が、0.0
02%である。
The amount of S is set to 0.002% or less. S forms sulfides and deteriorates iron loss. This limit is 0.0
02%.

【0015】Al量は、1〜4%とする。Alは鋼板剛
性を増加させるのに有効で、1%未満では降伏点が不満
であり、また4%超では添加コストが大きくなるため、
避けなければならない。
The amount of Al is set to 1 to 4%. Al is effective in increasing the rigidity of the steel sheet. If it is less than 1%, the yield point is unsatisfactory, and if it exceeds 4%, the addition cost becomes large.
Must be avoided.

【0016】N量は、0.004%以下とする。Nは窒
化物を形成して鉄損を劣化させる。この限界が0.00
4%である。
The N content is set to 0.004% or less. N forms nitrides and deteriorates iron loss. This limit is 0.00
4%.

【0017】Cu量は、0.05〜0.7%とする。鉄
スクラップの有効活用の意味は0.05%以上のCuで
あり、また0.7%を超えるとCuへげと称される熱延
での鋼板表面割れが発生するので、避けなければならな
い。
The amount of Cu is 0.05-0.7%. The meaning of the effective use of iron scrap is 0.05% or more of Cu, and if it exceeds 0.7%, a steel plate surface crack in hot rolling called Cu-hage occurs, so it must be avoided.

【0018】Ni量は、0.01〜0.2%とする。鉄
スクラップの有効活用の意味は0.01%以上のNiで
あり、また0.2%を超えると結晶粒成長が阻害される
ため不可とする。
The amount of Ni is 0.01-0.2%. The meaning of the effective use of iron scrap is 0.01% or more of Ni, and if it exceeds 0.2%, crystal grain growth is inhibited, so that it is not possible.

【0019】Cr量は、0.01〜0.2%とする。鉄
スクラップの有効活用の意味は、0.01%以上のCr
であり、また、実用上、鉄スクラップから0.2%を超
えることはないので、0.01〜0.2%とする。
The amount of Cr is 0.01-0.2%. The meaning of effective use of iron scrap is 0.01% or more of Cr
In addition, since it does not exceed 0.2% from iron scrap in practical use, the content is set to 0.01 to 0.2%.

【0020】Sn量は、0.003〜0.1%とする。
鉄スクラップの有効活用の意味は0.003%以上のS
nであり、また実用上、鉄スクラップから0.1%を超
えることはないので、0.01〜0.1%とする。
The amount of Sn is 0.003 to 0.1%.
The meaning of effective use of iron scrap is 0.003% or more S
n, and practically does not exceed 0.1% from iron scrap, so it is set to 0.01 to 0.1%.

【0021】その他の元素として、集合組織を改善する
ための公知のB,Moなどを添加しても本発明として有
害なものではない。但し添加コストの問題があるので、
それぞれ0.1%以下が好ましい。また、公知の有害元
素、Ti,Nbは0.01%以下が好ましい。また本発
明では高価なSbは添加しないので、製鋼作業の不可避
的不純物としての量である0.01%未満である。
As other elements, addition of known B, Mo or the like for improving the texture is not harmful to the present invention. However, there is a problem of addition cost,
Each is preferably 0.1% or less. The known harmful elements Ti and Nb are preferably 0.01% or less. Further, in the present invention, since expensive Sb is not added, the amount is less than 0.01% which is an inevitable impurity in the steel making operation.

【0022】製鋼で上記の成分に調整された連続鋳造ス
ラブは、通常の熱間圧延を行われて熱延板とされる。熱
延板は、次いで焼鈍される。熱延板焼鈍は、通常の80
0〜1200℃であって磁束密度改善のためには高温の
ほうが好ましい。なお熱延板焼鈍温度は高い方が若干で
あるが、製品の降伏点は低めとなる傾向になる。
The continuous cast slab adjusted to the above components by steelmaking is subjected to ordinary hot rolling to form a hot rolled sheet. The hot rolled sheet is then annealed. Hot-rolled sheet annealing is usually 80
0 to 1200 ° C., and a higher temperature is more preferable for improving the magnetic flux density. Although the higher the hot-rolled sheet annealing temperature is, the higher the yield point of the product tends to be.

【0023】次いで、冷延を行ってから焼鈍を実施す
る。焼鈍後の鋼板の平均結晶粒径は、80μm以上、1
70μm以下とする。80μm未満では、低周波鉄損が
不満足で、また170μm超では高周波鉄損が不満であ
る。結晶粒径を制御するためには、通常の温度×時間制
御をすればよい。
Next, annealing is performed after performing cold rolling. The average grain size of the steel sheet after annealing is 80 μm or more,
70 μm or less. If it is less than 80 μm, the low-frequency iron loss is unsatisfactory, and if it exceeds 170 μm, the high-frequency iron loss is unsatisfactory. In order to control the crystal grain size, normal temperature × time control may be performed.

【0024】また、内部酸化層の厚みは0.5μm以下
でなければならない。内部酸化層が0.5μmを超える
と、高周波鉄損の劣化が大きいためである。特に、本発
明のCu,Sn,Ni,Cr複合含有系では、内部酸化
層が生じ易いので注意しなければならない。
The thickness of the internal oxide layer must be 0.5 μm or less. This is because if the internal oxide layer exceeds 0.5 μm, the deterioration of high-frequency iron loss is large. In particular, in the Cu, Sn, Ni, Cr composite-containing system of the present invention, care must be taken because an internal oxide layer is easily formed.

【0025】ここで言う内部酸化層とは、最表層がSi
またはAlが若干少なくなった鉄メタル層の下層に形成
された、Si,Al,Mnなどがリッチの酸化層のこと
である。即ち表面構造としては、最表層の第一層が鉄メ
タルで、第二層が内部酸化層、第三層が地鉄である三層
構造が形成されている。内部酸化層が厚くなると、最表
層の鉄メタル層厚みも増加する傾向にあるが、例えば内
部酸化層が0.5μmの場合は、鉄メタル層厚みは0.
8μm程度である。なお、最表層の鉄メタル層は殆どの
場合、内部酸化層の上にフィルム(膜)状に観察され
る。しかし、まれなケースとしては、この最表層の鉄メ
タル部分がなく、内部酸化層の上層部分に、鉄メタルが
断続的な島状のものとして観察されることもある。この
場合の内部酸化層厚みは、島状の鉄メタル厚みの平均化
したものを全体の酸化層厚みから引いたものとして定義
する。内部酸化層の下層は地鉄である。
The internal oxide layer referred to here means that the outermost layer is Si
Alternatively, it is an oxide layer rich in Si, Al, Mn, etc., formed under the iron metal layer in which Al is slightly reduced. That is, as the surface structure, a three-layer structure is formed in which the first layer of the outermost layer is iron metal, the second layer is an internal oxide layer, and the third layer is ground iron. As the internal oxide layer becomes thicker, the thickness of the outermost iron metal layer also tends to increase. For example, when the internal oxide layer is 0.5 μm, the thickness of the iron metal layer is 0.1 μm.
It is about 8 μm. In most cases, the outermost iron metal layer is observed as a film on the internal oxide layer. However, in rare cases, there is no iron metal portion on the outermost layer, and the iron metal is observed as an intermittent island in the upper layer portion of the internal oxide layer. In this case, the thickness of the internal oxide layer is defined as a value obtained by subtracting the average of the thickness of the island-shaped iron metal from the total thickness of the oxide layer. The lower layer of the inner oxide layer is ground iron.

【0026】この内部酸化層は地鉄との境界面の凹凸が
大きいので、磁束の流れを阻害して高周波鉄損を著しく
劣化させるので、特に注意しなければならない。なお、
この内部酸化層は、鋼板断面の研磨面を5000倍以上
の倍率でSEM−EDX測定することで観察することが
できるが、SEM像は通常の二次電子ではなく、反射電
子像の方が内部酸化層厚みを明瞭に見ることができる。
内部酸化層厚みは、最表層の鉄メタル界面と下層の地鉄
界面との中間層の厚みであるが、上下それぞれの界面の
凹凸中心線(凹凸曲線の平均線に平行な直線を引いたと
き、この直線と凹凸曲線で囲まれる面積が、この直線の
両側で等しくなる直線を中心線とする)同士の差として
定義される。
Since the internal oxide layer has a large unevenness at the boundary surface with the ground iron, it obstructs the flow of the magnetic flux and remarkably deteriorates the high-frequency iron loss. In addition,
This internal oxide layer can be observed by measuring the polished surface of the steel plate cross section at a magnification of 5000 times or more by SEM-EDX measurement. However, the SEM image is not a normal secondary electron, but the reflected electron image is more internal. The oxide layer thickness can be clearly seen.
The thickness of the internal oxide layer is the thickness of the intermediate layer between the iron metal interface on the outermost layer and the ground iron interface on the lower layer. The center line of the unevenness at the upper and lower interfaces (when a straight line parallel to the average line of the unevenness curve is drawn) , The area surrounded by the straight line and the concave-convex curve is defined as a center line where the straight line becomes equal on both sides of the straight line).

【0027】この内部酸化層は、焼鈍の加熱過程などで
酸化された場合に生じるため、例えば加熱ラジアントチ
ューブでの割れや直火無酸化炉での空燃比に十分注意し
なければならない。即ち、焼鈍の加熱過程で酸化される
と、次いで高温での還元ガスで均熱焼鈍されても内部酸
化層まで還元されることはない。なお、この内部酸化層
は、従来のH2 +N2 +H2 O混合の湿潤ガス中での均
熱焼鈍で、最表面から酸化される現象を意味しない。こ
の表面酸化は高周波鉄損に悪影響しない。
Since this internal oxide layer is formed when it is oxidized during the heating process of annealing, it is necessary to pay sufficient attention to, for example, cracking in a heated radiant tube and air-fuel ratio in a direct-fired non-oxidizing furnace. In other words, if it is oxidized in the annealing heating process, it is not reduced to the internal oxide layer even if it is soaked with a reducing gas at a high temperature. Note that this internal oxide layer does not mean a phenomenon of being oxidized from the outermost surface by conventional soaking annealing in a wet gas of a mixture of H 2 + N 2 + H 2 O. This surface oxidation does not adversely affect high frequency iron loss.

【0028】また実験室レベルでは、加熱から均熱、冷
却まで非酸化性ガス中で焼鈍することが容易であるが、
鉄鋼メーカでの実炉では加熱帯に直火バーナーやラジア
ントチューブを用いることが多いので、特にCu,S
n,Ni,Cr複合含有系では、この内部酸化層には注
意を払わなければならない。均熱帯で例えば100%H
2 の露点−50℃ドライ雰囲気として高温均熱しても、
この内部酸化層までは還元されないので注意を要する。
At the laboratory level, heating, soaking, and cooling
It is easy to anneal in a non-oxidizing gas until
In an actual furnace at a steel manufacturer, an open flame burner or
In particular, Cu, S
In the system containing n, Ni, and Cr composites,
You have to pay attention. 100% H
TwoDew point of -50 ° C
Care must be taken because this internal oxide layer is not reduced.

【0029】上記、再結晶焼鈍の後は通常の絶縁皮膜が
塗布乾燥されて出荷される。出荷された後は、打ち抜き
加工され、積層固定され、そのまま、または焼鈍されて
(特に固定子が磁性改善のために焼鈍される場合があ
る)磁石埋設型モータコアとなる。以下、実施例で説明
する。
After the recrystallization annealing, a normal insulating film is applied and dried before shipment. After being shipped, it is punched, laminated and fixed, and as it is or is annealed (particularly, the stator may be annealed to improve magnetism) to provide a magnet embedded type motor core. Hereinafter, an embodiment will be described.

【0030】(実施例1)表1に示す各種の成分系を真
空溶解で溶解して、インゴットを作成した。これを10
30℃に加熱してから、10mm厚の鋼片に分塊した。次
いで、更に1000℃に加熱してから、1.7mmの熱延
板を作成した。次いで1100℃で30秒均熱の窒素中
焼鈍を行ってから大気中放冷した。酸洗後、冷延して
0.35mm厚とした。次いで脱脂して、1000℃で5
秒の水素中焼鈍を実施した。
(Example 1) Various components shown in Table 1 were melted by vacuum melting to prepare ingots. This is 10
After heating to 30 ° C., it was lumped into 10 mm thick slabs. Next, after further heating to 1000 ° C., a 1.7 mm hot-rolled sheet was prepared. Next, annealing was performed in nitrogen at 1100 ° C. for 30 seconds soaking, and then allowed to cool in the air. After pickling, it was cold rolled to a thickness of 0.35 mm. Then, degrease and at 1000 ° C for 5
A second annealing in hydrogen was performed.

【0031】これらから、引張試験片を圧延方向とそれ
と直角の方向に切り出し、降伏点(YP)を測定して平
均化した値を表1に併記した。なお、降伏点は上降伏点
より、読み取り精度の高い下降伏点とした。また、10
0mm角の試料を切り出してから、圧延方向とそれと直角
の方向の400Hz鉄損を測定し、平均して表1に示し
た。また、鋼板断面の平均結晶粒径を厚み方向にカウン
トとして求めた。なお、内部酸化層も調査したが存在し
なかった。
From these, tensile test pieces were cut out in the rolling direction and a direction perpendicular to the rolling direction, and the yield points (YP) were measured and averaged. The yield point was a lower yield point with higher reading accuracy than the upper yield point. Also, 10
After cutting out a 0 mm square sample, the 400 Hz iron loss in the rolling direction and the direction perpendicular thereto was measured, and the results are shown in Table 1 on average. Further, the average grain size of the cross section of the steel sheet was determined as a count in the thickness direction. In addition, although the internal oxide layer was examined, it was not found.

【0032】表1に示すように、本発明の成分範囲を外
れるものは、降伏点の下限・上限を外れ、また鉄損特性
が不満となった。なお、製品での成分分析も実施した
が、インゴットでの分析結果と同じであった。
As shown in Table 1, those out of the component range of the present invention were out of the lower limit and upper limit of the yield point, and were unsatisfactory in iron loss characteristics. In addition, the component analysis of the product was also performed, but the result was the same as the analysis result of the ingot.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例2)表2に示すように、SiとA
l量とを調整した連続鋳造スラブを供試材として用い
た。その他の成分としては、実験No.1〜9について
は、0.001%C、0.2%Mn、0.02%P、
0.0002%S、0.0007%N、0.25%C
u、0.04%Sn、0.05%Ni、0.05%Cr
に固定した。また、実験No.10と11のみ、0.00
1%C、0.2%Mn、0.02%P、0.0002%
S、0.0007%Nで、Cu,Sn,Ni,Crにつ
いてはそれぞれ0.0002%以下とした。このスラブ
を1100℃で加熱してから、1.5mm厚の熱延コイル
を製造した。次いで900℃で15秒の焼鈍をN2 中で
実施した。酸洗してから0.25mmまで冷延した。この
冷延板で表層酸化層を観察調査したが、酸化層は存在し
なかった。
Example 2 As shown in Table 2, Si and A
A continuously cast slab having the adjusted l amount was used as a test material. Other components include Experiment No. For 1 to 9, 0.001% C, 0.2% Mn, 0.02% P,
0.0002% S, 0.0007% N, 0.25% C
u, 0.04% Sn, 0.05% Ni, 0.05% Cr
Fixed to. Experiment No. 10 and 11 only, 0.00
1% C, 0.2% Mn, 0.02% P, 0.0002%
S, 0.0007% N, and Cu, Sn, Ni, Cr were each set to 0.0002% or less. After heating the slab at 1100 ° C., a hot-rolled coil having a thickness of 1.5 mm was manufactured. Then annealing at 900 ° C. for 15 seconds was performed in N 2 . After pickling, it was cold rolled to 0.25 mm. Observation of the surface oxide layer on the cold-rolled sheet revealed no oxide layer.

【0035】脱脂後、1100℃×10秒の均熱焼鈍を
実施した。この時、加熱を無酸化炉(直火雰囲気、空燃
比=0.9)で行い、無酸化炉出側の板温を制御して、
内部酸化層の厚みを変更した。無酸化炉を出てからは、
電気ヒータゾーンで40%H 2 +60%N2 雰囲気で焼
鈍した。絶縁皮膜(クロム酸、マグネシュウム、アクリ
ル系の半有機皮膜)を約1.5μm厚焼き付けた。
After degreasing, soak at 1100 ° C. for 10 seconds.
Carried out. At this time, heating is performed in a non-oxidizing furnace (open flame atmosphere, air-fuel
Ratio = 0.9), controlling the sheet temperature on the exit side of the non-oxidizing furnace,
The thickness of the internal oxide layer was changed. After leaving the non-oxidizing furnace,
40% H in electric heater zone Two+ 60% NTwoBaked in the atmosphere
Slowed down. Insulation film (chromic acid, magnesium, acrylic)
(A semi-organic film of a metal system) was baked to a thickness of about 1.5 μm.

【0036】このコイルから、打抜き性の評価は、リン
グ試料(20mmφ×30mmφ)の最大かえり量を測定
し、かえりが5/100mmとなる打抜き回数を表2に記
した。なお、金型はSKDを使用した。初回のかえりは
いずれも2/100mmであった。また、エプスタイン試
験片で磁気特性を測定した。引張試験片を圧延方向とそ
れと直角の方向に切り出し、下降伏点を測定して平均化
して表2に載せた。製品の平均結晶粒径は、いずれも1
50〜155μmであった。
For evaluation of the punching property of this coil, the maximum burr amount of a ring sample (20 mmφ × 30 mmφ) was measured. Table 2 shows the number of punchings at which the burr was 5/100 mm. The mold used was SKD. The initial burr was 2/100 mm. In addition, magnetic properties were measured on Epstein test pieces. Tensile test specimens were cut out in the rolling direction and in a direction perpendicular to the rolling direction. The average crystal grain size of each product is 1
It was 50 to 155 μm.

【0037】[0037]

【表2】 [Table 2]

【0038】表2に示すように、成分、内部酸化層、降
伏点とを本発明範囲に制御したものは、優れた打抜き回
数および鉄損特性を示した。なお、最終の鋼板の成分を
チェックしたが、スラブ成分と同一であった。No.10
と11とは、Cu,Sn,Ni,Crを含まない成分系
であるが、内部酸化層は生成されにくい傾向にあること
が実験No.2と10との比較で、また実験No.5と11
との比較で分かる。その原因については、未だ不明確な
部分があって今後の調査に待たなければならないが、表
層をGDSなどでスパッターしながら調査すると、C
u,Sn,Ni,Crなどは表層に濃化する傾向がある
ため、これが原因の一つと推定している。
As shown in Table 2, the composition, the internal oxide layer, and the yield point controlled within the range of the present invention exhibited excellent punching times and iron loss characteristics. In addition, the components of the final steel sheet were checked and found to be the same as the slab components. No. 10
And No. 11 are component systems that do not contain Cu, Sn, Ni, and Cr, but it was found in Experiment Nos. That an internal oxide layer was less likely to be formed. In comparison between Nos. 2 and 10, and in Experiment No. 5 and 11
You can see by comparing with. The cause is still unclear and we have to wait for further investigation.
Since u, Sn, Ni, Cr and the like tend to be concentrated in the surface layer, this is presumed to be one of the causes.

【0039】(実施例3)重量%で、0.0035%
C、2.2%Si、0.18%Mn、0.01%P、
0.0035%S、2.1%Al、0.0015%N、
0.003%Nb、0.5%Cu、0.08%Sn、
0.08%Ni、0.11%Cr、0.002%O、
0.001%Ti、0.002%Mo、0.001%
V、0.0001%B、0.0002%Sbを含むスラ
ブを1050℃で加熱してから、2.5mm厚の熱延コイ
ルを製造した。次いで850℃×10秒の窒素中焼鈍を
して、酸洗した。酸化層を調査したが、認められなかっ
た。次いで0.2mmまで冷延し、脱脂後、均熱温度を表
3のように変更して10秒均熱の30%H2 +70%N
2 中の焼鈍を実施した。この時、均熱温度に到達するま
での加熱雰囲気をN2 とし、その酸素を0.01%とし
た。次いで有機、無機混合の絶縁皮膜を1μm厚で焼き
付けした。
(Example 3) 0.0035% by weight
C, 2.2% Si, 0.18% Mn, 0.01% P,
0.0035% S, 2.1% Al, 0.0015% N,
0.003% Nb, 0.5% Cu, 0.08% Sn,
0.08% Ni, 0.11% Cr, 0.002% O,
0.001% Ti, 0.002% Mo, 0.001%
A slab containing V, 0.0001% B, and 0.0002% Sb was heated at 1050 ° C., and then a hot-rolled coil having a thickness of 2.5 mm was manufactured. Then, the resultant was annealed in nitrogen at 850 ° C. × 10 seconds and pickled. The oxidized layer was examined, but was not found. Then, it was cold-rolled to 0.2 mm, and after degreasing, the soaking temperature was changed as shown in Table 3 and 30% H 2 + 70% N of soaking for 10 seconds.
Annealing in 2 was performed. At this time, the heating atmosphere until reaching the soaking temperature was N 2 , and the oxygen was 0.01%. Next, an insulating film of a mixture of organic and inorganic was baked to a thickness of 1 μm.

【0040】この鋼板表面を調査したところ、いずれも
内部酸化層は、0.2μm厚であった。次いでエプスタ
イン試料に切断してから磁気特性を測定した。引張試験
片を圧延方向とそれと直角の方向に切り出し、下降伏点
を測定して平均化した。また結晶粒径も測定して、表3
に示した。表3に示すように、本発明範囲の結晶粒径で
優れた磁気特性・機械的性質が得られた。
When the surface of this steel sheet was examined, the inner oxide layer was 0.2 μm thick in each case. Next, after cutting into Epstein samples, the magnetic properties were measured. Tensile test pieces were cut out in the rolling direction and a direction perpendicular to the rolling direction, and the drop yield points were measured and averaged. The crystal grain size was also measured, and Table 3
It was shown to. As shown in Table 3, excellent magnetic and mechanical properties were obtained with a crystal grain size within the range of the present invention.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】地球環境問題からの鉄スクラップの積極
活用課題を解決し、磁石埋設型モータの回転子の固有問
題であった、無方向性電磁鋼板の剛性、打抜き性、磁気
特性などの課題も解決した無方向性電磁鋼板およびその
製造方法を提供することができた。
The present invention solves the problem of actively utilizing iron scrap from global environmental issues, and issues inherent in the rotor of a magnet embedded type motor, such as rigidity, punching properties, and magnetic properties of non-oriented electrical steel sheets. Thus, a non-oriented electrical steel sheet and a method for manufacturing the same can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C ≦0.005%、 Si:1.6〜2.8%、 Mn≦0.5%、 P ≦0.05%、 S ≦0.002%、 Al:1〜4%、 N ≦0.004%、 Cu:0.05〜0.7%、 Ni:0.01〜0.2%、 Cr:0.01〜0.2%、 Sn:0.003〜0.1% を含有し、残部が実質的に鉄からなり、結晶粒径が80
〜170μmで、内部酸化層厚み≦0.5μm、降伏点
強度:260〜370N/mm2 であることを特徴とする磁
石埋設型のモータ用無方向性電磁鋼板。
1. Weight%, C ≦ 0.005%, Si: 1.6-2.8%, Mn ≦ 0.5%, P ≦ 0.05%, S ≦ 0.002%, Al: 1 to 4%, N ≦ 0.004%, Cu: 0.05 to 0.7%, Ni: 0.01 to 0.2%, Cr: 0.01 to 0.2%, Sn: 0.003 0.1%, the balance being substantially iron and having a crystal grain size of 80%.
A non-oriented electrical steel sheet for a motor with embedded magnets, characterized by having a thickness of up to 170 µm, an internal oxide layer thickness of 0.5 µm, and a yield point strength of 260 to 370 N / mm 2 .
【請求項2】 重量%で、 C ≦0.005%、 Si:1.6〜2.8%、 Mn≦0.5%、 P ≦0.05%、 S ≦0.002%、 Al:1〜4%、 N ≦0.004%、 Cu:0.05〜0.7%、 Ni:0.01〜0.2%、 Cr:0.01〜0.2%、 Sn:0.003〜0.1% を含有し、残部が実質的に鉄からなる熱延板を焼鈍し、
冷延を行ってから、焼鈍して、結晶粒径を80〜170
μmとし、内部酸化層厚み≦0.5μm、降伏点強度:
260〜370N/mm2 とすることを特徴とする磁石埋設
型のモータ用無方向性電磁鋼板の製造方法。
2. In% by weight, C ≦ 0.005%, Si: 1.6-2.8%, Mn ≦ 0.5%, P ≦ 0.05%, S ≦ 0.002%, Al: 1 to 4%, N ≦ 0.004%, Cu: 0.05 to 0.7%, Ni: 0.01 to 0.2%, Cr: 0.01 to 0.2%, Sn: 0.003 ~ 0.1%, the balance is substantially annealed hot rolled plate consisting of iron,
After cold rolling, annealing is performed to reduce the crystal grain size to 80 to 170.
μm, internal oxide layer thickness ≦ 0.5 μm, yield point strength:
A method for producing a non-oriented electrical steel sheet for a motor with embedded magnets, wherein the non-oriented electrical steel sheet has a thickness of 260 to 370 N / mm 2 .
JP35807299A 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor Expired - Fee Related JP4116748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35807299A JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35807299A JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Publications (2)

Publication Number Publication Date
JP2001172752A true JP2001172752A (en) 2001-06-26
JP4116748B2 JP4116748B2 (en) 2008-07-09

Family

ID=18457399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35807299A Expired - Fee Related JP4116748B2 (en) 1999-12-16 1999-12-16 Magnet buried type non-oriented electrical steel sheet for motor

Country Status (1)

Country Link
JP (1) JP4116748B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050934A1 (en) * 2002-12-05 2004-06-17 Jfe Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2011089167A (en) * 2009-10-22 2011-05-06 Nippon Steel Corp Composite panel having excellent stretch rigidity
JP2018135556A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
CN111556904A (en) * 2017-12-26 2020-08-18 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
JP2021532257A (en) * 2018-07-18 2021-11-25 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
US11952641B2 (en) 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050934A1 (en) * 2002-12-05 2004-06-17 Jfe Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
EP1580289A1 (en) * 2002-12-05 2005-09-28 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
EP1580289A4 (en) * 2002-12-05 2006-02-01 Jfe Steel Corp Non-oriented magnetic steel sheet and method for production thereof
KR100709056B1 (en) * 2002-12-05 2007-04-18 제이에프이 스틸 가부시키가이샤 Non-oriented magnetic steel sheet and method for production thereof
US7513959B2 (en) 2002-12-05 2009-04-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
EP2489753A1 (en) * 2002-12-05 2012-08-22 JFE Steel Corporation Non-oriented magnetic steel sheet and method for production thereof
US7922834B2 (en) 2005-07-07 2011-04-12 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
US8157928B2 (en) 2005-07-07 2012-04-17 Sumitomo Metal Industries, Ltd. Non-oriented electrical steel sheet and production process thereof
JP2011089167A (en) * 2009-10-22 2011-05-06 Nippon Steel Corp Composite panel having excellent stretch rigidity
JP2018135556A (en) * 2017-02-21 2018-08-30 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
JP2018141206A (en) * 2017-02-28 2018-09-13 新日鐵住金株式会社 Electromagnetic steel sheet, and method for producing the same
CN111556904A (en) * 2017-12-26 2020-08-18 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
EP3733907A4 (en) * 2017-12-26 2020-11-04 Posco Non-oriented electrical steel sheet and method for preparing same
JP2021509153A (en) * 2017-12-26 2021-03-18 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
CN111556904B (en) * 2017-12-26 2022-05-17 Posco公司 Non-oriented electrical steel sheet and method for manufacturing the same
JP7142094B2 (en) 2017-12-26 2022-09-26 ポスコ Non-oriented electrical steel sheet and manufacturing method thereof
US11492678B2 (en) 2017-12-26 2022-11-08 Posco Non-oriented electrical steel sheet and method for preparing same
JP2021532257A (en) * 2018-07-18 2021-11-25 ポスコPosco Non-oriented electrical steel sheet and its manufacturing method
JP7273945B2 (en) 2018-07-18 2023-05-15 ポスコ カンパニー リミテッド Non-oriented electrical steel sheet and manufacturing method thereof
WO2020149405A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JPWO2020149405A1 (en) * 2019-01-17 2021-09-30 日本製鉄株式会社 Non-oriented electrical steel sheets, split stators and rotary electric machines
EP3913079A4 (en) * 2019-01-17 2022-08-31 Nippon Steel Corporation Non-oriented electrical steel sheet, segmented stator, and dynamo-electric machine
JP7192887B2 (en) 2019-01-17 2022-12-20 日本製鉄株式会社 Non-oriented electrical steel sheet, split type stator and rotating electric machine
US11952641B2 (en) 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4116748B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
KR100240995B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent heat insulating coated property
JPWO2003002777A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JPWO2020136993A1 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2007186790A (en) High strength non-oriented electrical steel sheet and method for manufacture the same
WO2019182022A1 (en) Non-oriented electromagnetic steel sheet
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
US20140342150A1 (en) Non-oriented electrical steel sheet
JP4389691B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP4116749B2 (en) Non-oriented electrical steel sheet
JP2001172752A (en) Nonoriented silicon steel sheet for magnet-embedded-type motor, and its manufacturing method
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP2013044012A (en) Non-oriented electromagnetic steel sheet, and method of producing the same
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP7173286B2 (en) Non-oriented electrical steel sheet
JP5839778B2 (en) Non-oriented electrical steel sheet with excellent high-frequency iron loss and manufacturing method thereof
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4276391B2 (en) High grade non-oriented electrical steel sheet
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
KR20220106185A (en) Hot rolled steel sheet for non-oriented electrical steel sheet
JP2011089204A (en) Nonoriented silicon steel sheet for rotor and production method therefor
JP3575167B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent low magnetic field characteristics
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4116748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees