JP2001158952A - Method for heat treatment of platinum based material - Google Patents

Method for heat treatment of platinum based material

Info

Publication number
JP2001158952A
JP2001158952A JP34361999A JP34361999A JP2001158952A JP 2001158952 A JP2001158952 A JP 2001158952A JP 34361999 A JP34361999 A JP 34361999A JP 34361999 A JP34361999 A JP 34361999A JP 2001158952 A JP2001158952 A JP 2001158952A
Authority
JP
Japan
Prior art keywords
platinum
based material
heat treatment
dispersed
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34361999A
Other languages
Japanese (ja)
Other versions
JP4470253B2 (en
JP2001158952A5 (en
Inventor
Kazuo Hamashima
和雄 浜島
Yasuto Ariga
靖人 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP34361999A priority Critical patent/JP4470253B2/en
Publication of JP2001158952A publication Critical patent/JP2001158952A/en
Publication of JP2001158952A5 publication Critical patent/JP2001158952A5/ja
Application granted granted Critical
Publication of JP4470253B2 publication Critical patent/JP4470253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for heat treatment of platinum based material, capable of improving the plastic deformability of a platinum based material where fine ceramic particles are dispersed, preventing the damage of a member made of platinum based material for glass manufacture during use, and prolonging the service life of the member. SOLUTION: A platinum based material where fine ceramic particles, such as zirconium oxide particles, are dispersed in an amount of 0.05-3% based on the total mass is heated at 1,300 to 1,600 deg.C for 30 min to 10 h to form a member for glass manufacture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス製造用部材
として充分な耐用期限を有する白金を主成分とする白金
系材料の熱処理技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment technique for a platinum-based material having platinum as a main component and having a sufficient life time as a member for producing glass.

【0002】[0002]

【従来の技術】白金または白金を主成分とする合金(以
下、総称して白金系合金という)は、高温下において熔
解したガラスに対し極めて優れた耐食性(非汚染性)を
示すため、高度な耐食性を要求される部位に限定して、
古くからガラス製造用部材として使用されてきた。とこ
ろが近年、ガラスの用途が各種表示素子用などのいわゆ
る電機・通信分野に広がるにつれて、ガラスへの品質要
求、欠点の低減に対する要求がより厳しくなってきた。
ガラスへの品質要求が厳しくなるにつれ、ガラスに対す
る悪影響が少ない白金系合金が、ガラス製造用部材とし
て、従来、耐火物が用いられていた部位にまで使用され
るようになってきた。
2. Description of the Related Art Platinum or an alloy containing platinum as a main component (hereinafter collectively referred to as a platinum-based alloy) exhibits extremely high corrosion resistance (non-staining) to glass melted at a high temperature. Limited to the parts where corrosion resistance is required,
It has been used as a member for manufacturing glass since ancient times. However, in recent years, as the use of glass has spread to so-called electric / communication fields such as those for various display elements, requirements for quality of glass and reduction of defects have become more stringent.
As the quality requirements for glass have become stricter, platinum-based alloys that have less adverse effect on glass have been used as members for glass production, even in areas where refractories were conventionally used.

【0003】また、ガラス製造用部材における白金系合
金の用途が広がるとともに、より熔解温度の高い組成の
ガラスが実用に供されるようになってきた。しかし、従
来使用されていた白金系合金を常時1300℃を超える
高温域でガラス製造用部材として使用すると、該白金系
合金中の結晶粒成長や微量不純物などの粒界偏析によ
り、該白金系合金製部品に変形やクラックが生じやすく
なるため、充分な耐用期間が得られていなかった。
[0003] Further, as the use of platinum-based alloys in glass manufacturing members has expanded, glass having a composition with a higher melting temperature has come to be put to practical use. However, when a conventionally used platinum-based alloy is always used as a member for glass production at a high temperature region exceeding 1300 ° C., the platinum-based alloy is liable to grow due to grain boundary segregation such as crystal grain growth and trace impurities in the platinum-based alloy. Since the formed parts are liable to be deformed and cracked, a sufficient service life has not been obtained.

【0004】近年、前記耐用期間を長期化するために、
白金系合金をマトリックスとし、セラミックス微粒子を
分散させた白金系材料が開発・商品化(例えば、田中貴
金属工業社のZGS、デグサ社のFKSなど)されてい
る。これらは、酸化ジルコニウムや酸化イットリウムな
どのセラミックス微粒子を白金系合金マトリックス中に
メカニカルアロイ法や内部酸化法によって均一分散させ
たものである。分散されるセラミックス微粒子の働き
は、マトリックスである白金系合金を構成する結晶の高
温下での粒成長や転位を抑制するものと思われる。した
がってセラミックス微粒子を分散させた白金系材料を高
熔解温度のガラス製造用部材に適用することにより、そ
れらの耐用期間の長期化が期待できる。
In recent years, in order to extend the service life,
Platinum-based materials in which a platinum-based alloy is used as a matrix and ceramic fine particles are dispersed have been developed and commercialized (for example, ZGS of Tanaka Kikinzoku Kogyo, FKS of Degussa, etc.). In these, ceramic fine particles such as zirconium oxide and yttrium oxide are uniformly dispersed in a platinum-based alloy matrix by a mechanical alloy method or an internal oxidation method. It is considered that the function of the dispersed ceramic fine particles is to suppress the grain growth and dislocation of the crystal constituting the platinum alloy as a matrix at a high temperature. Therefore, by applying a platinum-based material in which ceramic fine particles are dispersed to a glass production member having a high melting temperature, it is expected that the service life of the member is prolonged.

【0005】しかし、セラミックス微粒子を分散させた
白金系材料には、塑性変形能が低下する欠点がある。す
なわち、セラミックス微粒子を分散させた白金系材料
は、大きな変位が生じた場合、例えば数%程度の歪みが
発生しただけで破断することがある。
However, the platinum-based material in which the ceramic fine particles are dispersed has a disadvantage that the plastic deformability is reduced. That is, when a large displacement occurs, the platinum-based material in which the ceramic fine particles are dispersed may be broken only by, for example, distortion of about several percent.

【0006】また、白金系材料からなるガラス製造用部
材は、保温や断熱のために、耐火物からなる部材と併用
されることが多い。この場合、白金系材料と耐火物との
間には熱膨張係数に大きな差があるため、使用温度が1
300℃を超える高温下で、局部的な変形が、白金系材
料からなるガラス製造用部材の内部に生じる。したがっ
て、該白金系材料には、このような熱膨張係数差に基づ
く変形に耐える塑性変形能が求められる。セラミックス
微粒子を分散させた白金系材料は、必ずしも充分な塑性
変形能がないため、局部的に変形が生じた場合に破損す
る確率が高くなる。極端な場合には、装置全体を初めて
使用温度域まで上げる過程において何らかの損傷が生じ
る場合もある。また、これらの材料を用いて構造物を作
製する場合、塑性変形能の低さゆえに加工が難しく、結
果的にその形状の自由度が制限される問題もあった。
[0006] Further, a glass-made member made of a platinum-based material is often used in combination with a member made of a refractory for heat retention and heat insulation. In this case, since there is a large difference in the coefficient of thermal expansion between the platinum-based material and the refractory, the operating temperature is 1
At a high temperature exceeding 300 ° C., local deformation occurs inside a glass-made member made of a platinum-based material. Therefore, the platinum-based material is required to have a plastic deformability capable of withstanding the deformation based on the difference in thermal expansion coefficient. A platinum-based material in which ceramic fine particles are dispersed does not always have sufficient plastic deformability, so that the probability of breakage when locally deformed increases. In extreme cases, some damage may occur during the process of raising the entire apparatus to the operating temperature range for the first time. In addition, when a structure is manufactured using these materials, processing is difficult due to low plastic deformability, and as a result, there is a problem that the degree of freedom of the shape is limited.

【0007】[0007]

【発明が解決しようとする課題】本発明は、セラミック
ス微粒子を分散させた白金系材料の塑性変形能を向上さ
せるための熱処理方法の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment method for improving the plastic deformability of a platinum-based material in which ceramic fine particles are dispersed.

【0008】[0008]

【課題を解決するための手段】本発明は、白金または白
金合金中にセラミックス微粒子が分散した白金系材料を
1300〜1600℃の温度で、30分〜10時間、加
熱することを特徴とする白金系材料の熱処理方法を提供
する。
The present invention is characterized in that a platinum-based material in which ceramic fine particles are dispersed in platinum or a platinum alloy is heated at a temperature of 1300 to 1600 ° C. for 30 minutes to 10 hours. Provided is a method for heat treating a system material.

【0009】[0009]

【発明の実施の形態】本発明において、白金合金とは、
内掛で10〜20%のRhを固溶している合金など白金
を主成分とする合金をいい、好ましくは白金合金中の白
金量が60質量%以上のものである。前述したように本
明細書では100%白金からなる純白金と白金合金を総
称して白金系合金という。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a platinum alloy is
An alloy containing platinum as a main component, such as an alloy in which 10 to 20% of Rh is solid-dissolved in the inner layer, and the amount of platinum in the platinum alloy is preferably 60% by mass or more. As described above, in this specification, pure platinum composed of 100% platinum and a platinum alloy are collectively referred to as a platinum-based alloy.

【0010】本発明において、白金系合金中にセラミッ
クス微粒子を分散させてなる白金系材料の塑性変形能を
改善するための熱処理温度は、1300〜1600℃で
ある。熱処理温度が1300℃より低いと塑性変形能の
向上が充分ではなく、1600℃を超えると結晶粒成長
が活発となり変形しやすくなる。さらに望ましい温度範
囲は1350〜1550℃である。なお、1300〜1
600℃までの温度範囲は、白金系材料に対する通常の
熱処理条件からは発想し得ない高い温度範囲である。
In the present invention, the heat treatment temperature for improving the plastic deformability of a platinum-based material obtained by dispersing ceramic fine particles in a platinum-based alloy is 1300 to 1600 ° C. If the heat treatment temperature is lower than 1300 ° C., the plastic deformation ability is not sufficiently improved. If the heat treatment temperature is higher than 1600 ° C., crystal grain growth becomes active and deformation becomes easy. A more desirable temperature range is 1350-1550 ° C. In addition, 1300-1
The temperature range up to 600 ° C. is a high temperature range that cannot be conceived from ordinary heat treatment conditions for platinum-based materials.

【0011】本発明における熱処理温度での保持時間
は、30分〜10時間である。保持時間が30分未満で
あるとセラミックス微粒子分散白金系材料の塑性変形能
の向上が充分ではなく、10時間を超えると形状によっ
ては自重によるいわゆるクリープ変形が生じる場合があ
る。保持時間が1〜5時間であるとさらに好ましい。
The holding time at the heat treatment temperature in the present invention is 30 minutes to 10 hours. If the holding time is less than 30 minutes, the plastic deformation ability of the ceramic fine particle-dispersed platinum-based material is not sufficiently improved. If the holding time is more than 10 hours, so-called creep deformation may occur due to its own weight depending on the shape. More preferably, the holding time is 1 to 5 hours.

【0012】一方、所定の熱処理温度までの昇温速度
や、所定の熱処理温度から室温までの降温速度は、熱処
理の対象とする材料全体の温度をほぼ均一に保つことの
できる範囲で適宜選択される。具体的には、50〜50
0℃/h程度が好ましい。本発明における熱処理の雰囲
気としては、一般的には空気中であるが、Arなどの不
活性雰囲気中またはN2などの中性雰囲気中でもよい。
しかし、還元性雰囲気中で熱処理すると材料自体が劣化
するため好ましくない。
On the other hand, the rate of temperature rise to a predetermined heat treatment temperature and the rate of temperature decrease from the predetermined heat treatment temperature to room temperature are appropriately selected within a range where the temperature of the entire material to be heat treated can be kept substantially uniform. You. Specifically, 50 to 50
About 0 ° C./h is preferable. The atmosphere for the heat treatment in the present invention is generally air, but may be an inert atmosphere such as Ar or a neutral atmosphere such as N 2 .
However, heat treatment in a reducing atmosphere is not preferable because the material itself deteriorates.

【0013】さらに、本発明において、白金系材料に分
散しているセラミックス微粒子の量や平均粒子直径を適
切に選ぶことが好ましい。すなわち、セラミックス微粒
子が、白金系材料中に0.05〜3.0質量%分散され
ていると好ましい。分散されているセラミックス微粒子
の量が0.05質量%に満たないと、白金系材料の結晶
が粒成長しやすくなり、3.0質量%を超えると熱処理
による塑性変形能の向上効果が低下する。より好ましい
範囲は0.1〜2.5質量%である。
Furthermore, in the present invention, it is preferable to appropriately select the amount and the average particle diameter of the ceramic fine particles dispersed in the platinum-based material. That is, it is preferable that the ceramic fine particles are dispersed in the platinum-based material in an amount of 0.05 to 3.0% by mass. If the amount of the dispersed ceramic fine particles is less than 0.05% by mass, the crystal of the platinum-based material tends to grow, and if it exceeds 3.0% by mass, the effect of heat treatment to improve the plastic deformability is reduced. . A more preferred range is from 0.1 to 2.5% by mass.

【0014】セラミックス微粒子の平均粒子直径は、
0.05〜1μmであると好ましい。セラミックス微粒
子の平均粒子直径が0.05μm未満であると白金系材
料の結晶が粒成長しやすくなり、1μmを超えると破損
に対する発生起点となりやすい。なお、セラミックス微
粒子の最大粒子直径は、5μm程度であるとさらに好ま
しい。
The average particle diameter of the ceramic fine particles is
It is preferably from 0.05 to 1 μm. If the average particle diameter of the ceramic fine particles is less than 0.05 μm, the crystal of the platinum-based material tends to grow, and if it exceeds 1 μm, it tends to be a starting point for breakage. It is more preferable that the maximum particle diameter of the ceramic fine particles is about 5 μm.

【0015】セラミックス微粒子が酸化ジルコニウム、
酸化イットリウム、酸化ハフニウムまたは酸化サマリウ
ムであると、分散しているセラミックス微粒子同士が高
温下でも凝集しにくいため好ましい。セラミックス微粒
子の全質量中、70%以上、特には80%以上が酸化ジ
ルコニウムからなるものであるとさらに好ましい。
The ceramic fine particles are zirconium oxide,
Yttrium oxide, hafnium oxide or samarium oxide is preferable because the dispersed ceramic fine particles are less likely to aggregate even at a high temperature. More preferably, 70% or more, particularly 80% or more, of the total mass of the ceramic fine particles is made of zirconium oxide.

【0016】[0016]

【実施例】以下に、本発明の実施例および比較例を説明
する。なお、記号S1、S2、S3およびS4はセラミ
ックス微粒子を分散させた白金系材料であり、P1およ
びP2はセラミックス微粒子の分散がない白金系合金で
ある。本発明による熱処理の効果を確認するために以下
の試験を実施した。
EXAMPLES Examples of the present invention and comparative examples will be described below. Symbols S1, S2, S3 and S4 are platinum-based materials in which ceramic fine particles are dispersed, and P1 and P2 are platinum-based alloys in which ceramic fine particles are not dispersed. The following test was performed to confirm the effect of the heat treatment according to the present invention.

【0017】粉末冶金法や圧延法により作製された表1
に示す6種類の白金および白金系合金を供試材として準
備した。P1は一般に市販されている純度99.9%以
上の純白金、S1およびS2は純白金をマトリックスと
し酸化ジルコニウムを分散させた合金である。なお、S
1における酸化ジルコニウムの平均粒子直径は0.45
μm、分散量は0.15質量%であり、S2における酸
化ジルコニウムの平均粒子直径は0.25μm、分散量
は0.18質量%である。
Table 1 prepared by powder metallurgy or rolling
The following six types of platinum and platinum-based alloy were prepared as test materials. P1 is a commercially available pure platinum having a purity of 99.9% or more, and S1 and S2 are alloys in which pure platinum is used as a matrix and zirconium oxide is dispersed. Note that S
The average particle diameter of zirconium oxide in Example 1 was 0.45.
μm, the amount of dispersion is 0.15% by mass, the average particle diameter of zirconium oxide in S2 is 0.25 μm, and the amount of dispersion is 0.18% by mass.

【0018】P2は白金に10質量%ロジウムを固溶さ
せた合金であり、S3およびS4は白金に10質量%ロ
ジウムを固溶させた合金に酸化ジルコニウムを分散させ
た強化合金である。なお、S3における酸化ジルコニウ
ムの平均粒子直径は0.40μm、分散量は0.12質
量%、S4における酸化ジルコニウムの平均粒子直径は
0.21μm、分散量は0.19質量%である。
P2 is an alloy in which 10% by mass of rhodium is dissolved in platinum, and S3 and S4 are reinforced alloys in which zirconium oxide is dispersed in an alloy of 10% by mass of rhodium in platinum. The average particle diameter of zirconium oxide in S3 is 0.40 μm and the amount of dispersion is 0.12% by mass, and the average particle diameter of zirconium oxide in S4 is 0.21 μm and the amount of dispersion is 0.19% by mass.

【0019】始めに、これらの供試材の全てを空気中
で、1000℃に1時間保持した後、炉内で冷却して前
処理した。さらに、前処理した供試材を3つに分け12
50℃、1500℃または1650℃のいずれかの最高
温度で、保持時間を2時間とし、空気中においてそれぞ
れ熱処理した試料を作製した。なお、前処理、熱処理と
も、昇温速度は300℃/h、800℃までの降温速度
は400℃/h、800℃以下は炉内放冷、とした。作
製した試料から切り出した引張試験片(4mm×1mm
×平行部長さ30mm)を室温下および1350℃下、
標点間距離20mmで引張試験に供し、伸びおよび引張
強度を測定した。その結果を表2(試験温度:室温)お
よび表3(試験温度:1350℃)に示す。
First, all of these test materials were kept in air at 1000 ° C. for 1 hour, and then cooled and pretreated in a furnace. Furthermore, the pretreated test material was divided into three
Samples were heat-treated in air at a maximum temperature of 50 ° C., 1500 ° C., or 1650 ° C. for 2 hours. In both the pretreatment and the heat treatment, the rate of temperature rise was 300 ° C./h, the rate of temperature drop to 800 ° C. was 400 ° C./h, and the temperature of 800 ° C. or less was allowed to cool in the furnace. Tensile test piece (4 mm x 1 mm) cut out from the prepared sample
× parallel part length 30 mm) at room temperature and at 1350 ° C.
The specimen was subjected to a tensile test at a distance between gauge marks of 20 mm, and the elongation and the tensile strength were measured. The results are shown in Table 2 (test temperature: room temperature) and Table 3 (test temperature: 1350 ° C.).

【0020】さらに、供試材S4について、最高温度を
1500℃とし、保持時間を15分、1時間、5時間ま
たは20時間とした他は上記と同様にして引張試験に供
し、伸びおよび引張強度を測定した。その結果を表4に
示す。
Further, the specimen S4 was subjected to a tensile test in the same manner as described above except that the maximum temperature was set to 1500 ° C. and the holding time was set to 15 minutes, 1 hour, 5 hours or 20 hours. Was measured. Table 4 shows the results.

【0021】表2および表3から、セラミックス微粒子
を分散させた白金系材料であるS1、S2、S3および
S4を1500℃×2時間で熱処理すると、伸びが顕著
に大きくなり、塑性変形能が向上していることがわか
る。また表4から、熱処理温度が1500℃であって
も、保持時間が過度に長くなると伸び増加の効果が小さ
くなり、材料強度も低下することがわかる。
As can be seen from Tables 2 and 3, when the platinum-based materials S1, S2, S3 and S4 in which ceramic fine particles are dispersed are heat-treated at 1500 ° C. for 2 hours, the elongation becomes remarkably large and the plastic deformability is improved. You can see that it is doing. Also, from Table 4, it can be seen that even when the heat treatment temperature is 1500 ° C., if the holding time is excessively long, the effect of increasing the elongation is reduced, and the material strength is also reduced.

【0022】次いで、セラミックス微粒子を分散させた
白金系材料S4を用いて、外径240mm、内径23
8.4mm、長さ1200mmの白金管を2個作製し
た。白金管の一方を大気中1500℃×1時間で熱処理
し、他方を大気中1000℃×1時間で熱処理した。次
に熱処理した白金管を用いて同一形状の管状炉を2個製
作した。さらに管状炉の周囲を耐火物で構成される断熱
層によって囲んだ。
Then, using a platinum-based material S4 in which ceramic fine particles are dispersed, an outer diameter of 240 mm and an inner diameter of 23 mm are used.
Two platinum tubes having a length of 8.4 mm and a length of 1200 mm were produced. One of the platinum tubes was heat-treated in the air at 1500 ° C. × 1 hour, and the other was heat-treated in the air at 1000 ° C. × 1 hour. Next, two tubular furnaces having the same shape were produced using the heat-treated platinum tubes. Further, the periphery of the tubular furnace was surrounded by a heat insulating layer composed of a refractory.

【0023】熱処理の効果を確認するため、この2個の
管状炉内に1350℃に保持した熔融ガラス(ホウケイ
酸ガラス)を連続的に流し、加圧搬送した(流速15m
/h、圧力0.18MPa)。その結果、1500℃で
熱処理した白金管を使用した管状炉は、破損することな
く約1.5年間使用できた。しかし、1000℃で熱処
理した白金管を使用した管状炉は、使用後数週間で微細
なクラックによるガラスの漏出が観察され、さらに約2
ヶ月経過した時点で実用に耐えなくなった。
In order to confirm the effect of the heat treatment, a molten glass (borosilicate glass) kept at 1350 ° C. was continuously flowed into the two tube furnaces, and was conveyed under pressure (flow rate 15 m).
/ H, pressure 0.18 MPa). As a result, the tubular furnace using the platinum tube heat-treated at 1500 ° C. could be used for about 1.5 years without breakage. However, in a tube furnace using a platinum tube heat-treated at 1000 ° C., leakage of glass due to fine cracks was observed within a few weeks after use, and about 2
After months passed, it was no longer practical.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】本発明の熱処理方法によれば、セラミッ
クス微粒子が分散した白金系材料の強度を大きく低下さ
せることなく、塑性変形能を向上できる。本発明の熱処
理を施したセラミックス微粒子分散白金系材料でガラス
製造用部材を作製すると、耐用期間が長くなる。さらに
塑性変形能が向上するため、ガラス製造用部材に加工す
る際に形状の自由度が大きくなり、設計時間が短縮化で
きる。
According to the heat treatment method of the present invention, the plastic deformability can be improved without greatly reducing the strength of the platinum-based material in which the ceramic fine particles are dispersed. When a member for glass production is manufactured from the ceramic-particle-dispersed platinum-based material subjected to the heat treatment of the present invention, the service life is extended. Further, since the plastic deformability is improved, the degree of freedom of the shape is increased when processing into a glass manufacturing member, and the design time can be shortened.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691C Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C22F 1/00 691 C22F 1/00 691C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】白金または白金合金中にセラミックス微粒
子が分散した白金系材料を1300〜1600℃の温度
で、30分〜10時間、加熱することを特徴とする白金
系材料の熱処理方法。
1. A heat treatment method for a platinum-based material, comprising heating a platinum-based material in which ceramic fine particles are dispersed in platinum or a platinum alloy at a temperature of 1300 to 1600 ° C. for 30 minutes to 10 hours.
【請求項2】セラミックス微粒子の量が前記白金系材料
中0.05〜3.0質量%である請求項1に記載の熱処
理方法。
2. The heat treatment method according to claim 1, wherein the amount of the ceramic fine particles is 0.05 to 3.0% by mass in the platinum-based material.
【請求項3】セラミックス微粒子の平均粒子直径が、
0.05〜1μmである請求項1または2に記載の熱処
理方法。
3. The ceramic fine particles have an average particle diameter of:
The heat treatment method according to claim 1, wherein the thickness is 0.05 to 1 μm.
【請求項4】セラミックス微粒子の70質量%以上が酸
化ジルコニウムからなる請求項1、2または3に記載の
熱処理方法。
4. The heat treatment method according to claim 1, wherein 70% by mass or more of the ceramic fine particles are made of zirconium oxide.
【請求項5】1300〜1600℃で30分〜10時間
加熱処理した、白金または白金合金中に酸化ジルコニウ
ム粒子を分散させた白金系材料からなるガラス製造用部
材。
5. A glass production member comprising a platinum-based material in which zirconium oxide particles are dispersed in platinum or a platinum alloy, which has been heat-treated at 1300 to 1600 ° C. for 30 minutes to 10 hours.
JP34361999A 1999-12-02 1999-12-02 Heat treatment method for glass manufacturing member and glass manufacturing member Expired - Fee Related JP4470253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34361999A JP4470253B2 (en) 1999-12-02 1999-12-02 Heat treatment method for glass manufacturing member and glass manufacturing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34361999A JP4470253B2 (en) 1999-12-02 1999-12-02 Heat treatment method for glass manufacturing member and glass manufacturing member

Publications (3)

Publication Number Publication Date
JP2001158952A true JP2001158952A (en) 2001-06-12
JP2001158952A5 JP2001158952A5 (en) 2006-08-31
JP4470253B2 JP4470253B2 (en) 2010-06-02

Family

ID=18362938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34361999A Expired - Fee Related JP4470253B2 (en) 1999-12-02 1999-12-02 Heat treatment method for glass manufacturing member and glass manufacturing member

Country Status (1)

Country Link
JP (1) JP4470253B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000952A1 (en) * 2000-06-28 2002-01-03 Tanaka Kikinzoku Kogyo K.K. Platinum material reinforced by oxide dispersion and process for producing the same
JP2005338080A (en) * 2004-05-25 2005-12-08 Robert Bosch Gmbh Method of manufacturing electric element, and electric element, in particular, sensor element
JP2006299334A (en) * 2005-04-19 2006-11-02 Furuya Kinzoku:Kk Oxide dispersion strengthened type platinum material and its manufacturing method
WO2012124846A1 (en) * 2011-03-17 2012-09-20 희성금속 주식회사 Method for manufacturing oxide-dispersion strengthened platinum-rhodium alloy
JP2021062990A (en) * 2019-10-15 2021-04-22 Agc株式会社 Device for conveying molten glass, and equipment and method for manufacturing glass article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000952A1 (en) * 2000-06-28 2002-01-03 Tanaka Kikinzoku Kogyo K.K. Platinum material reinforced by oxide dispersion and process for producing the same
US6511523B2 (en) 2000-06-28 2003-01-28 Tanaka Kikinzoku Kogyo K.K. Platinum material reinforced by oxide-dispersion and process for producing the same
JP2005338080A (en) * 2004-05-25 2005-12-08 Robert Bosch Gmbh Method of manufacturing electric element, and electric element, in particular, sensor element
JP2006299334A (en) * 2005-04-19 2006-11-02 Furuya Kinzoku:Kk Oxide dispersion strengthened type platinum material and its manufacturing method
WO2012124846A1 (en) * 2011-03-17 2012-09-20 희성금속 주식회사 Method for manufacturing oxide-dispersion strengthened platinum-rhodium alloy
JP2021062990A (en) * 2019-10-15 2021-04-22 Agc株式会社 Device for conveying molten glass, and equipment and method for manufacturing glass article
JP7314761B2 (en) 2019-10-15 2023-07-26 Agc株式会社 Molten glass conveying device, glass article manufacturing facility, and glass article manufacturing method

Also Published As

Publication number Publication date
JP4470253B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US11814312B2 (en) Corrosion-resistant glass melt electrodes and methods of using them
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
TWI740610B (en) Titanium-copper alloy plate for uniform temperature plate and uniform temperature plate
KR101288592B1 (en) Method of manufacturing an oxide dispersion strengthened platinum-rhodium alloy
JP4426904B2 (en) Tungsten wire and method for manufacturing the same
JP2001158952A (en) Method for heat treatment of platinum based material
JP5747410B2 (en) Heat resistant titanium alloy
EP3666913A1 (en) Metal member
CN108866378A (en) A kind of hot environment high strength and high conductivity rate copper alloy and preparation method thereof
JP2017502170A (en) Method for processing a dispersion strengthened platinum composition
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
JPS6127459B2 (en)
JP2001335862A (en) Platinum material excellent in heat resisting characteristic
TWI657147B (en) A HIGH STRENGH Ni-BASE ALLOY
JP6308672B2 (en) Platinum rhodium alloy and method for producing the same
KR101593309B1 (en) Method of heat treatment of heat resistant alloy containing tungsten for excellent creep property and heat resistant alloy the same
KR102472842B1 (en) Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
JP7411190B2 (en) Heat-resistant platinum
KR101359719B1 (en) Method of manufacturing a powder of platinum-ruthenium alloys
JP2009102670A (en) Rhenium-tungsten ribbon and manufacturing method thereof
JPS617536A (en) Oxide cathode structure
TW201804000A (en) Gold-silver alloy bonding wires and preparation method of the same especially containing trace element of beryllium to increase loading weight and stretching rate
CN115584446A (en) Large-size Zr-based amorphous alloy containing Nb and Si simultaneously and preparation method thereof
JP2022086046A (en) Reinforced platinum alloy and manufacturing method of reinforced platinum alloy, as well as glass production apparatus
JPH11124642A (en) Iridium-containing metallic material and its production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4470253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees