JP2001169406A - Brake for car - Google Patents

Brake for car

Info

Publication number
JP2001169406A
JP2001169406A JP34774099A JP34774099A JP2001169406A JP 2001169406 A JP2001169406 A JP 2001169406A JP 34774099 A JP34774099 A JP 34774099A JP 34774099 A JP34774099 A JP 34774099A JP 2001169406 A JP2001169406 A JP 2001169406A
Authority
JP
Japan
Prior art keywords
torque
vehicle
power generation
braking torque
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34774099A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Obayashi
和良 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP34774099A priority Critical patent/JP2001169406A/en
Publication of JP2001169406A publication Critical patent/JP2001169406A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a brake for cars capable of large-power regenerative braking, suppressing the vibration of a car and voltage increase of its battery. SOLUTION: When the car is decelerated, power generating torque and mechanical braking torque are changed periodically, and the frequency and phase of the period change component of mechanical braking torque are determined, so that a resultant torque variation being the sum of both period change components may be smaller than the period change component of the power generating torque. As the result of this, it becomes possible to perform large- current charging of the battery suppressing rapid increase of its voltage, by the adoption of an intermittent battery charging system. Besides, car vibration is reduced, and driving feeling is improved by reducing the period change of the whole braking torque.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両制動装置に関
する。
[0001] The present invention relates to a vehicle braking device.

【0002】[0002]

【従来の技術】回転電機が車両に搭載されるバッテリと
電力授受してエンジンが発生する車両駆動力を増減する
自動車として、電気自動車、ハイブリッド車、電動機兼
用発電機搭載エンジン駆動車両などが知られている。
2. Description of the Related Art Electric vehicles, hybrid vehicles, engine-driven vehicles equipped with a motor / generator and the like are known as vehicles in which a rotating electric machine exchanges electric power with a battery mounted on the vehicle to increase or decrease the vehicle driving force generated by an engine. ing.

【0003】この種の車両では、減速時に回転電機を発
電動作させて、車両の走行慣性エネンルギーを電力とし
てバッテリに回生することがいわゆる回生制動(あるい
は発電制動)技術として知られている。
In this type of vehicle, it is known as a so-called regenerative braking (or power generation braking) technique in which a rotating electric machine is operated to generate electric power at the time of deceleration to regenerate the running inertial energy of the vehicle as electric power to a battery.

【0004】特開昭64ー81628号公報は、二次電
池を所定パルス周期で間欠充電する間欠充電方式を提案
している。この間欠充電方式は、充電時のバッテリ電圧
の急上昇を定電流充電方式よりも抑止することができ
る。
Japanese Patent Application Laid-Open No. 64-81628 proposes an intermittent charging method for intermittently charging a secondary battery at a predetermined pulse cycle. This intermittent charging method can suppress a sudden increase in the battery voltage during charging as compared with the constant current charging method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の回生制動技術ではバッテリを大電流充電する必
要が生じるが、このような大電流充電を行うとバッテリ
電圧が急速に上昇してしまうため減速エネルギ−を十分
回生することが困難であった。
However, in the conventional regenerative braking technique described above, it is necessary to charge the battery with a large current. However, when such a large current charging is performed, the battery voltage rises rapidly, so that the battery is decelerated. It was difficult to sufficiently regenerate energy.

【0006】上述した公報による間欠充電方式を採用す
れば、一定電流で充電するのに比較してバッテリ電圧の
急上昇を抑止しつつ充電することができるが、回生制動
にこの充電方式を採用すると、定電流充電方式に比較し
て上記間欠充電周期の充電期間と充電休止期間との間で
変動する制動トルクの周期変化が車両の共振周波数に近
い周波数であるため、車両振動が生じるという問題があ
った。
[0006] If the intermittent charging method according to the above-mentioned publication is adopted, charging can be performed while suppressing a sharp rise in battery voltage as compared with charging at a constant current. However, if this charging method is adopted for regenerative braking, As compared with the constant current charging method, the cycle change of the braking torque that fluctuates between the charging period of the intermittent charging cycle and the charging suspension period is a frequency close to the resonance frequency of the vehicle, so that there is a problem that vehicle vibration occurs. Was.

【0007】本発明は上記問題点に鑑みなされたもので
あり、車両振動およびバッテリの電圧上昇を抑止しつ
つ、大電力回生制動が可能な車両制動装置を提供するこ
とをその目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a vehicle braking device capable of high-power regenerative braking while suppressing vehicle vibration and battery voltage rise.

【0008】[0008]

【課題を解決するための手段】請求項1記載の本発明の
車両制動装置によれば、車両減速時に、発電トルクおよ
び機械的制動トルクを周期変化させ、両周期変化成分と
の和である合成トルク変動を発電トルクの周期変化成分
より小さいなるように、機械的制動トルクの周期変化成
分の周波数および位相を決定する。
According to the first aspect of the present invention, when the vehicle is decelerated, the power generation torque and the mechanical braking torque are cycle-changed, and the sum of both the cycle change components is obtained. The frequency and phase of the cycle change component of the mechanical braking torque are determined so that the torque change is smaller than the cycle change component of the generated torque.

【0009】このようにすれば、上述したバッテリの間
欠充電方式の採用により、バッテリ電圧の急上昇を抑止
しつつ大電流充電を可能とするとともに、制動トルク全
体の周期変化を低減して車両振動を低減し、運転フィ−
リングを改善することができる。
In this manner, by employing the above-described intermittent charging method of the battery, it is possible to perform a large current charging while suppressing a sudden increase in the battery voltage, and to reduce a cycle change of the entire braking torque to reduce vehicle vibration. Reduced driving feeling
Rings can be improved.

【0010】請求項2記載の構成によれば請求項1記載
の車両制動装置において更に、発電トルクの周期変化成
分と機械的制動トルクの周期変化成分とを、同一周波数
でほぼ逆位相の関係とするので、請求項1記載の効果を
一層向上することができる。
According to a second aspect of the present invention, in the vehicle braking device according to the first aspect, the cycle change component of the power generation torque and the cycle change component of the mechanical braking torque are substantially equal in phase with each other at the same frequency. Therefore, the effect described in claim 1 can be further improved.

【0011】なお、本明細書における、「ほぼ」とは9
0%以上という意味である。
In this specification, “almost” means 9
It means 0% or more.

【0012】請求項3記載の構成によれば請求項2記載
の車両制動装置において更に、発電トルクの周期変化成
分と機械的制動トルクの周期変化成分とがほぼ等しい大
きさを有するので、間欠充電に起因する車両振動をほぼ
完全に解消することができる。
According to the third aspect of the present invention, the periodic change component of the generated torque and the periodic change component of the mechanical braking torque have substantially the same magnitude. Can be almost completely eliminated.

【0013】請求項4記載の構成によれば請求項2記載
の車両制動装置において更に、車両減速時に所定の連続
発電成分(直流成分および前記周期変化成分より低周波
成分)と所定周期の周期変化発電成分とを合成した電流
を発電するので、回転電機の発電が停止することがな
く、バッテリの間欠充電効果を維持しつつ安定に車両の
電気負荷に給電することができ、回転電機の発電が停止
してこの期間、バッテリが車両用電気負荷給電のために
放電することがなく、効率がよく、回生制動トルクも増
大することができる。
According to a fourth aspect of the present invention, in the vehicle braking apparatus according to the second aspect, a predetermined continuous power generation component (a DC component and a frequency component lower than the cycle change component) and a cycle change of a predetermined cycle are provided when the vehicle is decelerated. Since the electric power generated by combining the power generation component and the electric power is generated, the electric power generation of the rotating electric machine does not stop, and it is possible to stably supply the electric load of the vehicle while maintaining the intermittent charging effect of the battery. During this period, the battery is not discharged for supplying electric load for the vehicle during this period, so that the efficiency is high and the regenerative braking torque can be increased.

【0014】請求項5記載の構成によれば請求項4記載
の車両制動装置において更に、発電電流の連続発電成分
は、前記車両の前記バッテリを除く電気負荷の要求電流
値に略(ほぼ)一致するので、最も効率良く、バッテリ
の間欠充電を維持しつつ、損失低減、回生制動トルクの
増大を実現することができる。
According to a fifth aspect of the present invention, in the vehicle braking device according to the fourth aspect, further, the continuous power generation component of the generated current substantially (substantially) coincides with a required current value of an electric load excluding the battery of the vehicle. Therefore, loss reduction and increase in regenerative braking torque can be realized most efficiently while maintaining intermittent charging of the battery.

【0015】請求項6記載の構成によれば請求項1ない
し5のいずれか記載の車両制動装置において更に、ブレ
ーキ制御装置は、車両減速時に機械的制動トルクを周期
変化させ、この機械的制動トルクの周期変化に追従して
それを発電制動トルクの周期変化で補償する。
According to a sixth aspect of the present invention, in the vehicle braking device according to any one of the first to fifth aspects, further, the brake control device changes the cycle of the mechanical braking torque when the vehicle is decelerated. Following the change in the cycle, the change is compensated by the change in the cycle of the dynamic braking torque.

【0016】このようにすれば、発電制動トルクの周期
変化を機械的制動トルクの周期変化で補償する場合に比
較して、制御レスポンスが高いので、追従遅れによる振
動増大を防止することができる。
According to this configuration, since the control response is higher than when the cycle change of the power generation braking torque is compensated for by the cycle change of the mechanical braking torque, it is possible to prevent an increase in vibration due to a delay in following.

【0017】請求項7記載の構成によれば請求項1ない
し6記載の車両制動装置において更に、車両減速時に入
力されるブレ−キペダル踏み量に応じた要求制動トルク
値が増加するにつれて回生制動トルクの周期変化のデュ
−ティ比を増大し、減少するにつれてこのデュ−ティ比
を減少するので、必要な制動トルクが小さい場合には、
バッテリ充電休止期間を長く設定することができ、バッ
テリ電圧増大を一層抑止することができる。
According to a seventh aspect of the present invention, in the vehicle braking device according to the first to sixth aspects, the regenerative braking torque is further increased as the required braking torque value corresponding to the brake pedal depression amount input when the vehicle is decelerated increases. When the required braking torque is small, the duty ratio of the period change of
The battery charging suspension period can be set longer, and the increase in battery voltage can be further suppressed.

【0018】請求項8記載の構成によれば請求項1〜7
のいずれか記載の車両制動装置において更に、要求され
る回生制動トルクが小さい場合には連続充電を、大きい
場合には間欠充電を行うので、一時的に大制動トルクを
要求される場合には大きな制動トルクを発生することが
できる。
According to the configuration of claim 8, claims 1 to 7 are provided.
In the vehicle braking device according to any one of the above, further, continuous charging is performed when the required regenerative braking torque is small, and intermittent charging is performed when the required regenerative braking torque is large. A braking torque can be generated.

【0019】請求項9記載の構成によれば請求項1〜7
のいずれか記載の車両制動装置において更に、バッテリ
の充電状態に応じて連続充電と間欠充電を切り替えるこ
とにより、最適な充電方法を選択することができる。
According to the ninth aspect, the first to seventh aspects are provided.
In the vehicle braking device according to any one of the above, further, by switching between continuous charging and intermittent charging according to the state of charge of the battery, an optimal charging method can be selected.

【0020】請求項10記載の構成によれば請求項9記
載の車両制動装置において更に、バッテリの充電状態と
してバッテリ電圧を検出し、前記バッテリ電圧が所定値
より小さい場合は連続充電を、大きい場合は間欠充電を
行うので、バッテリ電圧が大きく上昇することを防止し
つつ、効率よく回生充電することができる。
According to a tenth aspect of the invention, in the vehicle braking device according to the ninth aspect, a battery voltage is detected as a state of charge of the battery, and when the battery voltage is smaller than a predetermined value, continuous charging is performed. Performs intermittent charging, so that regenerative charging can be performed efficiently while preventing a large rise in battery voltage.

【0021】請求項11記載の構成によれば請求項9記
載の車両制動装置において更に、バッテリの充電状態と
して残存容量(SOC)を検出し、前記残存容量が所定
値より小さい場合は連続充電を、大きい場合は間欠充電
を行うので、バッテリの電圧が大きく上昇することを防
止しつつ、効率よく回生充電することができる。
According to the eleventh aspect of the invention, in the vehicle braking device according to the ninth aspect, the state of charge (SOC) is further detected as a state of charge of the battery, and if the state of charge is smaller than a predetermined value, continuous charging is performed. If it is large, intermittent charging is performed, so that regenerative charging can be performed efficiently while preventing the voltage of the battery from greatly increasing.

【0022】[0022]

【発明を実施するための態様】本発明の車両制動装置の
好適な態様を以下の実施例により具体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a vehicle braking system according to the present invention will be specifically described with reference to the following examples.

【0023】[0023]

【実施例1】実施例1の車両制動装置のブロック回路図
を図1に示す。 (全体構成)1はエンジン、2は回転電機、3は後述す
る第1の回転電機21制御用の第1のインバータ31と
後述する第2の回転電機22制御用の第2のインバータ
32をもつ回転電機制御装置、4は車両制御装置、5は
バッテリ、6はエンジン制御装置、7はアクセルペダル
踏角センサ(アクセルセンサともいう)、8はブレーキ
ペダル踏角センサ(ブレーキセンサともいう)、9はシ
フトレバーを示す。
Embodiment 1 FIG. 1 shows a block circuit diagram of a vehicle braking device according to Embodiment 1. (Overall configuration) 1 is an engine, 2 is a rotating electric machine, 3 is a first inverter 31 for controlling a first rotating electric machine 21 described later and a second inverter 32 for controlling a second rotating electric machine 22 described later. Rotary electric machine control device, 4 is a vehicle control device, 5 is a battery, 6 is an engine control device, 7 is an accelerator pedal depression angle sensor (also called an accelerator sensor), 8 is a brake pedal depression angle sensor (also called a brake sensor), 9 Indicates a shift lever.

【0024】車両制御装置4は、ハードウエア構成また
はソフトウエア構成のトルク決定手段41、エンジン出
力決定手段42、エンジン回転数制御手段43、トルク
制御手段(本発明で言う発電トルク制御装置)44を有
している。第1のインバータ31と第2のインバータ3
2は、バッテリ5と電力授受して回転電機2の後述する
第1の回転電機21、第2の回転電機22を個別に駆動
制御する。 (回転電機2の構造)回転電機2の構成を図2に示す。
The vehicle control device 4 includes a torque determining means 41 having a hardware configuration or a software configuration, an engine output determining means 42, an engine speed control means 43, and a torque control means (power generation torque control apparatus in the present invention) 44. Have. First inverter 31 and second inverter 3
The 2 controls the driving of the first rotating electric machine 21 and the second rotating electric machine 22 of the rotating electric machine 2, which will be described later, individually by transmitting and receiving electric power to and from the battery 5. (Structure of the rotating electric machine 2) The structure of the rotating electric machine 2 is shown in FIG.

【0025】23はシャフト20に嵌着、固定されたド
ラム状の第1の回転子、24は円筒状の第2の回転子、
25は円筒状の固定子を示し、第1の回転子23と第2
の回転子24は第1の回転電機21を構成し、第2の回
転子24と固定子25は第2の回転電機22を構成して
いる。26は第1の回転子23の回転センサ、27は第
2の回転子の回転センサを示し、それぞれの回転電機制
御装置3はこれらの回転センサを用いて各回転子位置を
検出する。
Reference numeral 23 denotes a drum-shaped first rotor fitted and fixed to the shaft 20, 24 denotes a cylindrical second rotor,
Reference numeral 25 denotes a cylindrical stator, which includes a first rotor 23 and a second rotor 23.
The first rotor 24 constitutes the first rotating electric machine 21, and the second rotor 24 and the stator 25 constitute the second rotating electric machine 22. Reference numeral 26 denotes a rotation sensor of the first rotor 23, and reference numeral 27 denotes a rotation sensor of the second rotor. The respective rotating electric machine control devices 3 detect the positions of the respective rotors using these rotation sensors.

【0026】第1の回転子23は、積層電磁鉄心の外周
部に電機子コイルを巻装してなり、第2の回転子24は
第1の回転子23の外周面に小ギャップを隔てて同軸か
つ相対回転自在に嵌着してなり、固定子25は第2の回
転子24の外周面に小ギャップを隔てて同軸に嵌着して
なる。
The first rotor 23 has an armature coil wound around the outer periphery of the laminated electromagnetic iron core, and the second rotor 24 has a small gap on the outer periphery of the first rotor 23. The stator 25 is fitted coaxially and relatively rotatably, and the stator 25 is fitted coaxially to the outer peripheral surface of the second rotor 24 with a small gap.

【0027】第2の回転子24は、内周側および外周側
にそれぞれ界磁極構成用の内周側永久磁石群(図示せ
ず)および外周側永久磁石群(図示せず)を有する積層
電磁鉄心からなる。固定子25は、積層電磁鉄心の内周
部に電機子コイルを巻装してなり、第2の回転子24の
外周面に小ギャップを隔ててハウジングに固定されてい
る。
The second rotor 24 has a laminated electromagnetic group having an inner peripheral side permanent magnet group (not shown) and an outer peripheral side permanent magnet group (not shown) for forming field poles on the inner and outer peripheral sides, respectively. Consists of an iron core. The stator 25 has an armature coil wound around the inner periphery of the laminated electromagnetic iron core, and is fixed to the housing with a small gap around the outer peripheral surface of the second rotor 24.

【0028】したがって、第2の回転子24の内周側永
久磁石セットと第1の回転子23とが、第1の回転電機
21をなす相対回転二重ロータ型の磁石型同期機を構成
し、第2の回転子24の外周側永久磁石セットと固定子
25とが第2の回転電機22をなす磁石式同期機を構成
している。なお、これら内周側永久磁石セットおよび外
周側永久磁石セットはそれぞれ、周方向等間隔、極***
互に設けられている。
Therefore, the inner permanent magnet set of the second rotor 24 and the first rotor 23 constitute a relative rotating double rotor type magnet type synchronous machine forming the first rotating electric machine 21. The permanent magnet set on the outer peripheral side of the second rotor 24 and the stator 25 constitute a magnet type synchronous machine forming the second rotating electric machine 22. The inner permanent magnet set and the outer permanent magnet set are provided at regular intervals in the circumferential direction and alternately in polarity.

【0029】100はディスクブレ−キ装置(ブレ−キ
装置)であり、101はこのディスクブレ−キ装置10
0を油圧力又は空圧力又は電磁力により制御するブレー
キ制御装置である。これらディスクブレ−キ装置100
およびブレ−キペダル踏み量に応じてディスクブレ−キ
装置100のが発生する機械的制動トルクを制御するブ
レーキ制御装置101については周知の装置であるので
具体的な説明を省略する。 (全体動作)この実施例のハイブリッド車の動力伝達装
置の基本的な運転制御動作を図1および図2を参照して
説明する。
Numeral 100 denotes a disk brake device (brake device), and 101 denotes a disk brake device.
This is a brake control device that controls 0 by hydraulic pressure, pneumatic pressure, or electromagnetic force. These disk brake devices 100
The brake control device 101 for controlling the mechanical braking torque generated by the disk brake device 100 according to the brake pedal depression amount is a well-known device, and a detailed description thereof will be omitted. (Overall Operation) A basic operation control operation of the power transmission device for a hybrid vehicle according to this embodiment will be described with reference to FIGS.

【0030】トルク決定手段41は、アクセルセンサ
7、ブレーキセンサ8、シフトレバー9から入力される
運転操作情報に基づいて車両トルク指令値Tv’を決定
する。
The torque determining means 41 determines a vehicle torque command value Tv 'based on driving operation information input from the accelerator sensor 7, the brake sensor 8, and the shift lever 9.

【0031】エンジン出力決定手段42は、この車両ト
ルク指令値Tv’と回転電機制御装置3が検出したペラ
軸回転数Nvと、回転電機3の損失に関する情報に基づ
いてエンジン出力指令値Pe’を決定し、エンジン制御
装置6へ出力する。
The engine output determining means 42 determines the engine output command value Pe 'based on the vehicle torque command value Tv', the rotation speed Nv of the propeller shaft detected by the rotating electrical machine control device 3, and information on the loss of the rotating electrical machine 3. It is determined and output to the engine control device 6.

【0032】エンジン制御装置6は、エンジン出力指令
値Pe’に基づいて最適なエンジン回転数指令値Ne’
を決定して車両制御装置4へ出力するとともに、このエ
ンジン出力指令値Pe’に対応する燃料をエンジン1に
供給する。
The engine control device 6 determines the optimum engine speed command value Ne 'based on the engine output command value Pe'.
Is determined and output to the vehicle control device 4, and the fuel corresponding to the engine output command value Pe ′ is supplied to the engine 1.

【0033】エンジン回転数制御手段43は、エンジン
回転数指令値Ne’と回転電機制御装置が検出した実際
のエンジン回転数検出値Neとの偏差に基づいて、それ
を0に収束させるように第1の回転電機21のトルク指
令値T1’を決定し、それをトルク制御手段44に出力
し、トルク制御手段44は、入力されるトルク指令値T
1’やブレーキペダル踏角センサ(ブレーキセンサ)8
からのブレ−キ踏み量などに基づいて、第2の回転電機
22のトルク指令値T2’や機械的制動トルク指令値を
決定する。
The engine speed control means 43 is configured to converge the engine speed command value Ne 'to zero based on the deviation between the engine speed command value Ne' and the actual engine speed detection value Ne detected by the rotary electric machine control device. 1 to determine the torque command value T1 'of the rotating electric machine 21 and output it to the torque control means 44. The torque control means 44
1 'and brake pedal depression angle sensor (brake sensor) 8
The torque command value T2 'of the second rotating electric machine 22 and the mechanical braking torque command value are determined based on the brake depression amount and the like.

【0034】トルク制御手段44は、決定したトルク指
令値T1’にもとづいて第1のインバータ31を通じて
第1の回転電機21をいわゆるフィードバック制御す
る。
The torque control means 44 performs a so-called feedback control of the first rotary electric machine 21 through the first inverter 31 based on the determined torque command value T1 '.

【0035】具体的には、エンジン回転数制御手段43
は、トルク指令値T1’からそれに対応する電流指令値
を演算し、インバータ31を制御してこの電流指令値に
等しい電流を第1の回転子23の電機子コイルに通電す
る。
Specifically, the engine speed control means 43
Calculates a current command value corresponding to the torque command value T1 'and controls the inverter 31 to supply a current equal to the current command value to the armature coil of the first rotor 23.

【0036】また、トルク制御手段44は、上記車両ト
ルク指令値Tv’と第1の回転電機のトルク指令値T
1’の間のトルク指令値差T2’=Tv’−T1’を算
出し、これを、第2の回転電機22のトルク指令値と
し、それにもとづいて第2のインバータ32を通じて第
2の回転電機22を制御する。
The torque control means 44 calculates the vehicle torque command value Tv 'and the torque command value T
1 ′, a torque command value difference T2 ′ = Tv′−T1 ′ is calculated, and the calculated torque command value difference is used as the torque command value of the second rotating electric machine 22. 22 is controlled.

【0037】具体的には、エンジン回転数制御手段43
は、トルク指令値T2’からそれに対応する電流指令値
を演算し、インバータ32を制御してこの電流指令値に
等しい電流を固定子25の電機子コイルに通電する。
More specifically, the engine speed control means 43
Calculates a current command value corresponding to the torque command value T2 'and controls the inverter 32 to supply a current equal to the current command value to the armature coil of the stator 25.

【0038】更に、トルク制御手段44は、ブレーキ踏
み量に応じて内蔵のマップから制動トルク要求値を求
め、第2の回転電機22の回生制動トルクとブレーキ装
置100の機械的制動トルクの和がこの制動トルク要求
値に等しくなるように、回生制動トルク要求値と機械的
制動トルク要求値とを決定し、前者に等しい回生制動ト
ルクを発生するようにインバ−タ32を通じて第2の回
転電機22を制御し、後者に等しい機械的制動トルクを
発生するようにブレーキ制御装置101に指令する。
Further, the torque control means 44 obtains a required braking torque value from a built-in map according to the amount of brake depression, and calculates the sum of the regenerative braking torque of the second rotating electric machine 22 and the mechanical braking torque of the brake device 100. The regenerative braking torque request value and the mechanical braking torque request value are determined so as to be equal to the braking torque request value, and the second rotating electric machine 22 is driven through the inverter 32 to generate a regenerative braking torque equal to the former. And instructs the brake control device 101 to generate a mechanical braking torque equal to the latter.

【0039】このハイブリッド車の動力伝達装置制御方
式自体は公知事項であるので、これ以上の説明は省略す
る。
Since the power transmission device control method of the hybrid vehicle itself is a known matter, further description is omitted.

【0040】なお、第1の回転電機21も回生制動トル
クを発生するようにしてもよい。機械的制動トルクは、
上述したように、ブレーキ制御装置101によりブレー
キ装置100を駆動して得られる。 (回生制動トルクおよび機械的制動トルクの周期変化制
御)この実施例の制御の特徴をなす回生制動トルクおよ
び機械的制動トルクの周期変化制御を以下に説明する。
回生制動トルクおよび機械的制動トルクの周期変化を図
3に示す。横軸は時間、縦軸はトルクを示している。
The first rotating electric machine 21 may also generate regenerative braking torque. The mechanical braking torque is
As described above, it is obtained by driving the brake device 100 by the brake control device 101. (Cycle change control of regenerative braking torque and mechanical braking torque) The cycle change control of regenerative braking torque and mechanical braking torque, which is a feature of the control of this embodiment, will be described below.
FIG. 3 shows the cycle change of the regenerative braking torque and the mechanical braking torque. The horizontal axis indicates time, and the vertical axis indicates torque.

【0041】時点t0において、ブレーキペダル等によ
り車両減速のための制動トルク要求が生じると、回転電
機2により制動トルク要求値の一部を発電により回生
し、残りをブレーキ装置により補償している。
At time t0, when a braking torque request for decelerating the vehicle is generated by a brake pedal or the like, a part of the braking torque request value is regenerated by electric power generation by the rotating electric machine 2, and the rest is compensated by the brake device.

【0042】特に、この実施例では、回生制動トルクは
間欠的(周期的)に発生される。好ましくは、回生制動
トルクは一定周期、一定デュ−ティ比で発生されるが、
車両共振を減らすなどの理由で、周期を一周期ごとに変
更したり、デュ−ティ比を一周期ごとに変更したりして
もよい。ただし、回生制動トルクの大きさ(図3におけ
る高さ)は制動トルク要求値の大きさ以下とすることが
好適である。
In particular, in this embodiment, the regenerative braking torque is generated intermittently (periodically). Preferably, the regenerative braking torque is generated at a constant period and a constant duty ratio.
For reasons such as reducing vehicle resonance, the cycle may be changed every cycle, or the duty ratio may be changed every cycle. However, it is preferable that the magnitude of the regenerative braking torque (the height in FIG. 3) be equal to or less than the magnitude of the required braking torque value.

【0043】更に、この実施例では、機械的制動トルク
は、制動トルク要求値−回生制動トルクとなるように設
定され、これにより、車軸には制動トルク要求値に常に
一致する合成制動トルクが与えられる。
Further, in this embodiment, the mechanical braking torque is set so as to be the required braking torque value-the regenerative braking torque, whereby the axle is provided with a composite braking torque that always matches the required braking torque value. Can be

【0044】なお、好適な具体的制御では、ブレーキペ
ダル踏み量に応じて制動トルク要求値が決定されると、
この制動トルク要求値の大きさの範囲内で、回生制動ト
ルク波形の初期値を決定し、制動トルク要求値からこの
回生制動トルクの周期変化成分を減算した波形の機械的
制動トルク要求値を決定し、これをブレーキ制御装置1
01に与える。
In a preferred specific control, when the required braking torque value is determined according to the brake pedal depression amount,
An initial value of the regenerative braking torque waveform is determined within the range of the magnitude of the braking torque request value, and a mechanical braking torque request value having a waveform obtained by subtracting the cycle change component of the regenerative braking torque from the braking torque request value is determined. And the brake control device 1
Give to 01.

【0045】矩形パルス形状の上記回生制動トルクの周
期変化の逆の変化を含む上記機械的制動トルク要求値を
ブレーキ制御装置101に与えた場合におけるブレーキ
装置100のレスポンス遅れや実際に生じる機械的制動
トルクの波形鈍りなどは既知であるので、これを勘案し
て、上記回生制動トルク波形の初期値を修正して回転電
機2に与える回生制動トルク要求値とすることが好まし
い。
The response delay of the brake device 100 when the mechanical braking torque request value including the inverse change of the periodic change of the regenerative braking torque in the form of a rectangular pulse is applied to the brake control device 101, and the mechanical braking actually occurring. Since the waveform blunting of the torque or the like is known, it is preferable that the initial value of the regenerative braking torque waveform is corrected in consideration of this to obtain a required regenerative braking torque value to be given to the rotary electric machine 2.

【0046】このようにすれば、ブレーキ装置100の
レスポンス遅れ(タイムラグ)や機械的制動トルク波形
の鈍りによる、機械的制動トルクと回生制動トルクとの
合計と制動トルク要求値との間の誤差を良好に解消する
ことができる。
In this way, the error between the sum of the mechanical braking torque and the regenerative braking torque and the required braking torque value due to the response delay (time lag) of the brake device 100 or the blunted mechanical braking torque waveform is reduced. It can be satisfactorily eliminated.

【0047】回生制動トルクは両回転電機21、22で
発生でき、第2の回転電機22のみでも発生でき、第1
の回転電機21のみにても発生することができる。 (制動トルク制御例)制動トルクの分配の一例を図4に
示すフロ−チャ−トを参照して以下に説明する。
The regenerative braking torque can be generated by both rotating electric machines 21 and 22 and can be generated only by second rotating electric machine 22.
Can be generated only in the rotating electric machine 21. (Example of braking torque control) An example of distribution of braking torque will be described below with reference to a flowchart shown in FIG.

【0048】S901で減速処理に移ると、まずS90
2で制動トルク要求値Tbrkを読み込み、S903で
タイマのカウント時間tをインクリメントする。次に、
S904でカウント時間tを所定値twと比較し、カウ
ント時間tが大きい場合はS905でタイマをクリア
し、カウント時間tが小さい場合はそのままS906へ
移る。
When the flow proceeds to the deceleration processing in S901, first, in S90
In step 2, the braking torque request value Tbrk is read, and in step S903, the count time t of the timer is incremented. next,
In step S904, the count time t is compared with a predetermined value tw. If the count time t is long, the timer is cleared in step S905. If the count time t is short, the process proceeds to step S906.

【0049】S906では、カウント時間tと所定値t
w/2と比較し、カウント時間tが大きい場合は回転電
機2による車両駆動トルク指令値(回生制動トルク要求
値)Tmgを制動トルク要求値Tbrkに係数kを掛け
た値に設定し、カウント時間tが小さい場合は回生制動
トルク要求値Tmgを0に設定し、この値に基づき、回
転電機2をトルク制御する。次に、S908で機械的制
動トルク要求値Tmech(=(1−k)Tbrk)を
演算し、それをブレーキ制御装置101に送信し、ブレ
ーキ制御装置101は機械的制動トルク要求値Tmec
hに基づいてブレーキ装置100を制御する。
In S906, the count time t and the predetermined value t
If the count time t is longer than w / 2, the vehicle driving torque command value (regeneration braking torque request value) Tmg by the rotating electric machine 2 is set to a value obtained by multiplying the braking torque request value Tbrk by a coefficient k, and the counting time When t is small, the regenerative braking torque request value Tmg is set to 0, and the torque of the rotating electric machine 2 is controlled based on this value. Next, in S908, a required mechanical braking torque value Tmech (= (1-k) Tbrk) is calculated and transmitted to the brake control device 101, and the brake control device 101 calculates the required mechanical braking torque value Tmec.
The brake device 100 is controlled based on h.

【0050】すなわち、この制御によれば、タイマのカ
ウント時間tを所定値(周期)twに達するまで繰り返
しカウントされ、カウント時間tが所定値tw/2に達
すると、回転電機2への車両駆動トルク指令値(回生制
動トルク要求値)Tmgを0に設定し、回転電機2の発
電を停止させ、周期tw、デュ−ティ比0.5の間欠発
電を実施する。 (変形例)上記実施例では、回転電機2の間欠発電制御
したが、たとえば第1の回転電機21および第2の回転
電機22の一方の発電、電動を停止し、他方で発電して
もよい。
That is, according to this control, the count time t of the timer is repeatedly counted until it reaches a predetermined value (cycle) tw, and when the count time t reaches the predetermined value tw / 2, the vehicle drive to the rotary electric machine 2 is started. The torque command value (regenerative braking torque request value) Tmg is set to 0, the power generation of the rotating electric machine 2 is stopped, and the cycle tw and the duty ratio 0.5 are performed intermittently. (Modification) In the above embodiment, the intermittent power generation control of the rotating electric machine 2 is performed. However, for example, one of the first rotating electric machine 21 and the second rotating electric machine 22 may be stopped from power generation and electric power, and the other may be generated. .

【0051】なお、バッテリ充電電流は、完全に周期的
にオンオフされなくても、小さい直流又は低周波の充電
電流と完全にオンオフされる充電電流との合計充電電流
で充電されてもよい。この場合、バッテリは前者の比較
的小さな充電電流に対しては従来通り反応し、それ以上
の大充電電流成分に対しては間欠充電となるためバッテ
リ電圧増大抑止効果を奏することができる。
The battery charging current may not be completely turned on / off periodically, but may be charged with a total charging current of a small DC or low-frequency charging current and a charging current that is completely turned on / off. In this case, the battery responds to the former relatively small charging current as usual, and intermittently charges to a larger charging current component, so that the effect of suppressing the increase in battery voltage can be exhibited.

【0052】したがって、上記実施例ではS909にて
回転電機2の車両駆動トルク指令値(回生制動トルク要
求値)Tmgを0としたが、0でない所定値とすること
ができる。 (変形例)上記実施例では、上記実施例ではS909に
て回転電機2の車両駆動トルク指令値(回生制動トルク
要求値)Tmgを0としたが、本質的に重要なのは、バ
ッテリ大電流充電時における充電電流の間欠化であるの
で、制動トルク要求値Tbrkの範囲内で、バッテリ間
欠充電電流の波形(大きさ、周期、デュ−ティ比)を決
定し、それに車両の電気負荷給電電流を加算して回転電
機2の発電量を決定し、これとエンジンから第1の回転
電機21を通じて車輪に伝達される伝達トルクTt(0
でもよい)を加算し、回転電機2が車輪に与える回転電
機トルクを決定する。そして、ブレ−キペダルから得た
制動トルク要求値からこの回転電機トルクを減算してブ
レーキ装置100の機械的制動トルク要求値としてもよ
い。
Therefore, in the above embodiment, the vehicle drive torque command value (regenerative braking torque request value) Tmg of the rotating electric machine 2 is set to 0 in S909, but it can be set to a predetermined value other than 0. (Modification) In the above embodiment, the vehicle drive torque command value (regeneration braking torque request value) Tmg of the rotary electric machine 2 was set to 0 in S909 in the above embodiment, but what is essentially important is when the battery is charged with a large current. , The waveform (size, cycle, duty ratio) of the battery intermittent charging current is determined within the range of the braking torque request value Tbrk, and the electric load supply current of the vehicle is added thereto. To determine the amount of power generated by the rotating electric machine 2, and the transmission torque Tt (0) transmitted from the engine to the wheels through the first rotating electric machine 21.
May be added) to determine the rotating electric machine torque that the rotating electric machine 2 applies to the wheels. Then, the rotating electric machine torque may be subtracted from the required braking torque value obtained from the brake pedal to obtain the required mechanical braking torque value of the brake device 100.

【0053】[0053]

【実施例2】他の実施例を図5に示すフロ−チャ−トを
参照して以下に説明する。
Embodiment 2 Another embodiment will be described below with reference to a flowchart shown in FIG.

【0054】S1901で減速処理に移ると、先ずS1
902でブレーキ要求値Tbrkを読み込み、S190
3でタイマtをインクリメントする。そしてS1904
でtの大きさを所定値twと比較し、tが大きい場合は
S1905でタイマをクリアし、tが小さい場合はその
ままS1906へ移る。ここではtの大きさを所定値t
w/2と比較し、tが大きい場合はブレーキ装置100
への機械的制動トルク要求値TmechをTbrkに所
定値kを掛けた値に設定し、tが小さい場合はTmec
hを0又は所定値(定常的な機械的制動トルク値)に設
定し、この値に基づき制御する。そしてS1908で回
転電機2の回生制動トルク指令値Tmg(=Tbrk−
Tmech)を演算し、その値に基づき制御する。
At S1901, the process proceeds to deceleration processing.
At step 902, a brake request value Tbrk is read, and at step S190
At 3, the timer t is incremented. And S1904
Then, the value of t is compared with a predetermined value tw. If t is large, the timer is cleared in S1905, and if t is small, the process proceeds to S1906. Here, the magnitude of t is set to a predetermined value t.
If t is larger than w / 2, the brake device 100
Is set to a value obtained by multiplying Tbrk by a predetermined value k. If t is small, Tmec
h is set to 0 or a predetermined value (steady mechanical braking torque value), and control is performed based on this value. Then, in S1908, the regenerative braking torque command value Tmg (= Tbrk-
Tmech) and controls based on the value.

【0055】この時、回転電機2が発生する回生制動ト
ルク(第1の回転電機21によるエンジン軸と車輪軸と
の結合トルク(エンジン軸回転数が車輪軸回転数より低
い場合には制動トルクとなりうる)を含む)Tmgは、
ブレーキ装置100への上記機械的制動トルク要求値T
mechの周期変化成分に対してその伝達遅れおよび鈍
りを演算して求めた値f(Tmech)をTbrkから
減算したトルク波形とされる。又は、ブレーキ制御装置
101が実際のブレーキ装置100の発現制動トルクを
検出する構成であれば、それを読み込んでそれにもよ
い。
At this time, the regenerative braking torque generated by the rotating electric machine 2 (the coupling torque between the engine shaft and the wheel shaft by the first rotating electric machine 21 (the braking torque when the engine shaft speed is lower than the wheel shaft speed) Tmg is
The mechanical braking torque request value T for the braking device 100
A torque waveform is obtained by subtracting Tbrk from a value f (Tmech) obtained by calculating the transmission delay and the dullness of the period change component of mech. Alternatively, if the brake control device 101 detects the actual braking torque of the actual brake device 100, it may be read and used.

【0056】このようにすれば、レスポンスが遅いブレ
ーキ装置100の機械的制動トルクの周期変化に合わせ
て、レスポンスのよい回生制動トルクを周期変化を行っ
て機械的制動トルクの周期変化を相殺するので、上記レ
スポンス遅れによる両周期変化の時間的不一致を防止す
ることができる。 (変形例)上記実施例では、回生制動トルク又は充電電
流の周期変化のデュ−ティ比を0.5に固定したが、デ
ュ−ティ比は他の値でもよく、また、可変制御してもよ
い。
In this manner, the regenerative braking torque having a good response is changed in cycle in accordance with the cycle change of the mechanical braking torque of the brake device 100 having a slow response, thereby canceling the cycle change of the mechanical braking torque. In addition, it is possible to prevent a time mismatch between the two cycle changes due to the response delay. (Modification) In the above embodiment, the duty ratio of the periodic change of the regenerative braking torque or the charging current is fixed to 0.5. However, the duty ratio may be another value or may be variably controlled. Good.

【0057】好ましくは、要求される回生制動トルクの
大きさが大きいほどデュ−ティ比を増大し、回生制動ト
ルクを増大することが好ましい。これにより、バッテリ
の大充電電流の周期変化を維持しつつ、回生制動トルク
を増大することができる。 (変形例)上記実施例では、回生制動時には常に回生制
動トルクを周期変化させたが、回生制動トルクが小さい
場合には連続充電を行い、大きい場合には間欠充電を行
うようにしてもよい(図6参照)。
Preferably, as the required regenerative braking torque increases, the duty ratio increases, and the regenerative braking torque preferably increases. As a result, the regenerative braking torque can be increased while maintaining the cycle change of the large charging current of the battery. (Modification) In the above embodiment, the regenerative braking torque is periodically changed during regenerative braking. However, if the regenerative braking torque is small, continuous charging may be performed, and if the regenerative braking torque is large, intermittent charging may be performed ( See FIG. 6).

【0058】このようにすれば、小制動時において大電
流発電による配線やバッテリの電流値の二乗に比例する
電力損失、ジュ−ル熱を減らすことができる。 (変形例)上記実施例では、制動トルクの大きさを、連
続充電と間欠充電の選択基準としたが、バッテリの充電
状態を基準にそれを選択することもできる。
In this way, it is possible to reduce the power loss and Joule heat in proportion to the square of the current value of the wiring and the battery due to the large current generation during the small braking. (Modification) In the above embodiment, the magnitude of the braking torque is used as a criterion for selecting between continuous charging and intermittent charging. However, it can be selected based on the state of charge of the battery.

【0059】たとえば、バッテリ電圧が所定値よりも小
さい場合には連続充電を行い、大きい場合には間欠充電
を行うようにしてもよい(図7参照)。あるいは、バッ
テリの残存容量が所定値よりも小さい場合には連続充電
を行い、大きい場合には間欠充電を行うようにしてもよ
い。
For example, when the battery voltage is lower than a predetermined value, continuous charging may be performed, and when the battery voltage is higher, intermittent charging may be performed (see FIG. 7). Alternatively, when the remaining capacity of the battery is smaller than a predetermined value, continuous charging may be performed, and when it is larger, intermittent charging may be performed.

【0060】このようにすれば、バッテリ電圧の過大な
上昇を抑止しつつ回生制動エネルギーの良好な回収を行
うことができる。 (変形例)上記実施例では、ハイブリッド車への適用例
を示したが、各実施例はハイブリッド車に限定されず、
発電電動機をもつ内燃機関車、電気自動車、燃料電池自
動車に適用できることはもちろんである。 (変形例)上記実施例において、車両制動時にエンジン
への燃料噴射をカットし、エンジン回転数指令値を増大
して、回転電機2によりエンジン回転数を増大して、そ
のポンピング損失や摩擦損失を増大させ、回転電機2を
通じて制動トルクを増大させることもできる。
This makes it possible to recover the regenerative braking energy satisfactorily while suppressing an excessive rise in the battery voltage. (Modification) In the above embodiment, an example of application to a hybrid vehicle has been described, but each embodiment is not limited to a hybrid vehicle.
Needless to say, the present invention can be applied to an internal combustion locomotive having a generator motor, an electric vehicle, and a fuel cell vehicle. (Modification) In the above embodiment, the fuel injection to the engine is cut off at the time of vehicle braking, the engine speed command value is increased, the engine speed is increased by the rotating electric machine 2, and the pumping loss and friction loss are reduced. It is also possible to increase the braking torque through the rotating electric machine 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の車両制動装置を適用したハイブリッド
車のブロック図である。
FIG. 1 is a block diagram of a hybrid vehicle to which a vehicle braking device according to the present invention is applied.

【図2】図1のハイブリッド車に用いた回転電機を示す
模式図である。
FIG. 2 is a schematic diagram showing a rotating electric machine used in the hybrid vehicle of FIG. 1;

【図3】制動トルクと機械的制動トルクと回生制動トル
クの波形を示すタイミングチャ−トである。
FIG. 3 is a timing chart showing waveforms of a braking torque, a mechanical braking torque, and a regenerative braking torque.

【図4】制動トルクの機械的制動トルクと回生制動トル
クへの分配制御の一例を示すフロ−チャ−トである。
FIG. 4 is a flowchart showing an example of distribution control of braking torque to mechanical braking torque and regenerative braking torque.

【図5】制動トルクの機械的制動トルクと回生制動トル
クへの分配制御の一例を示すフロ−チャ−トである。
FIG. 5 is a flowchart showing an example of distribution control of a braking torque to a mechanical braking torque and a regenerative braking torque.

【図6】制動トルクの機械的制動トルクと回生制動トル
クへの分配制御の一例を示すフロ−チャ−トである。
FIG. 6 is a flowchart showing an example of distribution control of braking torque to mechanical braking torque and regenerative braking torque.

【図7】制動トルクの機械的制動トルクと回生制動トル
クへの分配制御の一例を示すフロ−チャ−トである。
FIG. 7 is a flowchart showing an example of distribution control of braking torque to mechanical braking torque and regenerative braking torque.

【符号の説明】[Explanation of symbols]

1:エンジン 2:回転電機 4:車両制御装置(発電トルク制御装置) 5:バッテリ 6:エンジン制御装置 21:第1の回転電機 22:第2の回転電機 100:ブレーキ装置 101:ブレーキ制御装置 1: engine 2: rotating electric machine 4: vehicle control device (power generation torque control device) 5: battery 6: engine control device 21: first rotating electric machine 22: second rotating electric machine 100: brake device 101: brake control device

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3D046 AA09 BB07 CC02 CC06 EE01 HH12 KK11 5H115 PA01 PA08 PC06 PG04 PI16 PI24 PI29 PO02 PO06 PO17 PU10 PU24 PU26 PV09 QE10 QE20 QI04 QI07 QN06 QN09 QN12 RE02 RE03 RE05 SE04 SE05 SE06 TI02 TI05 TO21 TO23 TO30 TR19 TU16 UI13 UI23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3D046 AA09 BB07 CC02 CC06 EE01 HH12 KK11 5H115 PA01 PA08 PC06 PG04 PI16 PI24 PI29 PO02 PO06 PO17 PU10 PU24 PU26 PV09 QE10 QE20 QI04 QI07 QN06 QN09 QN12 RE02 RE05 TI05 SE05 SE05 SE05 SE05 SE05 SE05 SE05 SE05 TO21 TO23 TO30 TR19 TU16 UI13 UI23

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】車両に搭載されるバッテリと電力授受して
エンジンが発生する車両駆動力を増減する回転電機と、
前記回転電機の発電トルクを制御する発電トルク制御装
置と、車両を制動するブレーキ装置と、前記ブレーキ装
置の機械的制動トルクを制御するブレーキ制御装置とを
備える車両制動装置において、 前記発電トルク制御装置および前記ブレーキ制御装置
は、 車両減速時に、前記発電トルクおよび機械的制動トルク
を周期変化させ、 前記発電トルクの周期変化成分と前記機械的制動トルク
の周期変化成分との和である合成トルク変動は、前記発
電トルクの周期変化成分より小さいことを特徴とする車
両制動装置。
A rotating electric machine that transfers electric power to and from a battery mounted on a vehicle to increase or decrease a vehicle driving force generated by an engine;
A vehicle braking device comprising: a power generation torque control device that controls a power generation torque of the rotating electric machine; a brake device that brakes a vehicle; and a brake control device that controls a mechanical braking torque of the brake device. And the brake control device changes the cycle of the power generation torque and the mechanical braking torque when the vehicle decelerates, and the resultant torque fluctuation that is the sum of the cycle change component of the power generation torque and the cycle change component of the mechanical braking torque is: A vehicle braking device, wherein the power generation torque is smaller than a cycle change component.
【請求項2】請求項1記載の車両制動装置において、 前記発電トルクの周期変化成分と前記機械的制動トルク
の周期変化成分とは、同一周波数でほぼ逆位相の関係を
有することを特徴とする車両制動装置。
2. The vehicle braking device according to claim 1, wherein the cycle change component of the generated torque and the cycle change component of the mechanical braking torque have substantially the same phase at the same frequency. Vehicle braking device.
【請求項3】請求項2記載の車両制動装置において、 前記発電トルクの周期変化成分と前記機械的制動トルク
の周期変化成分とは、ほぼ等しい大きさを有することを
特徴とする車両制動装置。
3. The vehicle braking device according to claim 2, wherein the cycle change component of the generated torque and the cycle change component of the mechanical braking torque have substantially the same magnitude.
【請求項4】請求項2記載の車両制動装置において、 前記発電トルク制御装置は、所定の連続発電成分と周期
変化発電成分とを合成した発電電流を前記回転電機に出
力させることを特徴とする車両制動装置。
4. The vehicle braking device according to claim 2, wherein the power generation torque control device outputs a power generation current obtained by combining a predetermined continuous power generation component and a periodic power generation component to the rotating electric machine. Vehicle braking device.
【請求項5】請求項4記載の車両制動装置において、 前記発電電流の前記連続発電成分は、前記車両の前記バ
ッテリを除く電気負荷の要求電流値に略一致することを
特徴とする車両制動装置。
5. The vehicle braking device according to claim 4, wherein the continuous power generation component of the generated current substantially coincides with a required current value of an electric load except for the battery of the vehicle. .
【請求項6】請求項1ないし5のいずれか記載の車両制
動装置において、 前記ブレーキ制御装置は、車両減速時に前記機械的制動
トルクの前記周期変化を前記ブレーキ装置に指令し、 前記発電トルク制御装置は、前記機械的制動トルクの前
記周期変化の位相に基づいて前記回生制動トルクの位相
を決定することを特徴とする車両制動装置。
6. The vehicle braking device according to claim 1, wherein the brake control device instructs the brake device to change the cycle of the mechanical braking torque when the vehicle decelerates, and the power generation torque control. The apparatus determines a phase of the regenerative braking torque based on a phase of the cycle change of the mechanical braking torque.
【請求項7】請求項1ないし6記載の車両制動装置にお
いて、 前記発電トルク制御装置は、入力される車両条件に応じ
て前記回生制動トルクの周期変化のデュ−ティ比を可変
制御し、 車両減速時に入力されるブレ−キペダル踏み量に応じた
要求制動トルク値が増加するにつれて前記デュ−ティ比
を増大し、減少するにつれて前記デュ−ティ比を減少す
ることを特徴とする車両制動装置。
7. The vehicle braking device according to claim 1, wherein the power generation torque control device variably controls a duty ratio of a cycle change of the regenerative braking torque according to an input vehicle condition. A vehicle braking system characterized in that the duty ratio increases as the required braking torque value according to the brake pedal depression amount input during deceleration increases, and decreases as the required braking torque value decreases.
【請求項8】請求項1〜7のいずれか記載の車両制動装
置において、 前記発電トルク制御装置は、要求される回生制動トルク
が小さい場合には連続充電を、大きい場合には間欠充電
を行うことを特徴とする車両制動装置。
8. The vehicle braking device according to claim 1, wherein the power generation torque control device performs continuous charging when the required regenerative braking torque is small, and performs intermittent charging when the required regenerative braking torque is large. A vehicle braking device, characterized in that:
【請求項9】請求項1〜7のいずれか記載の車両制動装
置において、 前記発電トルク制御装置は、前記バッテリの充電状態に
応じて連続充電と間欠充電を切り替えることを特徴とす
る車両制動装置。
9. The vehicle braking device according to claim 1, wherein the power generation torque control device switches between continuous charging and intermittent charging according to a state of charge of the battery. .
【請求項10】請求項9記載の車両制動装置において、 前記発電トルク制御装置は、前記バッテリの充電状態と
してバッテリ電圧を検出し、前記バッテリ電圧が所定値
より小さい場合は連続充電を、大きい場合は間欠充電を
行うことを特徴とする車両制動装置。
10. The vehicle braking device according to claim 9, wherein the power generation torque control device detects a battery voltage as a state of charge of the battery, and when the battery voltage is smaller than a predetermined value, continuously charges the battery. Is a vehicle braking device that performs intermittent charging.
【請求項11】請求項9記載の車両制動装置において、 前記発電トルク制御装置は、前記バッテリの充電状態と
して残存容量(SOC)を検出し、前記残存容量が所定
値より小さい場合は連続充電を、大きい場合は間欠充電
を行うことを特徴とする車両制動装置。
11. The vehicle braking device according to claim 9, wherein the power generation torque control device detects a state of charge (SOC) as a state of charge of the battery, and if the state of charge is smaller than a predetermined value, performs continuous charging. A vehicle braking device that performs intermittent charging when large.
JP34774099A 1999-12-07 1999-12-07 Brake for car Pending JP2001169406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34774099A JP2001169406A (en) 1999-12-07 1999-12-07 Brake for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34774099A JP2001169406A (en) 1999-12-07 1999-12-07 Brake for car

Publications (1)

Publication Number Publication Date
JP2001169406A true JP2001169406A (en) 2001-06-22

Family

ID=18392274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34774099A Pending JP2001169406A (en) 1999-12-07 1999-12-07 Brake for car

Country Status (1)

Country Link
JP (1) JP2001169406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694232B2 (en) 2002-06-19 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Control device for hybrid vehicle
US6739677B2 (en) 2002-02-15 2004-05-25 Nissan Motor Co., Ltd. Brake control apparatus
JP2010158162A (en) * 2010-02-03 2010-07-15 Toyota Motor Corp Regenerative-braking control device
JP2011193598A (en) * 2010-03-12 2011-09-29 Mitsubishi Motors Corp Control method and controller of dc/dc converter
JP2013126348A (en) * 2011-12-16 2013-06-24 Toyota Motor Corp Electric vehicle
JP2014014270A (en) * 2013-10-07 2014-01-23 Mitsubishi Motors Corp Dc/dc converter control device
WO2014038262A1 (en) * 2012-09-10 2014-03-13 株式会社豊田自動織機 Vehicle drive mechanism
JP2014200124A (en) * 2013-03-29 2014-10-23 カヤバ工業株式会社 Charge control apparatus and truck mixer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739677B2 (en) 2002-02-15 2004-05-25 Nissan Motor Co., Ltd. Brake control apparatus
US6694232B2 (en) 2002-06-19 2004-02-17 Honda Giken Kogyo Kabushiki Kaisha Control device for hybrid vehicle
JP2010158162A (en) * 2010-02-03 2010-07-15 Toyota Motor Corp Regenerative-braking control device
JP2011193598A (en) * 2010-03-12 2011-09-29 Mitsubishi Motors Corp Control method and controller of dc/dc converter
JP2013126348A (en) * 2011-12-16 2013-06-24 Toyota Motor Corp Electric vehicle
WO2014038262A1 (en) * 2012-09-10 2014-03-13 株式会社豊田自動織機 Vehicle drive mechanism
JP2014200124A (en) * 2013-03-29 2014-10-23 カヤバ工業株式会社 Charge control apparatus and truck mixer
JP2014014270A (en) * 2013-10-07 2014-01-23 Mitsubishi Motors Corp Dc/dc converter control device

Similar Documents

Publication Publication Date Title
CN101678826B (en) Controller and control method of hybrid vehicle
JP4991555B2 (en) Hybrid vehicle and operation control method of hybrid vehicle
US5880570A (en) Method and apparatus for controlling a synchronous motor
CN105034837B (en) Electric vehicle
JP2007269207A (en) Hybrid system of vehicle
CN107791885B (en) Fail-safe apparatus of ECM system and method thereof
CN102763320B (en) Regeneration control system for vehicle
CN110182064B (en) Electric vehicle
JP2001169406A (en) Brake for car
US11271504B2 (en) Motor control system
JP7347250B2 (en) Mobile control device
JP7363528B2 (en) Motor magnet temperature estimation device and hybrid vehicle equipped with the same
JP2001320806A (en) Moving object and controlling method thereof
WO2012043107A1 (en) Rotating electric machine, manufacturing method of stator core of rotating electrical machine
US11529946B2 (en) Control system for movable body
JPH02206302A (en) Automobile auxiliary driver
WO2017013843A1 (en) Vehicular power source device and method of controlling vehicular power source device
JP2009196533A (en) Dynamo-electric machine control system and vehicle driving system having the dynamo-electric machine control system
JP2019149911A (en) Controller of switched reluctance motor
JP2019142445A (en) Vehicle and method for controlling vehicle
JPH0424957B2 (en)
US10730508B2 (en) Hybrid vehicle and control method for hybrid vehicle
JP3691984B2 (en) Control device for hybrid vehicle
KR19990050663A (en) Regenerative braking method of electric vehicle
JP2006050877A (en) Controller of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070906