JP2001165807A - Aspherical eccentricity measuring device - Google Patents

Aspherical eccentricity measuring device

Info

Publication number
JP2001165807A
JP2001165807A JP34809399A JP34809399A JP2001165807A JP 2001165807 A JP2001165807 A JP 2001165807A JP 34809399 A JP34809399 A JP 34809399A JP 34809399 A JP34809399 A JP 34809399A JP 2001165807 A JP2001165807 A JP 2001165807A
Authority
JP
Japan
Prior art keywords
aspherical
lens
eccentricity
inspected
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34809399A
Other languages
Japanese (ja)
Inventor
Kazunari Tsubono
一成 坪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP34809399A priority Critical patent/JP2001165807A/en
Publication of JP2001165807A publication Critical patent/JP2001165807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and correctly implement the aspherical eccentricity measurement without any effect of the predetermined error on the result of measurement with the relative position of two interference optical systems fixed. SOLUTION: The displacement in the inclined movement and the displacement in the translation are measured by achieving the inclined movement and the translation of a lens L to be inspected so that a surface r2 to be inspected and the optical system E2 for generating the aspherical wave are in one color from the condition that a surface r1 to be inspected of the lens L to be inspected and the optical system E1 for generating the aspherical wave are in one color, the lens L is turned by 180 deg. in the radial direction to represent the condition that the surface r1 to be inspected of the lens L to be inspected and the optical system E1 for generating the aspherical wave are in one color, and the displacement K2 of the inclined movement and the displacement H2 for the translation from the position of the measured origin after the turning are measured. These changes are only reversed in directionality by the eccentric component of the lens L itself, and the eccentricity of inclination and the eccentricity in translation of the lens L itself can be obtained by separating the predetermined error of a measurement device itself.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非球面レンズ及び
レンズユニット等の光軸を確定する非球面偏心測定装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical eccentricity measuring device for determining an optical axis of an aspherical lens and a lens unit.

【0002】[0002]

【従来の技術】従来から、干渉計を使用した位置決め計
測によって非球面レンズの光軸偏心を正確に測定する方
法として、特開平10−2714号公報及び特開平11
−14498号公報が開示されている。この測定方法の
原理は被検レンズを構成する2面のそれぞれに干渉縞を
発生させて、その位置関係から光軸偏心を求めるもので
あり、両側非球面レンズにも対応することが可能であ
る。
2. Description of the Related Art Conventionally, as a method for accurately measuring the optical axis eccentricity of an aspherical lens by positioning measurement using an interferometer, Japanese Patent Application Laid-Open Nos.
No. 144498 is disclosed. The principle of this measurement method is to generate interference fringes on each of the two surfaces constituting the lens to be measured, and to determine the optical axis eccentricity based on the positional relationship between the two surfaces. .

【0003】図5は従来例の非球面偏心測定装置の構成
図を示し、光軸上には基準光となる干渉波面を発生する
干渉計1、被検レンズLの一方の面に入射して干渉平面
波を発生する入射波面発生用光学系2、入射波面発生用
光学系2の周囲に配された遮蔽板3、位置の微調整が可
能な取付治具4、取付治具4に取り付けた被検レンズ
L、被検レンズLの他方の面に入射して干渉平面波を発
生する入射波面発生用光学系5、干渉計1の干渉平面波
を反射して測定光軸の傾きを調整する平面ミラー6が順
次に配列されており、平面ミラー6の反射方向の光軸上
に基準干渉平面波を発生する干渉計7が配置されてい
る。
FIG. 5 is a diagram showing the configuration of a conventional aspherical eccentricity measuring apparatus. The interferometer 1 generates an interference wavefront serving as reference light on the optical axis, and is incident on one surface of a lens L to be measured. An incident wavefront generating optical system 2 for generating an interference plane wave, a shielding plate 3 disposed around the incident wavefront generating optical system 2, a mounting jig 4 whose position can be finely adjusted, and a cover attached to the mounting jig 4. An incident wavefront generating optical system 5 that generates an interference plane wave by being incident on the other surface of the test lens L and the test lens L, and a plane mirror 6 that reflects the interference plane wave of the interferometer 1 to adjust the inclination of the measurement optical axis. Are arranged sequentially, and an interferometer 7 for generating a reference interference plane wave is arranged on the optical axis in the reflection direction of the plane mirror 6.

【0004】上述の構成によって測定を行う場合には、
被検レンズLを構成する2つの面の内の何れか一方の面
を基準に、この面全面が入射波面発生用光学系2とワン
カラーつまり干渉縞がない状態、又は複数の輪帯域がワ
ンカラーとなる位置を、測定光学系上の原点と考える。
同様に、反対面用の干渉計7及び平面ミラー6を調整し
て、被検レンズLの反対面をワンカラーとした位置を記
録する。次に、被検レンズLを円周方向に180度回転
して上述と同様の調整を繰り返し、反対面を再度干渉さ
せた位置の相対的変化量の1/2を被検レンズLの相対
光軸偏心量として計測する。
[0004] When the measurement is performed by the above configuration,
With reference to either one of the two surfaces constituting the lens L to be measured, the entire surface of the lens L and the incident wavefront generating optical system 2 are in one color, that is, there is no interference fringe, or a plurality of annular bands are one. The color position is considered as the origin on the measurement optical system.
Similarly, the interferometer 7 and the plane mirror 6 for the opposite surface are adjusted, and the position where the opposite surface of the test lens L is set to one color is recorded. Next, the test lens L is rotated by 180 degrees in the circumferential direction, and the same adjustment as described above is repeated. One half of the relative change amount of the position at which the opposite surface is caused to interfere again is determined by the relative light of the test lens L. Measured as axial eccentricity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、両非球面を測定する際に、傾き偏心成
分が平行偏心成分に加算されてしまうために、これを分
離して計算する必要がある。
However, in the above-mentioned conventional example, when measuring both aspherical surfaces, the tilt eccentric component is added to the parallel eccentric component, and therefore it is necessary to separate and calculate it. is there.

【0006】図6は同じ傾き偏心成分θ及び平行偏心成
分Sを有する従来例の測定装置を示し、(a)は被検レ
ンズLの傾き方向が内側を向く場合で、(b)は外側を
向く場合である。このように傾き方向が逆になると、非
球面レンズLの被検面r2と非球面波発生用光学系5と
の間隔Tによって、発生する擬似平行偏心量S’の符号
がが逆になる。このために、実測値から計算する際に加
算する場合と減算する場合が存在し、これを分離して平
行偏心成分Sを求める必要が生ずる。この結果、間隔T
の実測値や傾き偏心測定が不正確であると、平行偏心量
を正確に求めることができないという問題点が生ずる。
FIGS. 6A and 6B show a conventional measuring apparatus having the same tilt eccentricity component θ and parallel eccentricity component S. FIG. 6A shows the case where the tilt direction of the lens L to be measured is inward, and FIG. It is the case that turns. When the inclination direction is reversed in this way, the sign of the generated pseudo-parallel eccentricity S ′ is reversed due to the interval T between the test surface r2 of the aspheric lens L and the aspheric wave generation optical system 5. For this reason, there are a case where addition is performed and a case where subtraction is performed when calculating from an actually measured value, and it is necessary to separate them and obtain the parallel eccentric component S. As a result, the interval T
Inaccurate measurement of the actual eccentricity and the inclination eccentricity may cause a problem that the parallel eccentricity cannot be accurately obtained.

【0007】また測定の際には、2系の非球面波発生用
光学系2、5をそれぞれ同時に干渉させるために、偏心
している被検レンズLの少なくとも片面側を被検面光軸
と一致させて、非球面波発生用光学系自体を傾き及び平
行移動して調整する必要がある。このときに、干渉計
1、7から射出される干渉波が平行平面波であることか
ら、平行調整の場合は測定上問題はないが、傾き調整の
場合は干渉波自体も傾けなければならない。従って、非
球面波発生用光学系2及び干渉計1を一体として動かす
必要があり、1台の干渉計1で両面干渉を行うことは不
可能となり、更に干渉計本体を精度良く動かすことにも
物理的困難を伴う。
At the time of measurement, at least one side of the decentered lens L coincides with the optical axis of the surface to be measured in order to simultaneously interfere the two systems of aspherical wave generating optical systems 2 and 5, respectively. In this case, it is necessary to adjust the aspherical wave generating optical system by tilting and translating it. At this time, since the interference waves emitted from the interferometers 1 and 7 are parallel plane waves, there is no problem in measurement in the case of parallel adjustment, but the interference waves themselves must be inclined in the case of inclination adjustment. Therefore, it is necessary to move the aspherical wave generating optical system 2 and the interferometer 1 integrally, and it is impossible to perform two-sided interference with one interferometer 1, and it is also necessary to move the interferometer body with high accuracy. With physical difficulties.

【0008】このような理由から、例えば図5に示すよ
うに干渉計7と非球面波発生用光学系5の間に平面ミラ
ー6を配置して対応しているが、この場合は非球面波発
生用光学系自体を平行及び傾き調整しながら、同時にそ
れに合わせて平面ミラー6も傾き調整する必要があるた
めに、相当に高度な技術を要する作業となるという問題
点がある。
For this reason, for example, as shown in FIG. 5, a plane mirror 6 is arranged between the interferometer 7 and the aspherical wave generating optical system 5, and in this case, the aspherical wave is used. It is necessary to adjust the tilt of the plane mirror 6 while adjusting the parallel and tilt of the generating optical system itself, and at the same time, there is a problem that the operation requires a considerably high technique.

【0009】本発明の目的は、上述の問題点を解消し、
より簡単かつ正確に両非球面偏心測定を行うことができ
る非球面偏心測定装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide an aspherical surface eccentricity measurement device capable of performing both aspherical surface eccentricity measurement more easily and accurately.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非球面偏心測定装置は、非球面レンズの
被検両面に対応してそれぞれの面に入射する波面を発生
する非球面波発生用光学系と、前記被検両面からの反射
光を入射光路と逆行させて干渉する1個又は2個の干渉
計と、前記被検両面からの反射光による干渉縞に基づい
て前記被球面レンズの位置調整及び測長を行うレンズ位
置決め手段とを有し、該レンズ位置決め手段により前記
被検両面の非球面軸を確定する非球面偏心測定装置にお
いて、計測時に前記2個の非球面波発生用光学系及び干
渉計の相対位置を固定した状態を保持しつつ前記被検両
面それぞれの変位調整を行い、該変位量から偏心計測を
実施することを特徴とする。
According to the present invention, there is provided an aspherical surface eccentricity measuring apparatus for achieving the above object, wherein the aspherical surface generates wavefronts incident on respective surfaces corresponding to both surfaces to be measured of an aspherical lens. A wave generation optical system, one or two interferometers for interfering the reflected light from the two surfaces to be detected in a direction opposite to the incident optical path, and the interference based on the interference fringes caused by the reflected light from the two surfaces to be inspected. A lens positioning means for adjusting the position of the spherical lens and measuring the length thereof, wherein the two aspherical waves are measured at the time of measurement in an aspherical eccentricity measuring device for determining the aspherical axes of the surfaces to be tested by the lens positioning means. The present invention is characterized in that the displacement of each of the test surfaces is adjusted while maintaining the relative positions of the generation optical system and the interferometer fixed, and the eccentricity is measured from the displacement.

【0011】また、本発明に係る非球面偏心測定装置
は、非球面レンズの被検両面に対応してそれぞれの面に
入射する波面を発生する非球面波発生用光学系と、前記
被検両面からの反射光を入射光路と逆行させて干渉する
1個又は2個の干渉計と、前記被検両面からの反射光に
よる干渉縞に基づいて前記非球面レンズの位置調整及び
測長を行うレンズ位置決め手段とを有し、該レンズ位置
決め手段により前記被検両面の非球面軸を確定する非球
面偏心測定装置において、前記非球面レンズの被検両面
の何れかの面の中心が、該非球面レンズの測定上の傾き
回転中心と一致するか、又は予め決められた一定量のず
れを有するようにした被検レンズ位置決め測定機構を備
えることを特徴とする。
An aspherical eccentricity measuring apparatus according to the present invention comprises an aspherical wave generating optical system for generating a wavefront incident on each surface of the aspherical lens corresponding to the both surfaces of the aspherical lens. One or two interferometers that interfere with reflected light from the optical path in a direction opposite to the incident optical path, and a lens that adjusts the position and measures the length of the aspheric lens based on interference fringes due to the reflected light from both surfaces to be tested An aspherical eccentricity measuring device for determining the aspherical axes of both surfaces to be inspected by the lens positioning device, wherein the center of any one of the surfaces to be inspected of the aspherical lens is the aspherical lens. The present invention is characterized in that there is provided a lens positioning and measuring mechanism which matches with the tilt rotation center on measurement or has a predetermined fixed amount of shift.

【0012】[0012]

【発明の実施の形態】本発明を図1〜図4に図示の実施
例に基づいて詳細に説明する。図1は非球面偏心測定装
置の構成図を示し、2系の図示しない干渉計を含む非球
面波発生用光学系E1、E2の間に、被検非球面レンズ
Lが配置されている。この非球面波発生用光学系E1、
E2に対して、設定誤差として傾き偏心で角度αが生じ
ており、被検レンズLにおいては、平行偏心が面r2の
頂点近傍でνだけ生じている状態のときに、傾き偏心が
角度θだけ生じ、平行偏心は面r1の非球面軸を基準と
して非球面r2の頂点位置においてSだけ偏心している
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the embodiments shown in FIGS. FIG. 1 shows a configuration diagram of an aspherical eccentricity measuring apparatus. A test aspherical lens L is disposed between aspherical wave generating optical systems E1 and E2 including two interferometers (not shown). This aspherical wave generating optical system E1,
For E2, an angle α occurs due to the inclination eccentricity as a setting error. In the test lens L, when the parallel eccentricity occurs by ν near the vertex of the surface r2, the inclination eccentricity is only the angle θ. The generated parallel eccentricity is assumed to be eccentric by S at the vertex position of the aspherical surface r2 with respect to the aspherical axis of the surface r1.

【0013】図2に示すように両非球面レンズLの場合
には、非球面輪帯曲率球心が連続して連なる線分を光軸
J1、J2として、これらの光軸J1、J2がそれぞれ
非球面r1、r2と交叉する点を非球面頂点と考えたと
きに、傾き偏心量θは面r1、r2のどちらを基準にし
ても変わらないが、平行偏心量S1、S2は面r1を基
準とした場合と面r2を基準とした場合とで、両非球面
レンズLの肉厚Dによって次式(1)分だけ変化する。 sin- 1θ*D …(1)
As shown in FIG. 2, in the case of both aspherical lenses L, the line segments in which the aspherical annular sphere curvature spheres are continuously connected are defined as optical axes J1 and J2, and these optical axes J1 and J2 are respectively defined. When the point intersecting the aspherical surfaces r1 and r2 is considered as the aspherical vertex, the inclination eccentricity θ does not change when either of the surfaces r1 and r2 is used as a reference, but the parallel eccentricities S1 and S2 are used as a reference to the surface r1. And the case where the surface r2 is used as a reference, the distance changes by the following equation (1) depending on the thickness D of both aspheric lenses L. sin - 1 θ * D (1)

【0014】従って、両面が非球面レンズの場合に平行
偏心量を現わすためには、基準軸を何れの面にするかが
問題となる。なお、本実施例の場合には非球面r1を基
準軸としている。
Therefore, in order to express the amount of parallel eccentricity when both surfaces are aspherical lenses, there is a problem in which surface is used as the reference axis. In this embodiment, the aspheric surface r1 is used as a reference axis.

【0015】図1は被検レンズLの被検面r1と非球面
波発生用光学系E1とをワンカラーとした状態を示して
おり、この時点での被検レンズLの位置を最初の計測原
点位置とする。図3は被検面r2と非球面波発生用光学
系E2とをワンカラーとするように、被検レンズLを傾
き及び平行移動した状態を示し、これによって最初の計
測原点位置からの傾き移動変位量K1と平行移動変位量
H1が計測される。なお、破線の被検レンズLは計測原
点位置を示している。
FIG. 1 shows a state in which the test surface r1 of the test lens L and the aspherical wave generating optical system E1 are in one color, and the position of the test lens L at this time is first measured. This is the origin position. FIG. 3 shows a state in which the test lens L is tilted and translated so that the test surface r2 and the aspherical wave generating optical system E2 have one color, whereby the tilt movement from the initial measurement origin position is performed. The displacement K1 and the translation displacement H1 are measured. Note that the test lens L indicated by a broken line indicates the measurement origin position.

【0016】次に、図4は被検レンズLをラジアル方向
に180度回転し、被検面r1と非球面波発生用光学系
E1とをワンカラーとした状態を示しており、上述と同
様の測定を繰り返すことによって、回転後の計測原点位
置からの傾き移動変位量K2と平行移動変位量H2が計
測される。
Next, FIG. 4 shows a state in which the test lens L is rotated by 180 degrees in the radial direction, and the test surface r1 and the aspherical wave generating optical system E1 are in one color. Is repeated, the tilt displacement K2 and the parallel displacement H2 from the measurement origin position after rotation are measured.

【0017】このようにして計測された傾き移動変位量
K1、K2及び平行移動変位量H1、H2は、被検レン
ズLの偏心成分θとSだけ方向性が逆転しているので、
次式(2)、(3)によって計測装置自体の設定誤差
α、νを含む変位量K1、K2から、被検レンズLの持
つ傾き偏心θと平行偏心Sを分離して求めることができ
る。 (K1−K2)/2={(α十θ)−(α−θ)}/2=θ …(2) (H1−H2)/2={(ν十S)−(ν−S)}/2=S …(3)
Since the inclination displacements K1 and K2 and the translation displacements H1 and H2 measured in this way are reversed in direction by the eccentric components θ and S of the lens L to be measured,
The inclination eccentricity θ and the parallel eccentricity S of the test lens L can be obtained separately from the displacement amounts K1 and K2 including the setting errors α and ν of the measuring device itself by the following equations (2) and (3). (K1−K2) / 2 = {(α−θ) − (α−θ)} / 2 = θ (2) (H1−H2) / 2 = {(ν10S) − (ν−S)} / 2 = S (3)

【0018】このように本実施例の測定方法において
は、測定装置自体の設定誤差は問題とならない。
As described above, in the measuring method of this embodiment, the setting error of the measuring device itself does not matter.

【0019】なお、本実施例は説明を簡略化するため
に、被検レンズL及び非球面波発生用光学系E1、E2
の傾き偏心と平行偏心が同一平面上に存在するものとし
ているが、それぞれの面がねじれた位置関係にあって
も、式(2)、(3)をそれぞれX、Y座標のベクトル
成分に分離して計算すれば、問題無く偏心量を求めるこ
とができる。
In this embodiment, the lens L to be measured and the optical systems E1 and E2 for generating aspherical waves are described in order to simplify the description.
Is assumed to exist on the same plane, but equations (2) and (3) are separated into X and Y coordinate vector components, respectively, even if the respective surfaces have a twisted positional relationship. By doing this, the amount of eccentricity can be obtained without any problem.

【0020】また上述の実施例では、傾き回転による被
検面中心位置の平行移動は発生してていないので補正計
算の必要はないが、装置設定上回転中心を一致できない
場合でも、一方の被検面中心が被検レンズLの測定上の
傾き回転中心と一致するか又は予め決めた一定量のずれ
を有するようにした被検レンズ位置決め測長機構を設け
ることによって、傾き偏心θと、被検面中心と測定上の
傾き回転中心との間隔、即ち非球面r2の中心と非球面
波発生用光学系E2の可干渉距離Gを用いて、次式
(4)により平行偏心量の補正を行うようにすればよ
い。ただし、傾きの方向性によって加減が異なるために
計算には注意が必要である。 sin- 1θ*G …(4)
In the above-described embodiment, since the parallel movement of the center position of the test surface due to the tilt rotation does not occur, there is no need for correction calculation. By providing a test lens positioning / measuring mechanism in which the center of the test surface coincides with the rotational center of the tilt of the lens L to be measured on measurement or has a predetermined fixed amount of deviation, the tilt eccentricity θ and the The parallel eccentricity is corrected by the following equation (4) using the distance between the center of the test surface and the center of rotation of the inclination in measurement, that is, the coherence distance G between the center of the aspherical surface r2 and the aspherical wave generating optical system E2. What should be done is. However, care must be taken in the calculation because the degree of adjustment differs depending on the direction of the inclination. sin - 1 θ * G (4)

【0021】[0021]

【発明の効果】以上説明したように本発明に係る非球面
偏心測定装置は、被検面それぞれに配した干渉計及び非
球面波発生用光学系の相対位置を固定した状態で被検両
面の傾き調整を行うことができるので、設置誤差の影響
を受けることなく偏心測定を行うことが可能となり、測
定の信頼性及び簡素化が図れる。
As described above, the aspherical eccentricity measuring apparatus according to the present invention provides the aspherical surface eccentricity measuring apparatus in which the relative positions of the interferometer and the aspherical wave generating optical system arranged on each surface to be inspected are fixed. Since the inclination can be adjusted, the eccentricity measurement can be performed without being affected by the installation error, and the reliability and simplification of the measurement can be achieved.

【0022】また、本発明に係る非球面偏心測定装置
は、被検非球面レンズの何れかの被検面の中心を被検非
球面レンズの測定上の傾き回転中心と一致させるか、又
は予め決めた一定量のずれを有するようにした被検レン
ズ位置決め測定機構を設けることにより、装置設置上回
転中心を一致させられない場合でも、予め補正換算が予
測できるので、傾き偏心が平行偏心量に影響することな
く正確な測定が可能となる。
In the aspherical eccentricity measuring apparatus according to the present invention, the center of any one of the test surfaces of the test aspherical lens may be made coincident with the tilt rotation center on the measurement of the test aspherical lens, or By providing the test lens positioning and measuring mechanism having a predetermined fixed amount of deviation, even if the rotation center cannot be matched due to the installation of the apparatus, correction conversion can be predicted in advance, so that the inclination eccentricity is reduced to the parallel eccentricity. Accurate measurement is possible without affecting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の非球面偏心測定装置の構成図である。FIG. 1 is a configuration diagram of an aspherical surface eccentricity measuring device according to an embodiment.

【図2】両非球面平行偏心の説明図である。FIG. 2 is an explanatory view of parallel eccentricity of both aspheric surfaces.

【図3】被検面と非球面波発生用光学系をワンカラーと
したときの説明図である。
FIG. 3 is an explanatory diagram when a test surface and an aspherical wave generating optical system are one color.

【図4】被検レンズを180゜回転したときの説明図で
ある。
FIG. 4 is an explanatory diagram when a test lens is rotated by 180 °.

【図5】従来例の偏心測定装置の構成図である。FIG. 5 is a configuration diagram of a conventional eccentricity measuring device.

【図6】計測光学系の傾き方向が逆になる場合の説明図
である。
FIG. 6 is an explanatory diagram when the tilt direction of the measurement optical system is reversed.

【符号の説明】[Explanation of symbols]

E1、E2 非球面波発生用光学系 L 非球面被検レンズ D 肉厚 r1、r2 測定基準面 θ 傾き偏心量 S 平行偏心量 Sl、S2 非球面中心の平行偏心量 J1、J2 非球面軸 α 相対傾き偏心誤差 ν 相対平行偏心誤差 K1、K2 傾き実測値 H1、H2 平行実測値 E1, E2 Aspherical wave generating optical system L Aspherical test lens D Thickness r1, r2 Measurement reference plane θ Slant eccentricity S Parallel eccentricity Sl, S2 Parallel eccentricity at the center of aspherical surface J1, J2 Aspherical axis α Relative tilt eccentricity error ν Relative parallel eccentricity error K1, K2 Tilt measured value H1, H2 Parallel measured value

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非球面レンズの被検両面に対応してそれ
ぞれの面に入射する波面を発生する非球面波発生用光学
系と、前記被検両面からの反射光を入射光路と逆行させ
て干渉する1個又は2個の干渉計と、前記被検両面から
の反射光による干渉縞に基づいて前記被球面レンズの位
置調整及び測長を行うレンズ位置決め手段とを有し、該
レンズ位置決め手段により前記被検両面の非球面軸を確
定する非球面偏心測定装置において、計測時に前記2個
の非球面波発生用光学系及び干渉計の相対位置を固定し
た状態を保持しつつ前記被検両面それぞれの変位調整を
行い、該変位量から偏心計測を実施することを特徴とす
る非球面偏心測定装置。
1. An aspherical wave generating optical system for generating wavefronts incident on respective surfaces of an aspherical lens corresponding to both surfaces to be inspected, and by causing reflected light from the both surfaces to be inspected to go backwards to an incident optical path. One or two interferometers that interfere with each other, and lens positioning means for adjusting the position and measuring the length of the spherical lens based on interference fringes caused by reflected light from both surfaces to be inspected; In the aspherical eccentricity measuring apparatus for determining the aspherical axes of the two surfaces to be measured, the two surfaces of the two aspherical waves are maintained while the relative positions of the two aspherical wave generating optical systems and the interferometer are fixed at the time of measurement. An aspherical eccentricity measuring device, wherein each of the displacements is adjusted and eccentricity is measured from the displacement amount.
【請求項2】 非球面レンズの被検両面に対応してそれ
ぞれの面に入射する波面を発生する非球面波発生用光学
系と、前記被検両面からの反射光を入射光路と逆行させ
て干渉する1個又は2個の干渉計と、前記被検両面から
の反射光による干渉縞に基づいて前記非球面レンズの位
置調整及び測長を行うレンズ位置決め手段とを有し、該
レンズ位置決め手段により前記被検両面の非球面軸を確
定する非球面偏心測定装置において、前記非球面レンズ
の被検両面の何れかの面の中心が、該非球面レンズの測
定上の傾き回転中心と一致するか、又は予め決められた
一定量のずれを有するようにした被検レンズ位置決め測
定機構を備えることを特徴とする非球面偏心測定装置。
2. An aspherical wave generating optical system for generating wavefronts incident on respective surfaces of an aspherical lens corresponding to the two surfaces to be detected, and by causing reflected light from the two surfaces to be detected to travel backward from an incident optical path. One or two interferometers that interfere with each other, and lens positioning means for adjusting the position and measuring the length of the aspherical lens based on interference fringes caused by reflected light from both surfaces to be inspected, wherein the lens positioning means In the aspherical eccentricity measuring device for determining the aspherical axis of both surfaces to be tested, the center of any one of the two surfaces to be tested of the aspherical lens coincides with the measured tilt rotation center of the aspherical lens. Or an aspherical eccentricity measuring apparatus, characterized in that it comprises a test lens positioning / measuring mechanism having a predetermined fixed amount of displacement.
JP34809399A 1999-12-07 1999-12-07 Aspherical eccentricity measuring device Pending JP2001165807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34809399A JP2001165807A (en) 1999-12-07 1999-12-07 Aspherical eccentricity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34809399A JP2001165807A (en) 1999-12-07 1999-12-07 Aspherical eccentricity measuring device

Publications (1)

Publication Number Publication Date
JP2001165807A true JP2001165807A (en) 2001-06-22

Family

ID=18394702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34809399A Pending JP2001165807A (en) 1999-12-07 1999-12-07 Aspherical eccentricity measuring device

Country Status (1)

Country Link
JP (1) JP2001165807A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258736A (en) * 2005-03-18 2006-09-28 Canon Inc Decentering measuring method of lens
US7133225B1 (en) 2004-10-18 2006-11-07 Carl Zeiss Smt Ag Method of manufacturing an optical system
CN105627945A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of measuring deviation between center of aspheric element and center of outer circle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133225B1 (en) 2004-10-18 2006-11-07 Carl Zeiss Smt Ag Method of manufacturing an optical system
JP2006258736A (en) * 2005-03-18 2006-09-28 Canon Inc Decentering measuring method of lens
CN105627945A (en) * 2015-12-21 2016-06-01 中国科学院长春光学精密机械与物理研究所 Device and method of measuring deviation between center of aspheric element and center of outer circle

Similar Documents

Publication Publication Date Title
US5940181A (en) Measuring method and measuring apparatus
US5004346A (en) Method of examining an optical component
JP4312602B2 (en) Aspheric and wavefront scanning interferometers
US8913234B2 (en) Measurement of the positions of centres of curvature of optical surfaces of a multi-lens optical system
JP5399304B2 (en) Aspherical surface measuring method and apparatus
JP2004530898A (en) Interferometric scanning for aspheric surfaces and wavefronts
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
WO2018000943A1 (en) Method and apparatus for detecting concave cylindrical surfaces and cylindrical diverging lenses
CN113687521A (en) Low-aberration high-precision two-dimensional photoelectric auto-collimation method and device based on wavefront correction
US7609389B2 (en) Measurement apparatus for measuring surface map
JP2001165807A (en) Aspherical eccentricity measuring device
US20070019210A1 (en) Time-delayed source and interferometric measurement of windows and domes
JP2007010609A (en) Method for manufacturing aspheric lens, eccentricity measuring method of aspheric lens, eccentricity measuring device, and aspheric lens manufactured by this method
JP2000097663A (en) Interferometer
US8743373B1 (en) Metrology of optics with high aberrations
CN114396887A (en) Dynamic interferometer and measuring method
JP3630983B2 (en) Wavefront aberration measuring method and wavefront aberration measuring apparatus
US8294904B2 (en) Fizeau lens having aspheric compensation
JP2001091227A (en) Measuring device for lens and measuring method for lens
JP2005315683A (en) Shearing interferometer and interference measuring device
JPH11337306A (en) Interference measuring device
JP2001056213A (en) Surface shape measuring device and measuring method
JPH09101126A (en) Shape measuring device
JP3146591B2 (en) Reference surface shape measurement method and shape measurement system
JPH1114498A (en) Optical system, measuring method, and device