JP2001155320A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JP2001155320A
JP2001155320A JP33746799A JP33746799A JP2001155320A JP 2001155320 A JP2001155320 A JP 2001155320A JP 33746799 A JP33746799 A JP 33746799A JP 33746799 A JP33746799 A JP 33746799A JP 2001155320 A JP2001155320 A JP 2001155320A
Authority
JP
Japan
Prior art keywords
magnetic
oxygen concentration
film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33746799A
Other languages
Japanese (ja)
Inventor
Masahiko Sugiyama
正彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP33746799A priority Critical patent/JP2001155320A/en
Publication of JP2001155320A publication Critical patent/JP2001155320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high output magnetic recording medium for a user. SOLUTION: This magnetic recording medium is obtained by forming a magnetic film on a nonmagnetic substrate while introducing oxygen by an oblique deposition method so that the ratio of the oxygen concentration A in the middle layer of the magnetic film to the oxygen concentration B on the surface satisfies the expression: 0.55<A/B<0.85.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸素を導入して斜方
蒸着法により作成された磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium prepared by oblique deposition by introducing oxygen.

【0002】[0002]

【従来技術】磁気記録媒体である磁気テ−プの記録密度
は近年急速に高密度化が図られている。この過程で、磁
気テ−プは高抗磁力、高磁束密度を有する酸化鉄テー
プ、メタルテ−プ、及び薄膜テ−プへと高性能なものに
移行している。この磁気テ−プの応用として、VTR分
野では今後、デジタル化、高精細化を達成するために、
特に薄膜テ−プが注目されている。
2. Description of the Related Art The recording density of a magnetic tape as a magnetic recording medium has been rapidly increased in recent years. In this process, the magnetic tape has shifted to a high-performance magnetic tape such as an iron oxide tape, a metal tape, and a thin film tape having a high coercive force and a high magnetic flux density. As an application of this magnetic tape, in the VTR field, in order to achieve digitization and high definition in the future,
In particular, thin film tapes have attracted attention.

【0003】この薄膜テ−プとしては斜方蒸着法により
磁性膜が膜付けされた、いわゆる蒸着テープが実用化さ
れている。これは、具体的には真空中でピアス型電子銃
を用いて、電子ビームをルツボ中のCo,CoNiなど
の磁性材料に照射して、これらの材料を溶融、蒸発さ
せ、酸素を導入しながら、PET(ポリエチレンテレフ
タレート)、PEN(ポリエチレンナフタレート)、P
I(ポリイミド)、PA(ポリアミド)などのベースフ
ィルム上にCoO、CoNiOよりなる薄膜を膜付けす
る。これ以外にはFe、Ni等の磁性金属やFeCo、
CoNi、FeCoNi、CoCr、FeCoCr、C
oNiCr、FeCoNiCr等の合金或いは金属酸化
物等を用いることができる。
As a thin film tape, a so-called evaporation tape on which a magnetic film is formed by an oblique evaporation method has been put to practical use. Specifically, a magnetic material such as Co and CoNi in a crucible is irradiated with an electron beam in a vacuum using a pierce-type electron gun to melt and evaporate these materials and introduce oxygen. , PET (polyethylene terephthalate), PEN (polyethylene naphthalate), P
A thin film made of CoO or CoNiO is formed on a base film such as I (polyimide) or PA (polyamide). Other than this, magnetic metals such as Fe and Ni, FeCo,
CoNi, FeCoNi, CoCr, FeCoCr, C
An alloy such as oNiCr, FeCoNiCr, or a metal oxide can be used.

【0004】この斜方蒸着法を使用した、一般的な斜方
蒸着法装置を図3に示す。図3において、真空槽1内
に、巻出しロール2、巻取りロール3、ガイドロール
4,5及び冷却キャンロール6が配置されており、これ
らのロール間に非磁性基板(以下、ベ−スフィルムと記
す)7が巻き回され、巻出しロール2から巻取りロール
3に至るまで図中矢印方向に走行する。冷却キャンロー
ル6の内部には、冷却装置が配置され、上記ベ−スフィ
ルム7への蒸着時に、このベ−スフィルム7の温度上昇
による変形等を防止している。
FIG. 3 shows a general oblique vapor deposition apparatus using the oblique vapor deposition method. In FIG. 3, an unwinding roll 2, a take-up roll 3, guide rolls 4, 5 and a cooling can roll 6 are arranged in a vacuum chamber 1, and a non-magnetic substrate (hereinafter referred to as a base) is provided between these rolls. The film 7 is wound and travels from the unwinding roll 2 to the winding roll 3 in the direction of the arrow in the figure. A cooling device is disposed inside the cooling can roll 6 to prevent the base film 7 from being deformed due to a rise in temperature during the vapor deposition on the base film 7.

【0005】また、冷却キャンロール6の下方には磁性
材料9を収容したルツボ8が配置され、真空槽1の側壁
にはこの磁性材料9を溶融、蒸発させるための加熱装置
として、例えばピアス型電子銃10が設置されている。
ベ−スフィルム7を冷却キャンロール6に巻き回してい
る間に、ルツボ9から蒸発した蒸発磁性材料9aのベ−
スフィルム7への最大入射角θmaxを入射角規制マス
ク11により、最小入射角θminを入射角規制マスク
12により、それぞれ所定の角度に設定して、ベ−スフ
ィルム7にルツボ9から蒸発した蒸発磁性材料9aを付
着させ、磁性膜を膜付する。一般に最大入射角θmax
=90°、最小入射角θmin=40°で磁性膜をベ−
スフィルム7上に膜付けしている。
[0005] A crucible 8 containing a magnetic material 9 is disposed below the cooling can roll 6. A heating device for melting and evaporating the magnetic material 9 is provided on the side wall of the vacuum chamber 1, for example, a pierce type. An electron gun 10 is provided.
While the base film 7 is wound around the cooling can roll 6, the base of the evaporated magnetic material 9a evaporated from the crucible 9 is formed.
The maximum incident angle .theta.max to the film 7 is set to a predetermined angle by the incident angle restricting mask 11 and the minimum incident angle .theta.min is set to the predetermined angle by the incident angle restricting mask 12, and the base film 7 evaporates from the crucible 9 to evaporate. The magnetic material 9a is attached, and a magnetic film is formed. Generally, the maximum incident angle θmax
= 90 ° and minimum incident angle θmin = 40 °
The film is applied on the sfilm 7.

【0006】この際、斜方蒸着により膜付けされた磁性
膜の粒界は自己陰影効果により原子の堆積しない空隙に
なる。このため粒子は隣接する粒子間で交換相互作用が
働かない磁気的孤立状態となり高Hcが得られる。ま
た、冷却キャンロール6と入射角規制マスク12との間
で最小入射角θminの近傍に設置したノズル16より
酸素を導入して、蒸発磁性材料9aと酸素を反応させる
ことにより磁性膜の粒界を非磁性にし、孤立化を促進さ
せて更にHcを高めるている。また酸素により粒子が微
細化するため、低ノイズ化も図られる。
At this time, the grain boundaries of the magnetic film formed by oblique vapor deposition become voids where no atoms are deposited due to the self-shading effect. For this reason, the particles are in a magnetically isolated state in which exchange interaction does not work between adjacent particles, and high Hc is obtained. Further, oxygen is introduced from a nozzle 16 installed near the minimum incident angle θmin between the cooling can roll 6 and the incident angle regulating mask 12, and the evaporated magnetic material 9a and oxygen react with each other to form a grain boundary of the magnetic film. Is made non-magnetic to promote isolation and further increase Hc. In addition, since the particles are made finer by oxygen, noise can be reduced.

【0007】また、電子ビーム13の制御は、ルツボ8
に近接して設置され、電子ビ−ム13の軌道で偏向磁界
を印加する偏向マグネット14と電子銃内の偏向マグネ
ット15により行われる。電子ビーム13の照射位置は
ルツボ8の中央部で、ベ−スフィルム7の幅方向に所定
の周期で、走査され、ルツボ8内の磁性材料9を溶解
し、蒸発させる。
The control of the electron beam 13 is controlled by the crucible 8.
This is performed by a deflecting magnet 14 for applying a deflecting magnetic field in the trajectory of the electron beam 13 and a deflecting magnet 15 in the electron gun. The irradiation position of the electron beam 13 is at the center of the crucible 8 and is scanned at a predetermined cycle in the width direction of the base film 7 to melt and evaporate the magnetic material 9 in the crucible 8.

【0008】[0008]

【発明が解決しょうとする課題】ところで、磁気記録媒
体のベ−スフィルム7上に膜付けした磁性膜の評価は、
一般に抗磁力Hc、磁化Ms、角形比Rs、残留磁束密
度Brなどにより行われるが、酸素を導入して斜方蒸着
法により作成された磁性膜は、同じ磁気特性でも、再生
出力が異なり、良好な出力を有する磁性膜の媒体特性条
件が不明で、再現性よく高出力を有する磁気記録を得る
ことが難しかった。
The evaluation of the magnetic film formed on the base film 7 of the magnetic recording medium is as follows.
Generally, it is performed by the coercive force Hc, the magnetization Ms, the squareness ratio Rs, the residual magnetic flux density Br, and the like. The medium characteristic conditions of a magnetic film having a high output are unknown, and it has been difficult to obtain a magnetic recording having a high output with good reproducibility.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、鋭意研究した結果、斜方蒸着法により酸素を導入
しながら非磁性基板上に膜付けした磁性膜の中層酸素濃
度と表面酸素濃度の割合が特定の関係を満たす磁気記録
媒体が高出力を示すことを見出した。
Means for Solving the Problems To achieve the above object, as a result of diligent research, it was found that the oxygen concentration of the middle layer and the surface oxygen concentration of a magnetic film formed on a non-magnetic substrate while introducing oxygen by an oblique deposition method. It has been found that a magnetic recording medium whose density ratio satisfies a specific relationship exhibits high output.

【0010】即ち、斜方蒸着法により酸素を導入しなが
ら非磁性基板上に磁性膜を膜付けした磁気記録媒体にお
いて、前記磁性膜の中層酸素濃度Aと、表面酸素濃度B
との比率が、0.55<A/B<0.85の関係を満た
すことを特徴とする磁気記録媒体を提供するものであ
る。
That is, in a magnetic recording medium in which a magnetic film is formed on a non-magnetic substrate while oxygen is introduced by oblique deposition, a middle layer oxygen concentration A and a surface oxygen concentration B
Satisfies the relationship of 0.55 <A / B <0.85.

【0011】[0011]

【発明の実施の形態】以下に本発明に係る磁気記録媒体
の一実施例を図1乃至図3を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a magnetic recording medium according to the present invention will be described below in detail with reference to FIGS.

【0012】本発明に係る磁気記録媒体では先に説明し
た図3に示した斜方蒸着装置により酸素を導入しながら
非磁性基板(ベ−スフィルム)7上に磁性膜Mを膜付け
した後の状態で、この磁性膜Mの中層酸素濃度と表面酸
素濃度の割合は以下のように評価した。
In the magnetic recording medium according to the present invention, after the magnetic film M is formed on the non-magnetic substrate (base film) 7 while introducing oxygen by the oblique deposition apparatus shown in FIG. In this state, the ratio of the middle oxygen concentration to the surface oxygen concentration of the magnetic film M was evaluated as follows.

【0013】ベ−スフィルム7上に膜付けした磁性膜M
のESCAによる深さ方向の酸素濃度分布を図1に示
す。磁性膜Mの深さ方向の酸素濃度分布から、図1のよ
うに磁性膜Mを表層、中層に分けた場合の表層及び中層
の酸素濃度を中層酸素濃度Aと、表面酸素濃度Bとし
た。
A magnetic film M formed on the base film 7
FIG. 1 shows the oxygen concentration distribution in the depth direction by ESCA. From the oxygen concentration distribution in the depth direction of the magnetic film M, the oxygen concentration of the surface layer and the intermediate layer when the magnetic film M was divided into the surface layer and the intermediate layer as shown in FIG.

【0014】表層:酸素が最も多い最表面から内部で酸
素濃度が一定になるまでの部分 中層:酸素濃度が一定の部分 酸素濃度は磁性膜Mが酸素とCoのみで構成されている
と仮定して求めた値である。このため最表面、裏面では
Cが検出されるため最表面酸素濃度、表面酸素濃度は図
1のESCAデプスプロファイルの酸素濃度値ではな
い。そこで、最表面で検出される酸素は、表面に付着す
るコンタミに含まれる酸素のため、出力への影響が小さ
いと思われる。これから、表層の酸素濃度は最表面より
約50オングストロームほどエッチングした部分の酸素
濃度を表面酸素濃度として評価した。
Surface layer: the portion from the outermost surface with the largest amount of oxygen to the inside where the oxygen concentration becomes constant. Middle layer: the portion where the oxygen concentration is constant. The oxygen concentration is based on the assumption that the magnetic film M is composed of only oxygen and Co. It is the value obtained by For this reason, since C is detected on the outermost surface and the rear surface, the outermost surface oxygen concentration and the surface oxygen concentration are not the oxygen concentration values in the ESCA depth profile of FIG. Therefore, it is considered that the oxygen detected on the outermost surface has little influence on the output because it is included in the contamination adhering to the surface. From this, as for the oxygen concentration of the surface layer, the oxygen concentration of the portion etched by about 50 Å from the outermost surface was evaluated as the surface oxygen concentration.

【0015】<実施例及び比較例>図3に示した斜方蒸
着装置により斜方蒸着法によりCoを蒸発させ、ノズル
より酸素を導入して、厚み約2000オングストローム
のCoO磁性膜を厚さ6μmのPETフィルム上に膜付
けした。磁性膜上にフッ素系潤滑剤を厚みが約20オン
グストロームになるように形成し、1/4インチ幅にス
リットした。なお、成膜時のCo蒸気の入射角、ルツボ
位置、酸素導入量、ガスノズル位置等を変化させて中層
酸素濃度と表面酸素濃度の割合を変化させた磁気テープ
を作成し、比較した。
Example and Comparative Example Co was evaporated by the oblique evaporation method using the oblique evaporation apparatus shown in FIG. 3, oxygen was introduced from the nozzle, and a CoO magnetic film having a thickness of about 2000 Å was formed to a thickness of 6 μm. On a PET film. A fluorine-based lubricant was formed on the magnetic film so as to have a thickness of about 20 angstroms, and slit to a width of 1/4 inch. In addition, magnetic tapes in which the ratio of the middle layer oxygen concentration to the surface oxygen concentration was changed by changing the incident angle of Co vapor, the crucible position, the amount of introduced oxygen, the position of the gas nozzle, and the like during film formation were prepared and compared.

【0016】[0016]

【表1】 上記手法にて作成した磁気テープの磁性膜に対する中層
酸素濃度、表面酸素濃度、中層酸素濃度と表面酸素濃度
の割合、磁気特性、及び再生出力を表1に示す。ここ
で、実施例1に示す磁気テープと比較例1に示す磁気テ
ープ、実施例2に示す磁気テープと比較例2に示す磁気
テープ、実施例3に示す磁気テープと比較例4に示す磁
気テープはそれぞれ似通った磁気特性を有している。
[Table 1] Table 1 shows the middle layer oxygen concentration, the surface oxygen concentration, the ratio of the middle layer oxygen concentration to the surface oxygen concentration, the magnetic characteristics, and the reproduction output with respect to the magnetic film of the magnetic tape prepared by the above method. Here, the magnetic tape of Example 1 and the magnetic tape of Comparative Example 1, the magnetic tape of Example 2 and the magnetic tape of Comparative Example 2, the magnetic tape of Example 3 and the magnetic tape of Comparative Example 4 Have similar magnetic properties.

【0017】このような実施例1〜3及び比較例1〜4
の磁気テープのベースフィルムに膜付けした磁性膜の中
層酸素濃度と表面酸素濃度の比率と再生出力の関係を図
2に示す。この際、再生出力はヘッド相対速度10.2
m/secで、ギャップ長0.22μmのミグヘッドを
用いて、21MHZの再生出力により評価した。出力は
比較例1の出力を基準とした値である。同図によれば、
中層酸素濃度と表面酸素濃度の比率が、0.55>中層
酸素濃度/表面酸素濃度>0.85となった場合に良好
な再生出力が得られることがわかる。
Examples 1 to 3 and Comparative Examples 1 to 4
FIG. 2 shows the relationship between the ratio of the middle oxygen concentration and the surface oxygen concentration of the magnetic film formed on the base film of the magnetic tape and the reproduction output. At this time, the reproduction output was a relative head speed of 10.2.
Using a MIG head having a gap length of 0.22 μm at m / sec, evaluation was made with a reproduction output of 21 MHZ. The output is a value based on the output of Comparative Example 1. According to FIG.
It can be seen that good reproduction output is obtained when the ratio of the middle layer oxygen concentration to the surface oxygen concentration is 0.55> middle layer oxygen concentration / surface oxygen concentration> 0.85.

【0018】[0018]

【発明の効果】以上詳述したように、実施例1に示す磁
気テープと比較例1に示す磁気テープとは磁気特性がほ
ぼ同等であるが、中層酸素濃度と表面酸素濃度との比率
が異なり、本発明で示された比率に該当する実施例1の
方が高出力を得ることができる。同様に実施例2及び実
施例3に示す磁気テープはそれぞれ比較例2及び比較例
4と比べて高出力を得ることができる。従って、本発明
に係る磁気記録媒体によれば、磁性層の中層酸素濃度と
表面酸素濃度の比率を特定の範囲とすることで、磁気特
性では判明できなかった高出力の磁気記録媒体を使用者
に提供できるという効果を奏する。
As described in detail above, the magnetic tape shown in Example 1 and the magnetic tape shown in Comparative Example 1 have almost the same magnetic properties, but differ in the ratio between the middle layer oxygen concentration and the surface oxygen concentration. In the first embodiment, which corresponds to the ratio shown in the present invention, a higher output can be obtained. Similarly, the magnetic tapes shown in Example 2 and Example 3 can obtain higher output as compared with Comparative Example 2 and Comparative Example 4, respectively. Therefore, according to the magnetic recording medium of the present invention, by setting the ratio of the middle layer oxygen concentration to the surface oxygen concentration in the magnetic layer to a specific range, the user can use a high-output magnetic recording medium that cannot be determined by magnetic characteristics. It has the effect that it can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベ−スフィルム上に膜付けした磁性膜のESC
Aによる深さ方向の酸素濃度分布を示した図である。
FIG. 1 ESC of a magnetic film deposited on a base film
FIG. 2 is a diagram showing an oxygen concentration distribution in a depth direction by A.

【図2】ベースフィルムに膜付けした磁性膜の中層酸素
濃度と表面酸素濃度の比率と再生出力の関係を示した図
である。
FIG. 2 is a diagram showing a relationship between a ratio of a middle oxygen concentration and a surface oxygen concentration of a magnetic film formed on a base film and a reproduction output.

【図3】一般的な斜方蒸着法装置を示した図である。FIG. 3 is a diagram illustrating a general oblique deposition apparatus.

【符号の説明】[Explanation of symbols]

7 非磁性基板(ベ−スフィルム) M 磁性膜 7 Non-magnetic substrate (base film) M Magnetic film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】斜方蒸着法により酸素を導入しながら非磁
性基板上に磁性膜を膜付けした磁気記録媒体において、
前記磁性膜の中層酸素濃度Aと、表面酸素濃度Bとの比
率が、0.55<A/B<0.85の関係を満たすこと
を特徴とする磁気記録媒体。
1. A magnetic recording medium having a magnetic film formed on a non-magnetic substrate while introducing oxygen by oblique vapor deposition.
A magnetic recording medium, wherein the ratio between the middle oxygen concentration A and the surface oxygen concentration B of the magnetic film satisfies the relationship of 0.55 <A / B <0.85.
JP33746799A 1999-11-29 1999-11-29 Magnetic recording medium Pending JP2001155320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33746799A JP2001155320A (en) 1999-11-29 1999-11-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33746799A JP2001155320A (en) 1999-11-29 1999-11-29 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2001155320A true JP2001155320A (en) 2001-06-08

Family

ID=18308926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33746799A Pending JP2001155320A (en) 1999-11-29 1999-11-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2001155320A (en)

Similar Documents

Publication Publication Date Title
JP2001155320A (en) Magnetic recording medium
EP0468488A1 (en) Method for making a magnetic recording medium
JP4078641B2 (en) Thin film magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0896339A (en) Magnetic recording medium
JP3687557B2 (en) Thin film magnetic tape manufacturing equipment
JP2002083420A (en) Method for manufacturing thin film magnetic tape and thin film magnetic tape
JPH07220272A (en) Production of magnetic recording medium and device therefor
JPH0451888B2 (en)
JPH09128751A (en) Production of magnetic recording medium
JP2001143236A (en) Magnetic recording medium and its manufacturing method
JPH10312537A (en) Apparatus for producing magnetic recording medium
JPH09128752A (en) Apparatus for producing magnetic recording medium and production of magnetic recording medium
JP2004039195A (en) Magnetic recording medium
JPH0550052B2 (en)
JPH08325718A (en) Film formation
JPH04248126A (en) Production of magnetic recording medium
JPH08221753A (en) Production of magnetic recording medium
JPH07113162A (en) Method and device for manufacturing thin film
JPH0799581B2 (en) Method of manufacturing magnetic recording medium and manufacturing apparatus used therefor
JPH103659A (en) Apparatus for production of magnetic recording medium and processing therefor
JPH0656650B2 (en) Magnetic recording medium
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH05166165A (en) Magnetic recording medium and production thereof
JPH0995777A (en) Vacuum deposition device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031216