JP2001158700A - Method and apparatus for heat-treating single crystal - Google Patents

Method and apparatus for heat-treating single crystal

Info

Publication number
JP2001158700A
JP2001158700A JP33916899A JP33916899A JP2001158700A JP 2001158700 A JP2001158700 A JP 2001158700A JP 33916899 A JP33916899 A JP 33916899A JP 33916899 A JP33916899 A JP 33916899A JP 2001158700 A JP2001158700 A JP 2001158700A
Authority
JP
Japan
Prior art keywords
single crystal
container
heat treatment
pressure
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33916899A
Other languages
Japanese (ja)
Other versions
JP3852545B2 (en
Inventor
Jun Furukawa
純 古川
Hideo Tanaka
英夫 田中
Yuji Nakada
裕二 中田
Takao Fujikawa
隆男 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Kobe Steel Ltd
Original Assignee
Mitsubishi Materials Silicon Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Kobe Steel Ltd filed Critical Mitsubishi Materials Silicon Corp
Priority to JP33916899A priority Critical patent/JP3852545B2/en
Publication of JP2001158700A publication Critical patent/JP2001158700A/en
Application granted granted Critical
Publication of JP3852545B2 publication Critical patent/JP3852545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate or disperse lattice defects such as a hole type grow-in defect present not only on the surface but also in the interior of single crystal regardless of the size of single crystal and to prevent contamination of the single crystal with a volatile material, etc., on the surface and in the interior of the single crystal body. SOLUTION: A single crystal 12 is stored in the inside of a container 13 made of carbon or SiC inserted into a cylindrical pressure vessel 11 into which a gas under 0.2-304 MPa pressure can be introduced. The outer peripheral face of the container is enclosed with heaters 14 capable of heating the single crystal to a temperature of >=0.85 the melting point of the single crystal based on absolute temperature at given intervals. The single crystal is stored through a laminar member 26 made of the same material as the single crystal in the container, polycrystal particles 27 made of the same material as the single crystal body, having >=99.999999999% purity is packed into a gap between the container and the single crystal body. The average particle diameter of the polycrystal particles is 0.3-3.0 mm and the stable atmosphere of the single crystal is an inert gas atmosphere, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エレクトロニクス
分野で用いられる集積回路若しくは素子の基板等に用い
られる高品質の半導体の単結晶体の製造に関する。更に
詳しくは単結晶体を従来の単結晶成長方法により製造し
た後に、特定の処理を行って、単結晶体の成長時に生じ
た格子欠陥レベルでの除去する熱処理技術に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a high-quality semiconductor single crystal used for a substrate of an integrated circuit or element used in the field of electronics. More specifically, the present invention relates to a heat treatment technique for producing a single crystal by a conventional single crystal growth method and then performing a specific treatment to remove the single crystal at a level of lattice defects generated during the growth of the single crystal.

【0002】[0002]

【従来の技術】近年における電子・通信機器の発展に
は、その中心となる半導体集積回路(LSI)の技術の
進歩が大きく寄与している。このLSIは通常、直径8
インチ程度の半導体単結晶ウェーハの表面に、イオン注
入法など種々の成膜方法やエッチング方法を組み合わせ
て素子や配線膜を形成し、最終的に一個一個のLSIに
切断することにより製造されている。製造されたLSI
の信頼性や製品としての歩留まりは、製造工程で発生す
る欠陥の影響を大きく受ける。特に、単結晶ウェーハは
LSIのいわば土台となるものであり、単結晶ウェーハ
に格子欠陥が存在すると、ドナーやアクセプタのシンク
となり、いわゆる半導体としての電気特性が不良となる
問題点がある。例えば、LSIの電気特性に影響を及す
因子として、チョクラルスキー法(以下、CZ法とい
う。)又はフローティングゾーン法(以下、FZ法とい
う。)により製造されたシリコン単結晶ウェーハには、
点欠陥(格子間シリコン、空孔等)に起因するグローイ
ン欠陥が存在することが知られている。グローイン欠陥
には成長条件による違いから空孔型と格子間シリコン型
のグローイン欠陥が存在する。
2. Description of the Related Art Advances in semiconductor integrated circuits (LSI), which are central to the development of electronic and communication equipment in recent years, have greatly contributed. This LSI usually has a diameter of 8
It is manufactured by forming elements and wiring films by combining various film forming methods such as an ion implantation method and etching methods on the surface of a semiconductor single crystal wafer of about inches, and finally cutting it into individual LSIs. . Manufactured LSI
Reliability and product yield are greatly affected by defects generated in the manufacturing process. In particular, a single crystal wafer serves as a foundation for an LSI, and if a lattice defect exists in the single crystal wafer, it becomes a sink for a donor or an acceptor, resulting in a problem that the electrical characteristics as a semiconductor become poor. For example, silicon single crystal wafers manufactured by the Czochralski method (hereinafter, referred to as CZ method) or the floating zone method (hereinafter, referred to as FZ method) as factors affecting the electrical characteristics of LSI include:
It is known that glow-in defects caused by point defects (interstitial silicon, vacancies, etc.) exist. Glow-in defects include vacancy-type and interstitial silicon-type glow-in defects due to differences depending on growth conditions.

【0003】この空孔型グローイン欠陥を低減する方法
として、シリコン単結晶ウェーハを723〜1173K
(絶対温度)で0.5〜16時間熱処理して単結晶ウェ
ーハ内部に酸素析出物を発生させた後、水素ガス又は水
素含有不活性ガス中において1273K(絶対温度)以
上の高温で5分間〜5時間熱処理する半導体基板の製造
方法が開示されている(特公平5−18254号)。こ
の方法によれば、LSIの活性層となる単結晶ウェーハ
表面近傍に存在する空孔型のグローイン欠陥が低減す
る。またグローイン欠陥のなかで空孔型の欠陥は、CZ
法において引上げ速度を速くすると出現する傾向にある
ため、この空孔型グローイン欠陥を生じないようにする
ためには引上げ速度を低くしている。
As a method of reducing the vacancy-type glow-in defect, a silicon single crystal wafer is used to reduce
(Absolute temperature) for 0.5 to 16 hours to generate oxygen precipitates inside the single crystal wafer, and then in hydrogen gas or hydrogen-containing inert gas at a high temperature of 1273 K (absolute temperature) or more for 5 minutes to A method of manufacturing a semiconductor substrate which is heat-treated for 5 hours is disclosed (Japanese Patent Publication No. 5-18254). According to this method, vacancy-type glow-in defects existing in the vicinity of the surface of the single crystal wafer which becomes the active layer of the LSI are reduced. Among the glow-in defects, vacancy-type defects are CZ
In the method, since the pulling rate tends to appear when the pulling rate is increased, the pulling rate is reduced in order to prevent the vacancy type glow-in defect from occurring.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
公平5−18254号公報に示された方法では、単結晶
ウェーハ表面近傍の空孔型グローイン欠陥を低減できる
ものの、表面近傍よりウェーハ内部では空孔型グローイ
ン欠陥を低減することが困難である。また空孔型グロー
イン欠陥を低減するために、CZ法において引上げ速度
を低くすると、格子間シリコン型のグローイン欠陥が発
生することと、シリコン単結晶の生産性が劣る不具合が
ある。更に近年LSI自体の高集積化と同時に成膜等の
工程でコストダウンを目的としたシリコン単結晶ウェー
ハの大口径化(直径12インチ)への要請が大きくなっ
ているが、このように大口径化すればするほど、製造工
程での欠陥制御及び品質制御が難しくなり、製造コスト
が増大する問題点もある。
However, according to the method disclosed in Japanese Patent Publication No. 5-18254, vacancy-type glow-in defects near the surface of a single crystal wafer can be reduced, but vacancies are more likely to occur inside the wafer than near the surface. It is difficult to reduce mold glow-in defects. In addition, if the pulling speed is reduced in the CZ method in order to reduce the vacancy type glow-in defects, interstitial silicon-type glow-in defects are generated and the productivity of silicon single crystal is deteriorated. Further, in recent years, there has been an increasing demand for a silicon single crystal wafer having a large diameter (12 inches in diameter) for the purpose of cost reduction in processes such as film formation at the same time as high integration of the LSI itself. As the number of components increases, defect control and quality control in the manufacturing process become more difficult, and there is a problem that the manufacturing cost increases.

【0005】本発明の第1の目的は、単結晶体の大きさ
に拘わらず、単結晶体の表面のみならず内部に存在する
空孔型グローイン欠陥等の格子欠陥を消滅又は分散させ
ることができる単結晶体の熱処理方法及びその熱処理装
置を提供することにある。本発明の第2の目的は、表面
及び内部に空孔型グローイン欠陥等の格子欠陥がない
か、或いは極めて少なくかつ微小である単結晶体を提供
することにある。本発明の第3の目的は、熱処理中にお
ける単結晶体の表面及び内部の揮発物質等による汚染を
防止することができる単結晶体の熱処理方法及びその熱
処理装置を提供することにある。
A first object of the present invention is to eliminate or disperse lattice defects such as vacancy-type glow-in defects existing not only on the surface of a single crystal but also inside the single crystal, regardless of the size of the single crystal. It is an object of the present invention to provide a heat treatment method for a single crystal body and a heat treatment apparatus for the same. A second object of the present invention is to provide a single crystal having no or very few and minute lattice defects such as vacancy type glow-in defects on the surface and inside. A third object of the present invention is to provide a heat treatment method and a heat treatment apparatus for a single crystal, which can prevent contamination of the surface and the inside of the single crystal by a volatile substance during the heat treatment.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記従来
の半導体単結晶の製造における欠陥発生の問題に関し、
熱間等方圧加圧処理(以下、HIP処理という。)を行
うことにより、従来の単結晶成長法により製造された際
に不可避的に発生した単結晶中の格子欠陥或いは格子欠
陥の集合体を除去できることを見出し、本発明をなすに
至った。請求項1に係る発明は、図1に示すように、単
結晶体12をこの単結晶体12と同一材質の板部材26
上に載せてカーボン又はSiC製のコンテナ13に収容
し、コンテナ13内に単結晶体12と同一材質で純度9
9.999999999%以上の多結晶粒子27を充填
した状態で、単結晶体12の安定な雰囲気下、0.2〜
304MPaの圧力で単結晶体12の絶対温度による融
点の0.85倍以上の温度で5分間〜20時間、熱間等
方圧加圧処理を行った後に徐冷することを特徴とする単
結晶体の熱処理方法である。
Means for Solving the Problems The present inventors have addressed the problem of the occurrence of defects in the production of the above-mentioned conventional semiconductor single crystal.
By performing hot isostatic pressing (hereinafter, referred to as HIP), lattice defects or aggregates of lattice defects in a single crystal inevitably generated when manufactured by a conventional single crystal growth method. Have been found, and the present invention has been accomplished. As shown in FIG. 1, the invention according to claim 1 uses a plate member 26 made of the same material as the single crystal 12.
It is placed on a container 13 made of carbon or SiC and placed in the container 13 with the same material as the single crystal body 12 and a purity of 9%.
In a state where the polycrystalline particles 27 of 9.999999999% or more are filled, the single crystal body 12 has a stable atmosphere of 0.2 to
A single crystal which is subjected to hot isostatic pressing at a pressure of 0.85 times or more the melting point of the single crystal body 12 at an absolute temperature at a pressure of 304 MPa for 5 minutes to 20 hours, and then gradually cooled. This is a heat treatment method for the body.

【0007】単結晶体の内部に形成される格子欠陥に
は、原子1個レベルの欠陥である原子空孔(Atomic Vac
ancy)や格子間原子(Intersticial)、格子の乱れ的な
欠陥である転位(Dislocation)や積層欠陥(Stacking
Fault)、及びこれらの集合体、例えば原子空孔が集合
して形成された比較的大きな穴(Piled-up Vacancy)な
どが知られている。これらのうち特に半導体基板として
使用する際に問題となるのは、転位とPiled-up Vacancy
である。原子空孔や格子間原子一つ一つは、量がさほど
多くなければ、現在のLSIの各素子や配線の寸法と比
較してまだ遥かに小さく問題とはならない。また積層欠
陥については、これが発生した境界に転位が発生するこ
とが多く、この転位が発生した場合に問題となる。これ
らの格子欠陥は、LSI製造工程でのエッチング操作な
どにより、この欠陥部分のみが選択的にエッチングされ
るなどの現象を引き起こし、製造工程中での歩留まり低
下に影響を及ぼし、又は最終製品としての信頼性も低下
させる。
[0007] Lattice defects formed inside the single crystal include atomic vacancies (Atomic Vac
ancy), interstitial (Intersticial), dislocation (Dislocation) and stacking fault (Stacking)
Fault) and their aggregates, for example, relatively large holes (Piled-up Vacancy) formed by aggregation of atomic vacancies. Of these, dislocation and Piled-up vacancy are particularly problematic when used as a semiconductor substrate.
It is. Unless the amount of the atomic vacancies and interstitial atoms is not too large, the size of each element or wiring of the current LSI is still much smaller than the current one, and does not pose a problem. In addition, regarding stacking faults, dislocations often occur at boundaries where the stacking faults occur, and this dislocation causes a problem. These lattice defects cause phenomena such as selective etching of only this defective portion due to an etching operation in an LSI manufacturing process or the like, which affects a reduction in the yield in the manufacturing process or as a final product. It also reduces reliability.

【0008】本発明者らは、このような格子欠陥を含む
シリコン単結晶体を種々の高温高圧の不活性ガス雰囲気
(Arガス等)下で処理する方法について、圧力・温度
条件を変化させた実験を行い、上記請求項1に記載した
特定の条件下で熱処理した後に徐冷することが上記格子
欠陥を除去、若しくは原子レベルの格子欠陥状態に分散
させる効果があり、実用上で問題となるような寸法の格
子欠陥を実質的に排除できることを見出した。即ち、単
結晶体12を熱処理すると、単結晶ウェーハ中に存在す
る空孔型グローイン欠陥等の格子欠陥が押しつぶされ、
単結晶体12を構成している原子が再配列して、空孔型
グローイン欠陥等の格子欠陥が消滅又は分散した高品質
の単結晶体12が得られる。
The present inventors changed the pressure and temperature conditions for the method of treating a silicon single crystal containing such lattice defects under various high-temperature and high-pressure inert gas atmospheres (such as Ar gas). Performing an experiment and gradually cooling after heat treatment under the specific conditions described in claim 1 has the effect of removing the lattice defects or dispersing the lattice defects into an atomic level lattice defect, which is a problem in practical use. It has been found that lattice defects of such dimensions can be substantially eliminated. That is, when the single crystal body 12 is heat-treated, lattice defects such as vacancy type glow-in defects existing in the single crystal wafer are crushed,
The atoms constituting the single crystal 12 are rearranged, and a high quality single crystal 12 in which lattice defects such as vacancy type glow-in defects disappear or are dispersed is obtained.

【0009】また上記請求項1に記載された単結晶体の
熱処理方法では、単結晶体12の出し入れ時にコンテナ
13内に空気が混入したり、熱処理装置10の構成部品
から揮発した物質がコンテナ13内に流入又は発生した
りしても、上記空気や揮発物質は高温加熱されたときに
多結晶粒子27によりゲッタリングされるため、単結晶
体12表面に到達しない。また上記請求項1に記載され
た熱処理方法において、多結晶粒子の平均粒径は0.3
〜3.0mmであることが好ましく、単結晶体の安定な
雰囲気は不活性ガス雰囲気又は高蒸気圧元素の蒸気を含
む雰囲気であることが好ましく、圧力は10〜200M
Paであることが好ましく、更に単結晶体はシリコン単
結晶,GaAs単結晶,InP単結晶,ZnS単結晶若
しくはZnSe単結晶のインゴット又はこのインゴット
を切断して得られたブロック若しくはウェーハであるこ
とが好ましい。また上記請求項1ないし5いずれか記載
の方法により熱処理された単結晶体は上述のように、空
孔型グローイン欠陥等の格子欠陥が消滅又は分散した高
品質の単結晶体となり、かつ単結晶体の表面及び内部が
熱処理中の空気や揮発物質で汚染されていないため、清
浄な状態に保たれる。
In the method for heat-treating a single crystal according to the first aspect of the present invention, air is mixed into the container when the single crystal is taken in and out, and substances volatilized from the components of the heat treatment apparatus are removed from the container. Even if the air or the volatile substances flow into the inside, the air and the volatile substances are gettered by the polycrystalline particles 27 when heated at a high temperature, and therefore do not reach the surface of the single crystal body 12. In the heat treatment method according to the first aspect, the average particle size of the polycrystalline particles is 0.3.
Preferably, the stable atmosphere of the single crystal is an inert gas atmosphere or an atmosphere containing a vapor of a high vapor pressure element, and the pressure is 10 to 200M.
Pa is preferable, and the single crystal is preferably a silicon single crystal, a GaAs single crystal, an InP single crystal, a ZnS single crystal, or a ZnSe single crystal ingot, or a block or wafer obtained by cutting this ingot. preferable. As described above, the single crystal that has been heat-treated by the method according to any one of claims 1 to 5 is a high-quality single crystal in which lattice defects such as vacancy-type glow-in defects have disappeared or dispersed. Since the surface and the inside of the body are not contaminated with air or volatile substances during the heat treatment, the body is kept in a clean state.

【0010】請求項7に係る発明は、図1に示すよう
に、0.2〜304MPaの圧力のガスを導入可能な筒
状の圧力容器11と、この圧力容器11内に挿入されか
つ内部に単結晶体12が収容されたカーボン又はSiC
製のコンテナ13と、このコンテナ13の外周面を所定
の間隔をあけて囲み単結晶体12をこの単結晶体12の
絶対温度による融点の0.85倍以上の温度まで加熱可
能なヒータ14とを備えた単結晶体の熱処理装置であ
る。その特徴ある構成は、単結晶体12がこの単結晶体
12と同一材質の板部材26を介してコンテナ13に収
容され、コンテナ13と単結晶体12との間にこの単結
晶体12と同一材質で純度99.999999999%
以上の多結晶粒子27が充填されたところにある。
As shown in FIG. 1, the invention according to claim 7 comprises a cylindrical pressure vessel 11 capable of introducing a gas having a pressure of 0.2 to 304 MPa, and a pressure vessel 11 inserted into the pressure vessel 11 and internally provided therein. Carbon or SiC containing single crystal 12
And a heater 14 which surrounds the outer peripheral surface of the container 13 at a predetermined interval and can heat the single crystal 12 to a temperature of 0.85 times or more the melting point of the single crystal 12 by the absolute temperature. This is a single crystal heat treatment apparatus provided with: The characteristic structure is that the single crystal 12 is accommodated in the container 13 via the plate member 26 of the same material as the single crystal 12, and the same as the single crystal 12 is provided between the container 13 and the single crystal 12. 99.999999999% purity by material
This is where the above polycrystalline particles 27 are filled.

【0011】この請求項7に記載された単結晶体の熱処
理装置では、コンテナ13内に敷かれた板部材26上に
単結晶体12を載せ、コンテナ13と単結晶体12との
間に多結晶粒子27を充填して、単結晶体12を熱処理
装置10に収容した状態で、装置10内に不活性ガスを
導入しかつヒータ14を作動して、装置10内を所定の
高圧・高温の状態に所定時間保持する。このとき単結晶
体12の熱処理装置10への収容時にコンテナ13内に
混入した空気や、ヒータ14やコンテナ13等の熱処理
装置10の構成部品から揮発してコンテナ13内に流入
又は発生した物質は高温加熱されたときに多結晶粒子2
7によりゲッタリングされるため、単結晶体12表面に
到達しない。また上記請求項7に記載された熱処理装置
において、多結晶粒子の平均粒径は0.3〜3.0mm
であることが好ましく、単結晶体の安定な雰囲気は不活
性ガス雰囲気又は高蒸気圧元素の蒸気を含む雰囲気であ
ることが好ましく、圧力は10〜200MPaであるこ
とが好ましく、更に単結晶体はシリコン単結晶,GaA
s単結晶,InP単結晶,ZnS単結晶若しくはZnS
e単結晶のインゴット又はこのインゴットを切断して得
られたブロック若しくはウェーハであることが好まし
い。
In the heat treatment apparatus for a single crystal according to the present invention, the single crystal is placed on the plate member laid in the container and the multi crystal is placed between the container and the single crystal. In a state where the crystal grains 27 are filled and the single crystal body 12 is housed in the heat treatment apparatus 10, an inert gas is introduced into the apparatus 10 and the heater 14 is operated, so that the inside of the apparatus 10 has a predetermined high pressure and high temperature. The state is maintained for a predetermined time. At this time, air mixed into the container 13 when the single crystal body 12 is accommodated in the heat treatment apparatus 10, and substances volatilized from the components of the heat treatment apparatus 10 such as the heater 14 and the container 13 and flowed into or generated in the container 13 are Polycrystalline particles 2 when heated to high temperature
7, and does not reach the surface of the single crystal body 12. Further, in the heat treatment apparatus according to claim 7, the average particle size of the polycrystalline particles is 0.3 to 3.0 mm.
It is preferable that the stable atmosphere of the single crystal body is an inert gas atmosphere or an atmosphere containing a vapor of a high vapor pressure element, and the pressure is preferably 10 to 200 MPa. Silicon single crystal, GaAs
s single crystal, InP single crystal, ZnS single crystal or ZnS
It is preferably an e-single crystal ingot or a block or wafer obtained by cutting this ingot.

【0012】[0012]

【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて説明する。図1及び図2に示すように、
本発明の単結晶体12の欠陥を除去するための熱処理装
置10は熱間等方圧加圧装置(以下、HIP装置とい
う。)である。このHIP装置10は高温・高圧に耐え
得る円筒状の圧力容器11と、この圧力容器11内に挿
入され単結晶体12が収容されたカーボン又はSiC製
のコンテナ13と、このコンテナ13の外周面を所定の
間隔をあけて囲むヒータ14とを備える。上記圧力容器
11は筒状の容器本体16と、この容器本体16の上端
及び下端をそれぞれ閉止する上蓋17及び下蓋18と、
下蓋18上面に載置されコンテナ13を載せるサポート
19とを有する。上蓋17の中央には装置10内にガス
を導入するガス導入口17aが形成され、下蓋18はサ
ポート19及びコンテナ13とともに昇降し、下蓋18
が下降した状態でコンテナ13をサポート19に載せた
り或いはサポート19から降ろしたりできるように構成
される。図1及び図2の符号21はヒータ14の外周面
を所定の間隔をあけて囲みかつ下端周縁に複数の切欠き
21aが形成された伏せ椀状の断熱筒であり、符号22
は容器本体16及び断熱筒21を支持するリング状の支
持部材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2,
The heat treatment apparatus 10 for removing defects of the single crystal body 12 of the present invention is a hot isostatic pressing apparatus (hereinafter, referred to as a HIP apparatus). The HIP device 10 includes a cylindrical pressure vessel 11 capable of withstanding high temperature and high pressure, a carbon or SiC container 13 inserted into the pressure vessel 11 and containing a single crystal body 12, and an outer peripheral surface of the container 13. And a heater 14 that surrounds at a predetermined interval. The pressure vessel 11 has a cylindrical container body 16, an upper lid 17 and a lower lid 18 for closing an upper end and a lower end of the container main body 16, respectively.
And a support 19 that is placed on the upper surface of the lower cover 18 and on which the container 13 is placed. A gas inlet 17a for introducing gas into the apparatus 10 is formed at the center of the upper lid 17, and the lower lid 18 is moved up and down together with the support 19 and the container 13, and
The container 13 can be placed on the support 19 or lowered from the support 19 in a state where the container 13 is lowered. Reference numeral 21 in FIG. 1 and FIG. 2 denotes a baking-cup-shaped heat insulating cylinder which surrounds the outer peripheral surface of the heater 14 at a predetermined interval and has a plurality of notches 21a formed at the lower peripheral edge.
Is a ring-shaped support member for supporting the container body 16 and the heat insulating cylinder 21.

【0013】単結晶体12を上記HIP装置10に収容
して熱処理を行うときには、装置10内を単結晶体12
の安定な雰囲気にし、装置10内の圧力を0.2〜30
4MPa、好ましくは10〜200MPaに昇圧し、装
置10内の温度を絶対温度で単結晶体12の融点の0.
85倍以上、好ましくは0.9倍以上の温度とし、更に
この状態に保持する時間を5分間〜20時間、好ましく
は0.5時間〜5時間(処理温度を融点の0.9倍以上
の温度とした場合)とする。熱処理時の単結晶体12の
安定な雰囲気は不活性ガス雰囲気又は高蒸気圧元素の蒸
気を含む雰囲気にすることが好ましい。例えば単結晶体
12がシリコンのような単一元素で蒸気圧もさほど高く
ならない場合には、圧力媒体のガスとしてはアルゴンガ
スのような不活性ガスを使用すればよい。また単結晶体
12がGaAs単結晶の化合物半導体の場合には、高蒸
気圧のAs元素の蒸気を含む雰囲気にすることが好まし
く、単結晶体12がInP単結晶の化合物半導体の場合
には、高蒸気圧のP元素の蒸気を含む雰囲気にすること
が好ましく、単結晶体12がZnS単結晶若しくはZn
Se単結晶の化合物半導体の場合には、高蒸気圧のZn
元素の蒸気を含む雰囲気にすることが好ましい。
When the single crystal 12 is accommodated in the HIP device 10 and heat treatment is performed, the inside of the device 10 is
And a pressure in the apparatus 10 of 0.2 to 30
The pressure in the apparatus 10 is raised to 4 MPa, preferably 10 to 200 MPa, and the temperature in the apparatus 10 is set to 0.1 mm of the melting point of the single crystal body 12 in absolute temperature.
The temperature is 85 times or more, preferably 0.9 times or more, and the temperature is maintained for 5 minutes to 20 hours, preferably 0.5 hours to 5 hours. Temperature). The stable atmosphere of the single crystal body 12 during the heat treatment is preferably an inert gas atmosphere or an atmosphere containing a vapor of a high vapor pressure element. For example, when the single crystal body 12 is a single element such as silicon and the vapor pressure is not so high, an inert gas such as an argon gas may be used as the pressure medium gas. When the single crystal body 12 is a GaAs single crystal compound semiconductor, the atmosphere is preferably an atmosphere containing a vapor of a high vapor pressure As element. When the single crystal body 12 is an InP single crystal compound semiconductor, The atmosphere is preferably an atmosphere containing a high-vapor-pressure P element vapor, and the single crystal body 12 is made of ZnS single crystal or ZnS single crystal.
In the case of a Se single crystal compound semiconductor, Zn having a high vapor pressure
It is preferable to use an atmosphere containing elemental vapor.

【0014】上記熱処理時の圧力を0.2〜304MP
aに限定したのは、0.2MPa未満では上記格子欠陥
の消滅又は拡散する効果が現れず、圧力は高ければ高い
ほど上記格子欠陥の拡散の進行が促進されるが、304
MPaを超えるとHIP装置10の強度上の問題が生じ
るからである。なお、圧力は実用面から200MPa以
下が適している。また熱処理時の温度を絶対温度で単結
晶体12の融点の0.85倍以上に限定したのは、単結
晶体12内の格子欠陥の拡散を促進するためである。更
に熱処理時間を5分間〜20時間と限定したのは、5分
間未満では上記格子欠陥の拡散が十分に進行せず、20
時間を超えると熱処理後の徐冷時間を含めて24時間を
超え生産性に支障をきたすからである。この熱処理時間
を実用的な24時間以内となるように処理することを考
慮すると、絶対温度で単結晶体12の融点の0.9倍以
上の高温下で行うことが好ましい。また単結晶体12は
熱処理を行った後に装置10内で自然冷却、即ち徐冷さ
れる。
The pressure at the time of the heat treatment is 0.2 to 304 MPa.
The reason for limiting to a is that if the pressure is less than 0.2 MPa, the effect of disappearing or diffusing the lattice defects does not appear, and the higher the pressure is, the more the diffusion of the lattice defects is promoted.
This is because if the pressure exceeds MPa, a problem in strength of the HIP device 10 occurs. The pressure is preferably 200 MPa or less from a practical point of view. The reason for limiting the temperature during the heat treatment to 0.85 times or more of the melting point of the single crystal body 12 in absolute temperature is to promote diffusion of lattice defects in the single crystal body 12. Furthermore, the reason why the heat treatment time is limited to 5 minutes to 20 hours is that diffusion of the lattice defects does not sufficiently proceed if the heat treatment time is less than 5 minutes,
If the time is longer than 24 hours including the slow cooling time after the heat treatment, productivity is hindered. Considering that the heat treatment is performed within a practical 24 hours or less, it is preferable to perform the heat treatment at a high temperature of 0.9 times or more the melting point of the single crystal body 12 in absolute temperature. After the heat treatment, the single crystal body 12 is naturally cooled, that is, gradually cooled in the apparatus 10.

【0015】コンテナ13は箱状のコンテナ本体23
と、このコンテナ本体23の上面の開口部23aを閉止
する蓋体24とを有する。コンテナ本体23の開口部2
3a周縁には複数のスリット23bが形成され、これら
のスリット23bはコンテナ本体23の開口部23aを
蓋体24により閉止した状態でコンテナ13の内外を連
通する深さに形成される。なお、コンテナの内外を連通
するためにスリットではなく、コンテナ本体又は蓋体に
複数の小孔を形成してもよい。またコンテナ本体23内
には単結晶体12と同一材質の板部材26が敷かれ、こ
の板部材26上に単結晶体12が載せられる。またコン
テナ本体23と単結晶体12との間にはこの単結晶体1
2と同一材質で純度99.999999999%以上の
多結晶粒子27が充填される。この多結晶粒子27の平
均粒径は0.3〜3.0mmの範囲にあることが好まし
く、更に0.5〜2.0mmであることが好ましい。多
結晶粒子27の平均粒径を0.3〜3.0mmの範囲に
限定したのは、0.3mm未満では高温の場合に多結晶
粒子27がインゴットに付着する不具合があり、3.0
mmを超えると充填率が低下するからである。
The container 13 is a box-shaped container body 23.
And a lid 24 for closing the opening 23a on the upper surface of the container body 23. Opening 2 of container body 23
A plurality of slits 23b are formed in the periphery of 3a, and these slits 23b are formed to a depth that allows the inside and outside of the container 13 to communicate with each other with the opening 23a of the container body 23 closed by the lid 24. Note that a plurality of small holes may be formed in the container body or the lid instead of the slit in order to communicate the inside and outside of the container. Further, a plate member 26 made of the same material as the single crystal body 12 is laid in the container body 23, and the single crystal body 12 is placed on the plate member 26. Further, between the container body 23 and the single crystal body 12, the single crystal body 1
Polycrystalline particles 27 of the same material as that of No. 2 and having a purity of 99.999999999% or more are filled. The average particle size of the polycrystalline particles 27 is preferably in the range of 0.3 to 3.0 mm, and more preferably 0.5 to 2.0 mm. The reason why the average particle size of the polycrystalline particles 27 is limited to the range of 0.3 to 3.0 mm is that if the average particle size is less than 0.3 mm, there is a problem that the polycrystalline particles 27 adhere to the ingot at a high temperature.
This is because if it exceeds mm, the filling rate decreases.

【0016】一方、単結晶体12はCZ法又はFZ法に
より育成された単結晶インゴットの状態でも、これを適
当な長さに切断したブロックでも、或いは最終製品に近
いウェーハであっても構わない。また単結晶体12とし
てはシリコン,GaAs,InP,ZnS,ZnSeな
どの単結晶体が挙げられる。寸法が小さい場合には格子
欠陥の一部は単結晶の表面から外部に抜けてしまうの
で、本質的な格子欠陥の除去が可能であるが、単結晶体
12の寸法が大きな場合には、格子欠陥の大部分は原子
空孔となって大きな単結晶の全領域に分散した状態とな
ることによって、見掛け上、即ち実用上では問題となら
ない欠陥フリーの状態となる。なお、この場合には大気
圧近傍で再加熱すると、分散した原子空孔が集合してPi
led-up Vacancyを形成する方が熱力学的に安定なことも
あり、上記分散した原子空孔が集合するような温度まで
加熱するようなプロセスで用いるには適さない。上記分
散した原子空孔が集合するような温度とは、絶対温度で
融点の0.9倍以上の高温域である。
On the other hand, the single crystal body 12 may be a single crystal ingot grown by the CZ method or the FZ method, a block obtained by cutting the single crystal ingot to an appropriate length, or a wafer close to the final product. . The single crystal 12 includes a single crystal such as silicon, GaAs, InP, ZnS, and ZnSe. When the size is small, some of the lattice defects escape from the surface of the single crystal to the outside, so that it is possible to remove the essential lattice defects. Most of the defects become atomic vacancies and are dispersed in the entire region of the large single crystal, so that a defect-free state that does not cause any problem in practical use is obtained. In this case, when reheating near the atmospheric pressure, dispersed atomic vacancies aggregate to form Pi.
Forming the led-up vacancy may be thermodynamically more stable, and is not suitable for use in a process in which heating is performed to a temperature at which the dispersed vacancies gather. The temperature at which the dispersed atomic vacancies converge is a high temperature region having an absolute temperature of 0.9 times or more the melting point.

【0017】このように構成された熱処理装置の使用方
法を説明する。先ずコンテナ本体23内に板部材26を
敷き、この板部材26上に単結晶体12を載せる。次に
コンテナ本体23と単結晶体12との間の隙間及び単結
晶体12の上面に多結晶粒子27を充填した後に、蓋体
24にてコンテナ本体23の開口部23aを閉止する。
更に下蓋18を図2の実線矢印で示す方向に下降させ、
下蓋18に載置されたサポート19上に上記コンテナ1
3を載せた後に(図2)、下蓋18を破線矢印で示す方
向に上昇させる。これにより単結晶体12がHIP装置
10に収容される(図1)。この状態で上蓋17のガス
導入口17aから装置10内にArなどの不活性ガスを
導入して装置10内の圧力を0.2〜304MPaと
し、かつヒータ14を作動して装置10内を単結晶体1
2の融点の0.85倍以上の温度(絶対温度)に5分間
〜20時間保持する。一方、コンテナ13内には単結晶
体12をこのHIP装置10に収容するときに空気が混
入したり、或いは高圧のガスは高密度で低粘性で極めて
対流を起こし易い流体であるため、ヒータ14等のHI
P装置10の構成部品から揮発した物質がスリット23
bからコンテナ13内に流入したり、コンテナ13から
揮発した物質がコンテナ13内に発生したりする。しか
し、上記コンテナ13内の空気や上記コンテナ13内に
流入又は発生した揮発物質は高温加熱されたときに多結
晶粒子27によりゲッタリングされるため、単結晶体1
2表面に到達しない。この結果、単結晶体12の表面及
び内部の汚染を防止することができる。
A method of using the heat treatment apparatus thus configured will be described. First, a plate member 26 is laid in the container body 23, and the single crystal 12 is placed on the plate member 26. Next, after filling the gap between the container body 23 and the single crystal body 12 and the upper surface of the single crystal body 12 with the polycrystalline particles 27, the opening 23 a of the container body 23 is closed by the lid 24.
Further, the lower cover 18 is lowered in the direction indicated by the solid arrow in FIG.
The container 1 is placed on a support 19 placed on the lower lid 18.
3 is placed (FIG. 2), the lower cover 18 is raised in the direction indicated by the dashed arrow. Thereby, single crystal body 12 is housed in HIP device 10 (FIG. 1). In this state, an inert gas such as Ar is introduced into the apparatus 10 from the gas introduction port 17a of the upper lid 17 to set the pressure in the apparatus 10 to 0.2 to 304 MPa, and the heater 14 is operated to make the inside of the apparatus 10 simple. Crystal 1
The temperature (absolute temperature) of 0.85 times or more of the melting point of No. 2 is maintained for 5 minutes to 20 hours. On the other hand, when the single crystal body 12 is accommodated in the HIP device 10, air is mixed in the container 13, or a high-pressure gas is a fluid having a high density, a low viscosity, and a convection that is extremely likely to occur. HI etc.
Substances volatilized from the components of the P device 10 are slits 23
b flows into the container 13 or substances volatilized from the container 13 are generated in the container 13. However, since the air in the container 13 and the volatile substances flowing into or generated in the container 13 are gettered by the polycrystalline particles 27 when heated at a high temperature, the single crystal 1
2 Does not reach the surface. As a result, contamination of the surface and the inside of the single crystal body 12 can be prevented.

【0018】上述の熱処理による単結晶体の欠陥除去の
メカニズムを説明する。図3は通常の単結晶成長方法に
より製造された一種類の元素からなる単結晶体12の構
造を模式的に示したものである。寸法的には誇張されて
いるが、単結晶体12の内部には格子欠陥31と総称し
て呼ばれる数種類の欠陥32〜36が存在している。こ
れらの欠陥の生成要因はいくつかあるが、転位32は単
結晶体12を融液から成長させた後の降温過程でインゴ
ットに生じる温度差による熱応力がその一因とされてい
る。また積層欠陥33は融液中の不純物元素や、単結晶
成長時に原子30がクラスタと称する原子30の集まり
を形成してから、単結晶母体と一体化する際にずれを生
じるためである等とされている。また原子空孔34や格
子間原子35は絶対零度以上での所定の温度及び圧力の
条件下では特定の濃度で存在する方が熱力学的に安定で
あるという自然の法則により、特別な温度勾配を持たせ
て単結晶育成を行わない限り、必ず存在するものであ
る。なお、図3の符号36は集積空孔(Piled-up Vacan
cies)である。
The mechanism of the single-crystal defect removal by the above-described heat treatment will be described. FIG. 3 schematically shows a structure of a single crystal body 12 made of one kind of element manufactured by a normal single crystal growth method. Although exaggerated in dimension, there are several types of defects 32 to 36 collectively called lattice defects 31 inside the single crystal body 12. Although there are several factors that cause these defects, the dislocations 32 are attributable to thermal stress due to the temperature difference generated in the ingot during the cooling process after growing the single crystal 12 from the melt. Also, the stacking faults 33 are due to an impurity element in the melt or a shift when the atoms 30 form clusters of atoms 30 called clusters during single crystal growth and then are integrated with the single crystal matrix. Have been. In addition, the atomic vacancies 34 and interstitial atoms 35 have a special temperature gradient due to the natural law that the presence of a specific concentration at a specific temperature and pressure above absolute zero is more thermodynamically stable. Is always present unless a single crystal is grown with the above. It should be noted that reference numeral 36 in FIG. 3 denotes an integrated hole (Piled-up Vacan).
cies).

【0019】上述の格子欠陥31の安定性等について
は、高圧下では、全物質が大気圧下よりも、更に体積が
小さいような構造をとる方がエネルギ的に安定であると
いう熱力学の法則と、このエネルギ的に安定な小体積の
状態への変化(原子の拡散現象)が加速される傾向が強
いという仮設がある。この考え方を単結晶体の欠陥に適
用すると、ある種の格子欠陥は消滅若しくは分散して体
積減少を生じる可能性が強い。なお、このような現象が
生じることは、いわゆる固体圧領域といわれる1GPa
以上の領域では指摘されているが、このような高圧域で
は大きな体積の単結晶体の処理は不可能であり、工業的
な利用はできない。また固体圧の場合、圧力媒体に固体
の粉末等を用いるため、圧力の伝達に伴う摩擦による剪
断応力の発生を回避できず、この剪断応力による転位の
量の増加を避け難く、本発明の対象材料のような単結晶
体の処理には不向きである。本発明の優れた点の一つ
は、ガス圧の使用により、上記のような剪断応力の発生
を極力抑制できる静水圧条件を工業レベルで実現できる
点にある。
Regarding the stability and the like of the lattice defect 31 described above, the law of thermodynamics is that under a high pressure, it is more energetically more stable to adopt a structure in which all the materials have a smaller volume than under atmospheric pressure. There is a hypothesis that there is a strong tendency to accelerate this change to a small volume state that is stable in terms of energy (diffusion phenomenon of atoms). When this concept is applied to single crystal defects, there is a strong possibility that certain lattice defects disappear or disperse, resulting in a volume reduction. It is to be noted that such a phenomenon is caused by a so-called solid pressure region of 1 GPa.
Although it is pointed out in the above region, it is impossible to treat a single crystal having a large volume in such a high pressure region, and industrial use is not possible. Further, in the case of solid pressure, since solid powder or the like is used as the pressure medium, generation of shear stress due to friction due to pressure transmission cannot be avoided, and it is difficult to avoid an increase in the amount of dislocation due to this shear stress. It is not suitable for processing a single crystal such as a material. One of the excellent points of the present invention is that the use of gas pressure makes it possible to realize, on an industrial level, hydrostatic pressure conditions capable of minimizing the occurrence of shear stress as described above.

【0020】シリコン単結晶のように単一元素から構成
されている場合には、熱処理により、定性的には次の
〜のように欠陥が変化して、結果として問題となるよ
うな欠陥の総量は減少する。なお、原子空孔は格子欠陥
ではあるが、前述のように量が多くなければ実用上は欠
陥とならない。結果として、熱処理後の単結晶の結晶格
子は模式的に示すと図4のようになる。即ち、原子空孔
35が単結晶体12内に互いに独立して影響を与えない
距離で存在するような組織となる。
In the case of being composed of a single element such as a silicon single crystal, the heat treatment qualitatively changes the defects as shown in the following (1) to (3), and as a result, the total amount of defects Decreases. Although atomic vacancies are lattice defects, they are not practically defects unless the amount is large as described above. As a result, the crystal lattice of the single crystal after the heat treatment is schematically shown in FIG. That is, the structure is such that the atomic vacancies 35 exist within the single crystal body 12 at a distance that does not affect each other independently.

【0021】 刃状転位(特定の結晶面上に直線的に
存在)は転位部に空隙を減少させる方向で変化してその
量が減少する。 らせん転位(面のずれがらせん的に存在)の大きな
減少は生じない。 積層欠陥は結晶方位(111)面でのずれが是正さ
れてその量は低減する。 格子間原子はその存在する部分の格子が引き伸ばさ
れて不安定となり、原子空孔部に移動してその総量は減
少する。 Piled-up Vacancyは大きな穴として存在すると不安
定なため、高温で長時間放置すると、原子空孔になって
分散し、見掛け上は存在しなくなる。
The edge dislocations (present linearly on a specific crystal plane) change in a direction to reduce voids in the dislocations, and the amount thereof decreases. There is no significant reduction in screw dislocations (plane displacement is present spirally). As for the stacking fault, the shift in the crystal orientation (111) plane is corrected, and the amount thereof is reduced. The interstitial atoms become unstable due to stretching of the lattice of the existing part, and move to the atomic vacancy to decrease the total amount. Piled-up vacancy is unstable when it exists as a large hole, so if left at high temperature for a long time, it becomes an atomic vacancy and disperses, and apparently does not exist.

【0022】次に本発明の第2の実施の形態を説明す
る。この実施の形態では、単結晶体としてCZ法又はF
Z法により育成される単結晶インゴットから切出された
単結晶ウェーハを用いる。この単結晶ウェーハは研磨さ
れる前のものが好ましい。本発明の熱処理で低減される
空孔型グローイン欠陥としては、COP(cristal-orig
inated particles)、FPD(flow pattern defec
t)、LSTD(infrared light scattering tomograph
defect)等が挙げられる。ここでCOPとはSC−1
洗浄後にレーザパーティクルカウンタでパーティクルと
してカウントされた結晶に起因する底の深いエッチピッ
トである。またFPDとはCZ法で引上げられたシリコ
ン単結晶から切出したシリコン単結晶ウェーハを30分
間Seccoエッチング液で化学エッチングしたときに現れ
る特異なフローパターンを呈する痕跡の源である。更に
LSTDは赤外散乱欠陥といわれ、シリコン単結晶内に
赤外線を照射したときにシリコンとは異なる屈折率を有
し散乱光を発生する源である。
Next, a second embodiment of the present invention will be described. In this embodiment, the CZ method or F
A single crystal wafer cut from a single crystal ingot grown by the Z method is used. This single crystal wafer is preferably one before polishing. The pore-type glow-in defects reduced by the heat treatment of the present invention include COP (cristal-orig).
inated particles), FPD (flow pattern defec)
t), LSTD (infrared light scattering tomograph)
defect). Here, COP is SC-1
Deep etch pits due to crystals counted as particles by the laser particle counter after cleaning. The FPD is a source of a trace exhibiting a unique flow pattern that appears when a silicon single crystal wafer cut from a silicon single crystal pulled by the CZ method is chemically etched with a Secco etchant for 30 minutes. Further, LSTD is called an infrared scattering defect, and is a source that has a refractive index different from that of silicon and generates scattered light when a silicon single crystal is irradiated with infrared light.

【0023】なお、単結晶体としてシリコン単結晶体
(シリコンインゴット)を用い、多結晶粒子としてポリ
シリコン粒子を用い、更に単結晶体と同一材質の板部材
として石英板を用いた場合には、0.5〜101.3M
Paの圧力で1436〜1673K(絶対温度)に0.
5〜5時間保持することが好ましい。圧力、温度及び時
間とも各下限値未満では単結晶ウェーハ中の空孔型グロ
ーイン欠陥が消滅又は低減する効果が表れず、また各上
限値を超えて処理してもその低減の度合いがあまり変化
せず、HIP装置の耐久性の点から上記範囲が設定され
る。圧力、温度及び時間とも各下限値未満では単結晶ウ
ェーハ中の空孔型グローイン欠陥が消滅又は低減する効
果が表れず、また各上限値を超えて処理してもその低減
の度合いがあまり変化せず、HIP装置の耐久性の点か
ら上記範囲が設定される。ここで、空孔型グローイン欠
陥の低減とは、空孔が凝集して形成された空洞(void)
のサイズが小さくなることのみならず、空洞の密度が減
少することをいう。
When a silicon single crystal (silicon ingot) is used as a single crystal, polysilicon particles are used as polycrystalline particles, and a quartz plate is used as a plate member of the same material as the single crystal, 0.5-101.3M
Pressure of 1436 to 1673K (absolute temperature) at pressure of Pa.
It is preferable to hold for 5 to 5 hours. If the pressure, temperature and time are less than the respective lower limits, the effect of eliminating or reducing vacancy-type glow-in defects in the single crystal wafer does not appear, and even if the treatment exceeds the upper limits, the degree of reduction does not change much. Instead, the above range is set in view of the durability of the HIP device. If the pressure, temperature and time are less than the respective lower limits, the effect of eliminating or reducing vacancy-type glow-in defects in the single crystal wafer does not appear, and even if the treatment exceeds the upper limits, the degree of reduction does not change much. Instead, the above range is set in view of the durability of the HIP device. Here, the reduction of the vacancy type glow-in defect refers to a void (void) formed by agglomeration of vacancies.
Not only the size of the cavity becomes small but also the density of the cavity decreases.

【0024】[0024]

【実施例】次に本発明の実施例を比較例とともに詳しく
説明する。 <実施例1>図1及び図2に示すように、単結晶体12
としてシリコン単結晶のインゴットを直径154mm及
び高さ100mmのブロックに加工したものを用いた。
この単結晶ブロック12を処理直径200mm及び高さ
200mmのHIP装置10に収容した。このHIP装
置10内にはモリブデン製のヒータ14が設置される。
またこのHIP装置10は最高使用温度が1723K
(絶対温度)であり、更に最高200MPaまで加圧可
能である。圧力媒体のガスとしてはアルゴンガスを使用
した。一方、コンテナ本体23内に石英板26を敷き、
この石英板26上に上記インゴット12を載せた。この
状態でコンテナ本体23とインゴット12との間の隙間
及びインゴット12の上面に平均直径が0.5〜2.0
mmのポリシリコン粒子27を充填した後に、蓋体24
にてコンテナ本体23の開口部23aを閉止した。次い
で上記コンテナ13をサポート19の上に載せ、下蓋1
8を上昇させてインゴット12をHIP装置10に収容
した。
Next, examples of the present invention will be described in detail together with comparative examples. <Example 1> As shown in FIGS.
A silicon single crystal ingot processed into a block having a diameter of 154 mm and a height of 100 mm was used.
The single crystal block 12 was housed in a HIP device 10 having a processing diameter of 200 mm and a height of 200 mm. In the HIP device 10, a heater 14 made of molybdenum is installed.
The maximum operating temperature of this HIP device 10 is 1723K.
(Absolute temperature) and can be pressurized up to a maximum of 200 MPa. Argon gas was used as the gas of the pressure medium. On the other hand, a quartz plate 26 is laid inside the container body 23,
The ingot 12 was placed on the quartz plate 26. In this state, the average diameter of the gap between the container body 23 and the ingot 12 and the upper surface of the ingot 12 is 0.5 to 2.0.
mm of polysilicon particles 27, the lid 24
The opening 23a of the container body 23 was closed. Next, the container 13 is placed on the support 19 and the lower lid 1
8 was raised to accommodate the ingot 12 in the HIP device 10.

【0025】次にHIP装置10内部を真空引きし、ア
ルゴンガスによる置換操作を約1MPaで2回行って前
処理とした。更にアルゴンガスを注入してHIP装置1
0内を100MPaに加圧すると同時にヒータ14に通
電して絶対温度で1523K[シリコン単結晶の融点
(1690K)の0.901倍の温度]に加熱昇温し、
この状態に4時間保持した。保持終了後、装置10内温
度が573K(絶対温度)以下になるまで装置10内で
自然冷却(徐冷)した後、アルゴンガスを放出して大気
圧状態に戻し、インゴット12を取出した。このインゴ
ット12を実施例1とした。
Next, the inside of the HIP device 10 was evacuated, and the replacement operation with argon gas was performed twice at about 1 MPa to perform pretreatment. Further, the HIP device 1 is injected with argon gas.
At the same time, the inside of the chamber is pressurized to 100 MPa and the heater 14 is energized and heated to an absolute temperature of 1523 K [0.901 times the melting point of silicon single crystal (1690 K)].
This state was maintained for 4 hours. After the holding, the device 10 was naturally cooled (gradually cooled) in the device 10 until the temperature in the device 10 became 573 K (absolute temperature) or lower, and then the argon gas was released to return to the atmospheric pressure state, and the ingot 12 was taken out. This ingot 12 was used as Example 1.

【0026】<実施例2>ヒータに通電して絶対温度で
1573K[シリコン単結晶の融点(1690K)の
0.931倍の温度]に加熱昇温したことを除いて、実
施例1と同様にインゴットを熱処理した。このインゴッ
トを実施例2とした。 <比較例1>コンテナ本体とインゴットとの間の隙間及
びインゴットの上面にポリシリコン粒子を充填しなかっ
たことを除いて、実施例1と同様にインゴットを熱処理
した。このインゴットを比較例1とした。 <比較例2>ヒータに通電して絶対温度で1573K
[シリコン単結晶の融点(1690K)の0.931倍
の温度]に加熱昇温したことを除いて、比較例1と同様
にインゴットを熱処理した。このインゴットを比較例2
とした。
<Example 2> As in Example 1, except that the heater was heated to an absolute temperature of 1573 K [0.931 times the melting point of silicon single crystal (1690 K)] by energizing the heater. The ingot was heat treated. This ingot was designated as Example 2. <Comparative Example 1> The ingot was heat-treated in the same manner as in Example 1, except that the gap between the container body and the ingot and the upper surface of the ingot were not filled with polysilicon particles. This ingot was used as Comparative Example 1. <Comparative Example 2> 1573K in absolute temperature by energizing the heater
The ingot was heat-treated in the same manner as in Comparative Example 1, except that the temperature was raised to [the temperature of 0.931 times the melting point of silicon single crystal (1690 K)]. Comparative Example 2
And

【0027】<比較試験及び評価>実施例1及び2と比
較例1及び2のインゴットの中心部及び外周面の重金属
汚染レベルを原子吸光分析装置(AAS分析装置)によ
り分析した。その結果を表1に示す。なお、表1におい
てD.L.とは上記分析装置の検出下限値(1.0×1
12atoms/cm3)未満の値であったことを示す。
<Comparative Tests and Evaluations> The ingots of Examples 1 and 2 and Comparative Examples 1 and 2 were analyzed for the level of heavy metal contamination on the central portion and the outer peripheral surface thereof using an atomic absorption spectrometer (AAS analyzer). Table 1 shows the results. Note that in Table 1, D.C. L. Means the lower limit of detection (1.0 × 1
0 12 atoms / cm 3 ).

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、比較例1及び2
ではインゴットの外周面で極めて高い重金属汚染レベル
を示し、インゴットの中心部においてもFeやCuによ
る汚染が検出された。これに対し、実施例1及び2では
インゴットの中心部ではCr,Fe,Ni及びCuの全
てが検出下限値未満であり、またインゴットの外周面で
もCrやCuが僅かに検出されたのみであった。
As is clear from Table 1, Comparative Examples 1 and 2
In this example, an extremely high level of heavy metal contamination was shown on the outer peripheral surface of the ingot, and contamination by Fe or Cu was detected also in the center of the ingot. On the other hand, in Examples 1 and 2, all of Cr, Fe, Ni and Cu were less than the lower detection limit at the center of the ingot, and only a small amount of Cr or Cu was detected on the outer peripheral surface of the ingot. Was.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、単
結晶体をこの単結晶体と同一材質の板部材上に載せてカ
ーボン又はSiC製のコンテナに収容し、コンテナ内に
単結晶体と同一材質で純度99.999999999%
以上の多結晶粒子を充填した状態で、単結晶体の安定な
雰囲気下、0.2〜304MPaの圧力で単結晶体の絶
対温度による融点の0.85倍以上の温度で5分間〜2
0時間、熱間等方圧加圧処理を行った後に徐冷したの
で、単結晶体の表面及び内部に存在する空孔型グローイ
ン欠陥等の格子欠陥が押しつぶされ、単結晶体を構成し
ている原子が再配列して、空孔型グローイン欠陥等の格
子欠陥が消滅するか、或いは分散した高品質の単結晶体
が得られる優れた効果を有する。
As described above, according to the present invention, a single crystal is placed on a plate member made of the same material as the single crystal and housed in a carbon or SiC container, and the single crystal is placed in the container. Purity 99.999999999% with the same material as the body
In a state where the polycrystalline particles are packed, under a stable atmosphere of the single crystal, at a pressure of 0.2 to 304 MPa, at a temperature 0.85 times or more the melting point of the single crystal by the absolute temperature for 5 minutes to 2 minutes
0 hours, since it was slowly cooled after performing the hot isostatic pressing process, lattice defects such as vacancy-type glow-in defects existing on the surface and inside of the single crystal body were crushed, forming a single crystal body Atoms are rearranged to eliminate lattice defects such as vacancy-type glow-in defects, or an excellent effect of obtaining a dispersed high-quality single crystal.

【0031】この結果、LSI製造のために不可欠な基
板材料を欠陥を含まない高品質なものとすることがで
き、不良品の発生の低減による製造歩留まりの向上、ひ
いてはLSIの製造コストの低減に大きく寄与すること
ができる。また単結晶ウェーハ製造の前段階である単結
晶インゴット製造における単結晶成長時間を長くするこ
となく高品質の単結晶体を製造することができ、特に今
後期待されている大口径のシリコンインゴットの製造に
おける単結晶成長時間の短縮、品質の確保と歩留まり向
上への寄与は極めて大きい。また単結晶体の出し入れ時
にコンテナ内に空気が混入したり、熱処理装置の構成部
品から揮発した物質がコンテナ内に流入又は発生したり
しても、上記空気や揮発物質は高温加熱されたときに多
結晶粒子によりゲッタリングされる。この結果、上記空
気や揮発物質が単結晶体表面に到達しないので、単結晶
体の表面及び内部の汚染を防止することができる。
As a result, a high-quality substrate material free from defects can be used as a substrate material indispensable for LSI manufacturing, thereby improving the manufacturing yield by reducing the occurrence of defective products, and consequently reducing the LSI manufacturing cost. It can greatly contribute. In addition, it is possible to produce a high-quality single crystal without increasing the single crystal growth time in the production of a single crystal ingot, which is a stage prior to the production of a single crystal wafer. The contribution to the reduction of the single crystal growth time, the quality assurance, and the improvement of the yield is extremely large. Also, even if air is mixed into the container when the single crystal is taken in or out, or a substance volatilized from the components of the heat treatment apparatus flows into or is generated in the container, the air or the volatile substance is heated at a high temperature. Gettered by polycrystalline particles. As a result, the air and volatile substances do not reach the surface of the single crystal, so that the surface and the inside of the single crystal can be prevented from being contaminated.

【0032】また単結晶体をこの単結晶体と同一材質の
板部材を介してカーボン又はSiC製のコンテナに収容
し、コンテナと単結晶体との間にこの単結晶体と同一材
質で純度99.999999999%以上の多結晶粒子
を充填すれば、上記と同様に単結晶体の熱処理装置への
収容時にコンテナ内に混入した空気や、ヒータやコンテ
ナ等の熱処理装置の構成部品から揮発してコンテナ内に
流入又は発生した物質は高温加熱されたときに多結晶粒
子によりゲッタリングされるため、単結晶体表面に到達
しない。この結果、上記と同様の効果が得られる。従っ
て、本発明は、近年、技術進歩が著しいレーザダイオー
ドや高速演算素子(HEMT:High Electron Mobility Tra
nsistor)の基板材料として期待されているGaAsや
InPなどのIII−V族化合物半導体や、ZnSやZnS
eなどのII−IV族化合物半導体の単結晶ウェーハの製造
にも適用が可能で、これらについても高品質の単結晶を
製造でき、この分類での技術の進展への寄与も大きいも
のと期待される。
Further, the single crystal is accommodated in a container made of carbon or SiC via a plate member made of the same material as the single crystal, and a material having the same material as the single crystal and a purity of 99 is provided between the container and the single crystal. In the same manner as described above, when the polycrystalline particles of .999999999% or more are filled, air mixed in the container when the single crystal body is accommodated in the heat treatment apparatus, or volatilized from the components of the heat treatment apparatus such as the heater and the container, and The substance flowing or generated in the inside is gettered by the polycrystalline particles when heated at a high temperature, and does not reach the surface of the single crystal. As a result, the same effect as above can be obtained. Accordingly, the present invention provides a laser diode or a high-speed arithmetic element (HEMT: High Electron Mobility Tra
III-V group compound semiconductors such as GaAs and InP, which are expected to be used as substrate materials of ZnS, ZnS and ZnS.
e can also be applied to the production of single crystal wafers of II-IV group compound semiconductors such as e. These can also produce high-quality single crystals and are expected to greatly contribute to the development of technology in this category. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施形態の単結晶体の熱処理装置の縦断
面図。
FIG. 1 is a longitudinal sectional view of a single crystal heat treatment apparatus according to an embodiment of the present invention.

【図2】その熱処理装置から単結晶体を取出すために下
蓋を下降させている状態を示す図1に対応する縦断面
図。
FIG. 2 is a longitudinal sectional view corresponding to FIG. 1 and showing a state where a lower lid is lowered to take out a single crystal body from the heat treatment apparatus.

【図3】通常の単結晶成長方法により製造された一種類
の元素からなる単結晶体の構造を模式的に示した図。
FIG. 3 is a diagram schematically showing a structure of a single crystal body composed of one kind of element manufactured by a normal single crystal growth method.

【図4】本発明の単結晶体の熱処理方法で処理した、即
ちHIP装置で熱処理した後の一種類の元素からなる単
結晶体の構造を模式的に示した図。
FIG. 4 is a diagram schematically showing the structure of a single crystal made of one kind of element after being processed by the heat treatment method for a single crystal according to the present invention, that is, after heat treatment by a HIP apparatus.

【符号の説明】[Explanation of symbols]

10 HIP装置(熱処理装置) 11 圧力容器 12 シリコン単結晶体(単結晶体) 13 コンテナ 14 ヒータ 26 石英板(板部材) 27 ポリシリコン粒子(多結晶粒子) Reference Signs List 10 HIP device (heat treatment device) 11 Pressure vessel 12 Silicon single crystal (single crystal) 13 Container 14 Heater 26 Quartz plate (plate member) 27 Polysilicon particles (polycrystalline particles)

フロントページの続き (72)発明者 田中 英夫 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社シリコン研究センター 内 (72)発明者 中田 裕二 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社シリコン研究センター 内 (72)発明者 藤川 隆男 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 Fターム(参考) 4G077 AA02 AA10 BA04 BE32 BE34 BE44 BE46 FE02 FE08 FE10 FE17 HA12 Continued on the front page (72) Inventor Hideo Tanaka 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Silicon Research Center (72) Inventor Yuji Nakata 1-297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materials Corporation Inside the Silicon Research Center (72) Inventor Takao Fujikawa 2-3-1, Shinhama, Arai-machi, Takasago-shi, Hyogo F-term in Kobe Steel, Ltd. Takasago Works (reference) 4G077 AA02 AA10 BA04 BE32 BE34 BE44 BE46 FE02 FE08 FE10 FE17 HA12

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 単結晶体(12)をこの単結晶体(12)と同一
材質の板部材(26)上に載せてカーボン又はSiC製のコ
ンテナ(13)に収容し、前記コンテナ(13)内に前記単結晶
体(12)と同一材質で純度99.999999999%以
上の多結晶粒子(27)を充填した状態で、前記単結晶体(1
2)の安定な雰囲気下、0.2〜304MPaの圧力で前
記単結晶体(12)の絶対温度による融点の0.85倍以上
の温度で5分間〜20時間、熱間等方圧加圧処理を行っ
た後に徐冷することを特徴とする単結晶体の熱処理方
法。
1. A single crystal (12) is placed on a plate member (26) of the same material as the single crystal (12) and housed in a container (13) made of carbon or SiC. In the state where polycrystalline particles (27) having the same material as that of the single crystal body (12) and having a purity of 99.999999999% or more are filled, the single crystal body (1) is filled.
2) Under a stable atmosphere of 2), at a pressure of 0.2 to 304 MPa, at a temperature of 0.85 times or more the melting point of the single crystal body (12) based on the absolute temperature for 5 minutes to 20 hours, hot isostatic pressing A heat treatment method for a single crystal body, which comprises gradually cooling after performing the treatment.
【請求項2】 多結晶粒子の平均粒径が0.3〜3.0
mmである請求項1記載の単結晶体の熱処理方法。
2. The polycrystalline particles have an average particle size of 0.3 to 3.0.
2. The heat treatment method for a single crystal according to claim 1, wherein
【請求項3】 単結晶体の安定な雰囲気が不活性ガス雰
囲気又は高蒸気圧元素の蒸気を含む雰囲気である請求項
1又は2記載の単結晶体の熱処理方法。
3. The heat treatment method for a single crystal according to claim 1, wherein the stable atmosphere of the single crystal is an inert gas atmosphere or an atmosphere containing a vapor of a high vapor pressure element.
【請求項4】 圧力が10〜200MPaである請求項
1ないし3いずれか記載の単結晶体の熱処理方法。
4. The method for heat treatment of a single crystal according to claim 1, wherein the pressure is 10 to 200 MPa.
【請求項5】 単結晶体がシリコン単結晶,GaAs単
結晶,InP単結晶,ZnS単結晶若しくはZnSe単
結晶のインゴット又はこのインゴットを切断して得られ
たブロック若しくはウェーハである請求項1ないし4い
ずれか記載の単結晶体の熱処理方法。
5. The single crystal body is a silicon single crystal, GaAs single crystal, InP single crystal, ZnS single crystal or ZnSe single crystal ingot, or a block or wafer obtained by cutting the ingot. The heat treatment method for a single crystal according to any of the above.
【請求項6】 請求項1ないし5いずれか記載の方法に
より熱処理された単結晶体。
6. A single crystal which has been heat-treated by the method according to claim 1. Description:
【請求項7】 0.2〜304MPaの圧力のガスを導
入可能な筒状の圧力容器(11)と、 前記圧力容器(11)内に挿入されかつ内部に単結晶体(12)
が収容されたカーボン又はSiC製のコンテナ(13)と、 前記コンテナ(13)の外周面を所定の間隔をあけて囲み前
記単結晶体(12)をこの単結晶体(12)の絶対温度による融
点の0.85倍以上の温度まで加熱可能なヒータ(14)と
を備えた単結晶体の熱処理装置であって、 前記単結晶体(12)がこの単結晶体(12)と同一材質の板部
材(26)を介して前記コンテナ(13)に収容され、 前記コンテナ(13)と前記単結晶体(12)との間にこの単結
晶体(12)と同一材質で純度99.999999999%
以上の多結晶粒子(27)が充填されたことを特徴とする単
結晶体の熱処理装置。
7. A cylindrical pressure vessel (11) into which a gas having a pressure of 0.2 to 304 MPa can be introduced, and a single crystal (12) inserted into and inside the pressure vessel (11).
And a container (13) made of carbon or SiC, in which the single crystal (12) is surrounded by a predetermined interval at an outer peripheral surface of the container (13) according to an absolute temperature of the single crystal (12). A single crystal heat treatment apparatus comprising a heater (14) capable of heating to a temperature of at least 0.85 times the melting point, wherein the single crystal (12) is made of the same material as the single crystal (12). The container (13) is accommodated in the container (13) via a plate member (26). Between the container (13) and the single crystal (12), the same material as that of the single crystal (12) is used. The purity is 99.999999999%.
A heat treatment apparatus for a single crystal, characterized by being filled with the polycrystalline particles (27).
【請求項8】 多結晶粒子の平均粒径が0.3〜3.0
mmである請求項7記載の単結晶体の熱処理装置。
8. The polycrystalline particles have an average particle size of 0.3 to 3.0.
The heat treatment apparatus for a single crystal according to claim 7, wherein
【請求項9】 単結晶体の安定な雰囲気が不活性ガス雰
囲気又は高蒸気圧元素の蒸気を含む雰囲気である請求項
7又は8記載の単結晶体の熱処理装置。
9. The heat treatment apparatus for a single crystal according to claim 7, wherein the stable atmosphere of the single crystal is an inert gas atmosphere or an atmosphere containing a vapor of a high vapor pressure element.
【請求項10】 圧力が10〜200MPaである請求
項7ないし9いずれか記載の単結晶体の熱処理装置。
10. The heat treatment apparatus for a single crystal according to claim 7, wherein the pressure is 10 to 200 MPa.
【請求項11】 単結晶体がシリコン単結晶,GaAs
単結晶,InP単結晶,ZnS単結晶若しくはZnSe
単結晶のインゴット又はこのインゴットを切断して得ら
れたブロック若しくはウェーハである請求項7ないし1
0いずれか記載の単結晶体の熱処理装置。
11. The single crystal body is a silicon single crystal, GaAs
Single crystal, InP single crystal, ZnS single crystal or ZnSe
A single crystal ingot or a block or a wafer obtained by cutting the ingot.
0. A heat treatment apparatus for a single crystal according to any one of the above.
JP33916899A 1999-11-30 1999-11-30 Heat treatment method and heat treatment apparatus for single crystal Expired - Fee Related JP3852545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33916899A JP3852545B2 (en) 1999-11-30 1999-11-30 Heat treatment method and heat treatment apparatus for single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33916899A JP3852545B2 (en) 1999-11-30 1999-11-30 Heat treatment method and heat treatment apparatus for single crystal

Publications (2)

Publication Number Publication Date
JP2001158700A true JP2001158700A (en) 2001-06-12
JP3852545B2 JP3852545B2 (en) 2006-11-29

Family

ID=18324894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33916899A Expired - Fee Related JP3852545B2 (en) 1999-11-30 1999-11-30 Heat treatment method and heat treatment apparatus for single crystal

Country Status (1)

Country Link
JP (1) JP3852545B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003056621A1 (en) * 2001-12-26 2005-05-12 コマツ電子金属株式会社 Defect elimination method of single crystal silicon and single crystal silicon
JP2010064919A (en) * 2008-09-10 2010-03-25 Showa Denko Kk Method for annealing silicon carbide single crystal material, silicon carbide single crystal wafer, and silicon carbide semiconductor
CN102220642A (en) * 2011-04-30 2011-10-19 常州天合光能有限公司 Method for improving conversion efficiency of polysilicon photovoltaic cells
JP2014535171A (en) * 2011-10-27 2014-12-25 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Process to smooth the surface by heat treatment
JP2016127131A (en) * 2014-12-26 2016-07-11 富士通株式会社 Optical semiconductor device and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003056621A1 (en) * 2001-12-26 2005-05-12 コマツ電子金属株式会社 Defect elimination method of single crystal silicon and single crystal silicon
JP4807767B2 (en) * 2001-12-26 2011-11-02 Sumco Techxiv株式会社 Defect elimination method of single crystal silicon
JP2010064919A (en) * 2008-09-10 2010-03-25 Showa Denko Kk Method for annealing silicon carbide single crystal material, silicon carbide single crystal wafer, and silicon carbide semiconductor
CN102220642A (en) * 2011-04-30 2011-10-19 常州天合光能有限公司 Method for improving conversion efficiency of polysilicon photovoltaic cells
JP2014535171A (en) * 2011-10-27 2014-12-25 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Process to smooth the surface by heat treatment
JP2016127131A (en) * 2014-12-26 2016-07-11 富士通株式会社 Optical semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP3852545B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
KR101340003B1 (en) Silicon wafer manufacturing method and silicon wafer manufactured by the method
KR100541882B1 (en) Silicon semiconductor wafer and method for producing the same
JP3899725B2 (en) Defect removal method for single crystal
KR101102336B1 (en) Silicon wafer and method for manufacturing the same
KR20010085752A (en) Silicon on insulator structure from low defect density single crystal silicon
EP1926134A1 (en) Method for manufacturing silicon epitaxial wafers
KR100971163B1 (en) Annealed wafer and annealed wafer manufacturing method
US7875116B2 (en) Silicon single crystal producing method, annealed wafer, and method of producing annealed wafer
JP3989122B2 (en) Method for manufacturing silicon semiconductor substrate
US7033962B2 (en) Methods for manufacturing silicon wafer and silicone epitaxial wafer, and silicon epitaxial wafer
JP2002145697A (en) Single crystal silicon wafer, ingot and manufacturing method thereof
KR100885762B1 (en) Epitaxial Wafer and Production Method Therefor
JP3614019B2 (en) Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
KR101001981B1 (en) Silicon Wafer for Epitaxial Growth, Epitaxial Wafer, and Its Manufacturing Method
JP2005142434A (en) Silicon single crystal wafer and method for manufacturing same
US6238478B1 (en) Silicon single crystal and process for producing single-crystal silicon thin film
JP2001158700A (en) Method and apparatus for heat-treating single crystal
KR100445190B1 (en) Manufacturing method of silicon single crystal ingot
JP2000203999A (en) Semiconductor silicon wafer and its production
JP2009218620A (en) Method of manufacturing silicon wafer
JP7282019B2 (en) Silicon wafer and its heat treatment method
US20230243069A1 (en) Method for producing semiconductor wafers
JP3452042B2 (en) Silicon wafer manufacturing method
KR20030043387A (en) Manufacturing method of single crystal silicon wafer
JP2001240490A (en) Semiconductor silicon wafer manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3852545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees