JP2001152263A - Hybrid functionally gradient material and its manufacturing method - Google Patents

Hybrid functionally gradient material and its manufacturing method

Info

Publication number
JP2001152263A
JP2001152263A JP36772499A JP36772499A JP2001152263A JP 2001152263 A JP2001152263 A JP 2001152263A JP 36772499 A JP36772499 A JP 36772499A JP 36772499 A JP36772499 A JP 36772499A JP 2001152263 A JP2001152263 A JP 2001152263A
Authority
JP
Japan
Prior art keywords
particles
plate
phase
gradient
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36772499A
Other languages
Japanese (ja)
Inventor
Yoshimi Watanabe
義見 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueda Textile Science Foundation
Original Assignee
Ueda Textile Science Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueda Textile Science Foundation filed Critical Ueda Textile Science Foundation
Priority to JP36772499A priority Critical patent/JP2001152263A/en
Publication of JP2001152263A publication Critical patent/JP2001152263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a hybrid functionally gradient material in which the volumetric ratio of the plate-like reinforcing phase grains and that of the granular reinforcing phase grains in the base phase of a composite material, and the orientation of the plate-like reinforcing phase grains and the grain size of the granular reinforcing phase grains are gradient-changed by the position, respectively. SOLUTION: In the hybrid functionally gradient material, an alloy containing the plate-like reinforcing phase grains and an alloy containing the granular reinforcing phase grains are simultaneously melted and the composition gradient, the orientation and the orientation gradient of the plate-like reinforcing phase are generated by applying the centrifugal force in the temperature range where the plate-like reinforcing phase grains are in the solid phase and the granular reinforcing phase grains are melted, and then, the composition gradient and the grain size gradient of the granular reinforcing phase grains are generated through the crystallization. In this process, the volumetric ratio of the plate-like reinforcing phase grains in the base phase and the volumetric ratio of the granular reinforcing phase grains, the orientation of the plate-like reinforcing phase grains, and the grain size of the granular reinforcing phase grains are gradient-changed by the position, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合材料において
母相中の強化相Aの体積分率と強化相Bの体積分率が同
時に傾斜的に変化することを特徴とするハイブリッド傾
斜機能材料及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a hybrid functionally graded material characterized in that in a composite material, the volume fraction of the reinforcing phase A and the volume fraction of the reinforcing phase B in the parent phase simultaneously and gradiently change. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】傾斜機能材料とは、材料の設計段階で使
用条件に合わせて意図的に組成、組織、その他の機能を
積極的に変化させて、発生する熱応力や、その他の機能
を積極的に制御させた新しい材料設計概念である。傾斜
機能材料を製造するためには、材料設計に応じ、組成分
布と組織とを自由に制御できる技術が要求される。この
ような傾斜機能材料に関する従来技術の一つとして、遠
心力法による製造方法がある。
2. Description of the Related Art Functionally graded materials are intended to actively change the composition, structure and other functions intentionally in accordance with the use conditions in the design stage of the material, thereby aggressively generating the thermal stress and other functions. This is a new material design concept that is controlled in a controlled manner. In order to manufacture a functionally gradient material, a technology that can freely control the composition distribution and the structure according to the material design is required. As one of the conventional techniques relating to such a functionally gradient material, there is a manufacturing method by a centrifugal force method.

【0003】遠心力法では、安価な製造設備で、大型形
状の製品を低い製造コストで製造できる。ここで、遠心
力法とは、セラミックスあるいは第二相粒子を含む金属
溶湯に遠心力を印加し、主として金属溶湯と分散粒子と
の密度差に起因する遠心力の差により生じる移動速度差
を用いて組成傾斜を制御しようとする傾斜機能材料製造
法をさす。
According to the centrifugal force method, large-sized products can be manufactured at low manufacturing cost with inexpensive manufacturing equipment. Here, the centrifugal force method applies a centrifugal force to a molten metal containing ceramics or second phase particles, and uses a moving speed difference mainly caused by a difference in centrifugal force caused by a density difference between the molten metal and the dispersed particles. The method for producing a functionally graded material in which the composition gradient is controlled by using

【0004】[0004]

【発明が解決するための課題】遠心力法による傾斜機能
材料製造方法を分類すると2種類に分けられる。すなわ
ち、遠心力印加時に第二相粒子が固相として存在する場
合(固相法)と、第二相粒子が加熱により溶解して遠心
力印加中に晶出する場合(晶出法)とである。前者固相
法の例としてはAl−AlTi系傾斜機能材料が、後
者晶出法の例としてはAl−AlNi系傾斜機能材料
が報告されている。
The methods for producing a functionally graded material by the centrifugal force method are classified into two types. That is, the case where the second phase particles exist as a solid phase at the time of applying centrifugal force (solid phase method) and the case where the second phase particles are dissolved by heating and crystallized during the application of centrifugal force (crystallization method) is there. The former solid Al-Al 3 Ti-based FGM Examples of phase methods, examples of the latter crystallization methods have been reported Al-Al 3 Ni-based FGM is.

【0005】このうち、Al−AlTi系傾斜機能材
料は、低密度、高硬度、高融点、耐酸化性がよいAl
Ti金属間化合物を利用する特徴を有し、材料中のAl
Ti金属間化合物粒子の形状が板状のため、遠心力印
加中に板状強化相粒子の配向が認められ、体積分率の傾
斜と同時に配向度の傾斜が生じており、これらに起因し
て機械的性質の傾斜分布、機械的性質の異方性および機
械的性質の異方性の位置による変化を有するという長所
を持つ。
[0005] Of this, Al-Al 3 Ti-based FGM include low density, high hardness, high melting point, oxidation resistance is good Al 3
It has the feature of utilizing a Ti intermetallic compound,
3 Since the shape of the Ti intermetallic compound particles is plate-like, the orientation of the plate-like reinforcing phase particles is recognized during centrifugal force application, and the gradient of the degree of orientation occurs at the same time as the gradient of the volume fraction. It has the advantage of having a gradient distribution of mechanical properties, anisotropy of mechanical properties, and a change depending on the position of the anisotropy of mechanical properties.

【0006】しかしながら、市販のAl−Ti合金中の
AlTi金属間化合物粒子の体積分率が低く、また、
粒子が大きいため、遠心力印加中の粒子の移動速度が速
く、傾斜機能材料中において粒子が存在する領域と存在
しない領域の二層に分離する傾向がある。
However, the volume fraction of Al 3 Ti intermetallic compound particles in a commercially available Al—Ti alloy is low,
Since the particles are large, the moving speed of the particles during application of the centrifugal force is high, and the particles tend to be separated into two layers in the functionally gradient material, that is, a region where the particles exist and a region where the particles do not exist.

【0007】これに対して、Al−AlNi系傾斜機
能材料は、市販合金の強化相の体積分率が比較的大き
く、また、緩やかな分布勾配をもつ材料を製造しやすい
という特徴を有する。ここで、傾斜機能材料中の粒子の
形状は粒状であり、また、晶出現象を利用するため、体
積分率の傾斜と同時に粒子径の傾斜が生じており、これ
らに起因して機械的性質の傾斜分布を有する。ここで、
晶出とは溶融金属から結晶が生成することである。しか
し、AlNi金属間化合物の密度(比重)は比較的大
きいため、結果としてAl−AlNi系傾斜機能材料
の密度(比重)も大きくなってしまうという欠点があ
る。
On the other hand, the Al—Al 3 Ni-based functionally graded material has a feature that the volume fraction of the strengthening phase of a commercially available alloy is relatively large, and a material having a gentle distribution gradient is easily produced. . Here, the shape of the particles in the functionally graded material is granular, and in order to utilize the crystallization phenomenon, a gradient in the volume fraction and a gradient in the particle diameter occur at the same time. Has a slope distribution of here,
Crystallization is the formation of crystals from molten metal. However, since the density (specific gravity) of the Al 3 Ni intermetallic compound is relatively large, there is a disadvantage that the density (specific gravity) of the Al—Al 3 Ni-based functionally graded material also increases.

【0008】本発明はかかる事情に鑑みなされたもの
で、固相法と晶出法の両製造法を同時に応用し、材料を
ハイブリッドかつ傾斜組成化することにより、固相法で
製造した傾斜機能材料の長所と晶出法で製造した傾斜機
能材料の長所を併せ持つ材料を提供する。
The present invention has been made in view of the above circumstances, and by applying both the solid-phase method and the crystallization method simultaneously to form a hybrid and gradient composition of the material, the gradient function produced by the solid-phase method is obtained. A material having both the advantages of the material and the advantages of the functionally graded material manufactured by the crystallization method is provided.

【0009】[0009]

【発明を解決するための手段】本発明は、固相法の長所
と晶出法の長所を利用することにより、固相法で製造し
た傾斜機能材料の長所と晶出法で製造した傾斜機能材料
の長所を併せ持つ機能材料を得るものである。この目的
のため、板状強化相粒子が分散した合金と粒状強化相粒
子が分散した合金を同時に溶解し、遠心力を印加するこ
とによってハイブリッド化し、母相中の板状強化相粒子
の体積分率と粒状強化相粒子の体積分率が位置ごとに傾
斜的に変化する機能材料を得る。
SUMMARY OF THE INVENTION The present invention utilizes the advantages of the solid phase method and the advantages of the crystallization method to provide the advantages of the functionally graded material produced by the solid phase method and the functions of the gradient functional material produced by the crystallization method. The purpose is to obtain a functional material having both advantages of the material. For this purpose, the alloy in which the plate-shaped reinforcing phase particles are dispersed and the alloy in which the granular reinforcing phase particles are dispersed are simultaneously melted, hybridized by applying a centrifugal force, and the volume of the plate-shaped reinforcing phase particles in the parent phase is integrated. A functional material is obtained in which the ratio and the volume fraction of the granular reinforcing phase particles change in an inclined manner for each position.

【0010】また、固相法として高融点の板状金属間化
合物を利用し、板状強化相粒子が固相として存在する温
度で遠心力を印加し、母相と板状強化相粒子との間の密
度差に起因する遠心力の差によって粒子の移動を制御す
ると同時に、板状強化相粒子に受けるモーメントを制御
することによって、材料中の板状強化相粒子の体積分率
と配向度とが同時に傾斜的に分布する機能材料を得るも
のである。ここで、板状強化相粒子は遠心力印加中、液
相状態の母相内においてモーメントを受けるため、板状
強化相粒子の板面法線方向が遠心力方向と平行となるよ
うに配向する。ここで、遠心力によって製造される傾斜
機能材料の形状はリング形状であり、このとき、リング
の内周と外周とでの遠心力に差、また、リングの内周と
外周とでの溶湯の角速度の差を利用すれば、板状強化相
粒子の配向度が位置によって変化する。
In addition, a plate-like intermetallic compound having a high melting point is used as a solid phase method, and a centrifugal force is applied at a temperature at which the plate-like reinforced phase particles exist as a solid phase. By controlling the movement of the particles by the difference in centrifugal force caused by the density difference between them, and simultaneously controlling the moment applied to the plate-like reinforcing phase particles, the volume fraction and orientation degree of the plate-like reinforcing phase particles in the material Is to obtain a functional material which is simultaneously and obliquely distributed. Here, the plate-like reinforced phase particles receive a moment in the liquid phase matrix during centrifugal force application, so that the plate-shaped reinforced phase particles are oriented so that the normal direction of the plate surface is parallel to the centrifugal force direction. . Here, the shape of the functionally graded material produced by the centrifugal force is a ring shape. At this time, the difference in the centrifugal force between the inner and outer peripheries of the ring, and the difference in the molten metal between the inner and outer peripheries of the ring. If the difference in the angular velocities is used, the degree of orientation of the plate-like reinforcing phase particles changes depending on the position.

【0011】さらに、晶出法として低融点の粒状金属間
化合物を利用し、加熱によりいったん粒状強化相粒子を
溶解し、遠心力印加中に晶出現象を利用することによっ
て、母相と粒状強化相粒子との間の密度差に起因する遠
心力の差によって体積分率を傾斜的に分布させると同時
に、冷却速度の差に起因する粒子径を傾斜的に分布させ
た機能材料を得るものである。
Further, the crystallization method uses a low-melting granular intermetallic compound, dissolves the granular reinforced phase particles once by heating, and utilizes the crystallization phenomenon during the application of centrifugal force to form the matrix phase and the granular reinforced phase. A functional material with a gradient distribution of the volume fraction due to the difference in centrifugal force due to the density difference between the phase particles and the gradient distribution of the particle size due to the difference in cooling rate. is there.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施形態を図面
に基づいて具体的に説明する。本発明で使用したハイブ
リッド傾斜機能材料の母材は市販のAl−5mass%
Ti合金と市販のAl−20mass%Ni合金であ
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. The base material of the hybrid functionally gradient material used in the present invention is a commercially available Al-5 mass%.
A Ti alloy and a commercially available Al-20 mass% Ni alloy.

【0013】Al−5mass%Ti合金中、Tiは板
状のAlTi金属間化合物粒子として存在する。ここ
で、AlTi金属間化合物は軽量、高硬度、優れた耐
食性を有することから、次世代の耐熱構造材料として期
待されている新素材である。また、融点は1342℃と
高温のため、母相が溶解しても板状強化相粒子が固相と
して存在するという条件を実現できる。Al−20ma
ss%Ni合金中、Niは粒状のAlNi金属間化合
物粒子として存在する。ここで、Al−Ni合金におけ
る共晶組成は6mass%であり、共晶温度が640℃
と低いため、加熱によって容易にAlNi金属間化合
物は溶解する。
In the Al-5 mass% Ti alloy, Ti exists as plate-like Al 3 Ti intermetallic compound particles. Here, the Al 3 Ti intermetallic compound is a new material that is expected as a next-generation heat-resistant structural material because of its light weight, high hardness, and excellent corrosion resistance. Further, since the melting point is as high as 1342 ° C., it is possible to realize the condition that the plate-like reinforcing phase particles exist as a solid phase even when the parent phase is dissolved. Al-20ma
In the ss% Ni alloy, Ni exists as granular Al 3 Ni intermetallic compound particles. Here, the eutectic composition of the Al—Ni alloy is 6 mass%, and the eutectic temperature is 640 ° C.
, The Al 3 Ni intermetallic compound is easily dissolved by heating.

【0014】これらの合金を等しい質量だけ切り出し混
ぜ合わせ、板状強化相粒子が固相として、粒状強化相粒
子が溶解する温度範囲まで加熱し、溶解した。そして、
板状強化相粒子と粒状強化相粒子とがハイブリッド化し
た傾斜機能材料を異なる重力倍数Gの条件下で遠心力法
により製造した。ここで、重力倍数Gとは遠心力を重力
で規格化したものである。本発明では、重力倍数G=3
0,50および80の条件で傾斜機能材料を製造した。
These alloys were cut out by equal mass and mixed, and heated to a temperature range in which the plate-like reinforcing phase particles were dissolved as a solid phase and melted. And
A functionally graded material in which the plate-like reinforcing phase particles and the granular reinforcing phase particles were hybridized was produced by a centrifugal force method under conditions of different gravity multiples G. Here, the gravitational multiple G is the centrifugal force normalized by gravity. In the present invention, the gravity multiple G = 3
Functionally graded materials were produced under the conditions of 0, 50 and 80.

【0015】製造した傾斜機能材料の組織の模式図を図
1に示す。ここで、(a)はリング外側の、(b)はリ
ング内側の組織を示す。棒状に見えるのはAlTi金
属間化合物粒子であり、その形状は板状である。また、
粒状の粒子はAlNi金属間化合物である。したがっ
て、ハイブリッド傾斜機能材料中のAlTi金属間化
合物およびAlNi金属間化合物の形状は、それぞれ
Al−AlTi系傾斜機能材料およびAl−Al
i系傾斜機能材料における各々の金属間化合物の形状と
同じであった。
FIG. 1 is a schematic view of the structure of the manufactured functionally graded material. Here, (a) shows the tissue outside the ring, and (b) shows the tissue inside the ring. What looks like a rod is the Al 3 Ti intermetallic compound particles, whose shape is plate-like. Also,
The granular particles are Al 3 Ni intermetallic compounds. Therefore, the shapes of the Al 3 Ti intermetallic compound and the Al 3 Ni intermetallic compound in the hybrid functionally graded material are respectively Al—Al 3 Ti based functionally graded material and Al—Al 3 N
The shape was the same as that of each intermetallic compound in the i-type functionally graded material.

【0016】材料中、AlTi金属間化合物粒子は体
積分率を位置ごとに変化させており、リングの外側の体
積分率が内側に比べて大きくなっていた。また、Al−
AlTi系傾斜機能材料と同様に、板状強化相粒子の
配向が認められた。一方、AlNi金属間化合物の体
積分率と粒子径も位置によって変化していた。
In the material, the volume fraction of the Al 3 Ti intermetallic compound particles varied from position to position, and the volume fraction outside the ring was larger than that inside the ring. Al-
As in the case of the Al 3 Ti-based functionally graded material, the orientation of the plate-like reinforcing phase particles was observed. On the other hand, the volume fraction and the particle diameter of the Al 3 Ni intermetallic compound also changed depending on the position.

【0017】製造したハイブリッド傾斜機能材料におけ
る板状AlTi金属間化合物粒子の体積分率の位置に
よる変化を図2に示す。ここで、横軸は規格化したリン
グ位置を示し、0.0がリング最内周部、1.0がリン
グ最外周部である。これらの材料は、重力倍数がG=3
0、50および80での条件にて製造したものである。
FIG. 2 shows the change of the volume fraction of the plate-like Al 3 Ti intermetallic compound particles in the manufactured hybrid functionally graded material depending on the position. Here, the horizontal axis indicates the standardized ring position, where 0.0 is the innermost circumference of the ring and 1.0 is the outermost circumference of the ring. These materials have a gravitational multiple of G = 3.
It was manufactured under the conditions of 0, 50 and 80.

【0018】図2からわかるように、リングの外側では
板状AlTi金属間化合物粒子の体積分率が高く、リ
ング内周部に向かうに従い、体積分率は徐々に減少して
いた。これは、板状AlTi金属間化合物粒子の密度
が溶湯Alのそれに比べて大きいため、遠心力印加下に
おいて、板状AlTi金属間化合物粒子がリング外側
に移動したためである。また、体積分率の傾斜の度合い
は重力倍数が大きいほど強まっていた。これらはAl−
AlTi系傾斜機能材料の傾向と等しい。
As can be seen from FIG. 2, the volume fraction of the plate-like Al 3 Ti intermetallic compound particles was high outside the ring, and gradually decreased toward the inner periphery of the ring. This is because the plate-like Al 3 Ti intermetallic compound particles have a higher density than that of the molten aluminum Al, and thus the plate-like Al 3 Ti intermetallic compound particles have moved to the outside of the ring under the application of centrifugal force. In addition, the degree of the gradient of the volume fraction increased as the multiple of gravity increased. These are Al-
It is equal to the tendency of Al 3 Ti-based functionally graded materials.

【0019】製造したハイブリッド傾斜機能材料におけ
る粒状AlNi金属間化合物粒子の体積分率の位置に
よる変化を図3に示す。上述のように、板状AlTi
金属間化合物粒子においては強い体積分率の傾斜が認め
られたにも関わらず、G=50およびG=80で製造し
たハイブリッド傾斜機能材料における粒状AlNi金
属間化合物粒子の体積分率には傾斜がほとんど認められ
ない。これは、従来材料であるAl−AlNi系傾斜
機能材料において、粒状AlNi金属間化合物粒子の
体積分率が緩やかな分布勾配をもつことと相反する。
FIG. 3 shows the change in the volume fraction of the particulate Al 3 Ni intermetallic compound particles in the manufactured hybrid functionally graded material depending on the position. As described above, plate-like Al 3 Ti
Despite the strong gradient of the volume fraction observed in the intermetallic compound particles, the volume fraction of the granular Al 3 Ni intermetallic compound particles in the hybrid functionally gradient material manufactured at G = 50 and G = 80 is Almost no inclination is observed. This is contrary to the fact that the volume fraction of the granular Al 3 Ni intermetallic compound particles has a gentle distribution gradient in the Al—Al 3 Ni-based functionally gradient material, which is a conventional material.

【0020】さらに、G=30の条件で製造した材料に
おいては、粒状AlNi金属間化合物粒子がリング内
側に向かって緩やかに体積分率を増加させるという従来
材料とは逆の結果を得た。AlTi金属間化合物とA
Ni金属間化合物の密度はそれぞれ3.4Mg/m
と4.0Mg/mであり、溶融Alの密度は2.3
7Mg/mである。したがって、この結果は密度の相
違によっては説明できない。
Further, in the case of the material manufactured under the condition of G = 30, a result opposite to that of the conventional material was obtained, in which the particulate Al 3 Ni intermetallic compound particles gradually increased the volume fraction toward the inside of the ring. . Al 3 Ti intermetallic compound and A
The density of the l 3 Ni intermetallic compound is 3.4 Mg / m, respectively.
3 and 4.0 Mg / m 3 , and the density of the molten Al is 2.3.
7 Mg / m 3 . Therefore, this result cannot be explained by the difference in density.

【0021】ところで、前述のようにハイブリッド傾斜
機能材料においては固相法と晶出法とを同時に応用して
いる。すなわち、遠心力印加中、板状AlTi粒子が
固相のままで有るのに対して、粒状AlNi粒子は溶
解している。したがって、遠心力印加初期、固相である
板状AlTi粒子が優先的にリング外周へと移動す
る。これにより板状AlTi粒子の体積分率の傾斜分
布が形成される。その後、粒状AlNi粒子が晶出す
る。この時、リング外側の粘性は板状AlTi粒子の
存在により上昇しており、粒状AlNi粒子の移動を
妨げる。結果として、板状AlTi粒子が外側に多く
存在するため、逆に、その位置での粒状AlNi粒子
の体積分率は相対的に減少する。
As described above, in the hybrid functionally graded material, the solid phase method and the crystallization method are simultaneously applied. That is, while the centrifugal force is applied, the plate-like Al 3 Ti particles remain in a solid phase, whereas the granular Al 3 Ni particles are dissolved. Therefore, at the initial stage of centrifugal force application, the plate-like Al 3 Ti particles, which are solid phases, preferentially move to the outer periphery of the ring. Thereby, a gradient distribution of the volume fraction of the plate-like Al 3 Ti particles is formed. Thereafter, granular Al 3 Ni particles are crystallized. At this time, the viscosity of the outside of the ring is increased by the presence of the plate-like Al 3 Ti particles, and hinders the movement of the granular Al 3 Ni particles. As a result, since a large number of plate-like Al 3 Ti particles exist outside, the volume fraction of the granular Al 3 Ni particles at that position is relatively reduced.

【0022】従って、粒状AlNi粒子の体積分率の
傾斜は板状AlTi粒子のそれとは逆方向になる。た
だし、大きい遠心力の下で製造した場合は、当然、粒状
AlNi粒子のリング外周部への移動も生じる。この
ように、ハイブリッド傾斜機能材料においては、異なる
原理を応用して組成傾斜を得るため、従来材料にはあり
得なかった組成傾斜を得ることができる。
Therefore, the gradient of the volume fraction of the granular Al 3 Ni particles is in the opposite direction to that of the plate-like Al 3 Ti particles. However, when manufactured under a large centrifugal force, the granular Al 3 Ni particles naturally move to the outer periphery of the ring. As described above, in the hybrid functionally graded material, a composition gradient can be obtained by applying a different principle, so that a composition gradient that cannot be obtained in conventional materials can be obtained.

【0023】図4に両粒子のリング各位置での総体積分
率を示す。G=30の条件で製造した材料では総体積分
率は位置によって変化しなかった。しかし、G=80の
条件で製造した材料では、緩やかな総体積分率の傾斜を
示した。このように、両粒子の総体積分率が位置によっ
て変化するハイブリッド傾斜機能材料が、遠心力法によ
り製造可能となった。
FIG. 4 shows the total volume fraction of each particle at each ring position. In the material manufactured under the condition of G = 30, the total volume fraction did not change depending on the position. However, the material manufactured under the condition of G = 80 showed a gentle slope of the total volume fraction. Thus, a hybrid functionally graded material in which the total volume fraction of both particles changes depending on the position can be manufactured by the centrifugal force method.

【0024】次に板状粒子の配向度について着目する。
そのため、遠心力方向を基準軸にとり、板状強化相粒子
の板面法線方向と基準軸との角度を配向角と定義した。
製造した試料リングの各位置において、個々の板状Al
Ti粒子に関して配向角を計測した。配向角と相対頻
度との関係に整理した一例を図5に示す。ここで、試料
リングの製造条件はG=30であり、図中右上に書かれ
た値はリングの規格化した位置である。
Next, attention is paid to the degree of orientation of the plate-like particles.
Therefore, taking the direction of centrifugal force as the reference axis, the angle between the normal direction of the plate surface of the plate-shaped reinforcing phase particles and the reference axis was defined as the orientation angle.
In each position of the manufactured sample ring, individual plate-like Al
The orientation angle was measured for the 3 Ti particles. FIG. 5 shows an example in which the relationship between the orientation angle and the relative frequency is arranged. Here, the manufacturing condition of the sample ring is G = 30, and the value written in the upper right in the figure is the standardized position of the ring.

【0025】規格化した位置が0.9〜1.0におい
て、すなわちリング外周部において、配向角が0°の板
状強化相粒子の頻度が高くなっていた。すなわち、リン
グ外周部では、板状AlTi粒子は板状強化相粒子の
板面法線方向が遠心力方向と平行となるように配向して
いた。
When the normalized position was 0.9 to 1.0, that is, at the outer periphery of the ring, the frequency of the plate-like reinforcing phase particles having an orientation angle of 0 ° was high. That is, the plate-like Al 3 Ti particles were oriented such that the normal direction of the plate surface of the plate-like reinforcing phase particles was parallel to the centrifugal force direction at the outer periphery of the ring.

【0026】これに対して、リングの中央部である規格
化した位置が0.5〜0.6においては、その傾向は弱
まっていた。また、リングの内周部である規格化した位
置が0.1〜0.2においては配向が認められず、板状
強化相粒子は全ての方向に等頻度存在していた。このよ
うに、製造したリング内、配向度が位置によって変化す
る現象が見いだされた。
On the other hand, when the standardized position at the center of the ring is 0.5 to 0.6, the tendency is weakened. When the normalized position, which is the inner peripheral portion of the ring, was 0.1 to 0.2, no orientation was observed, and the plate-like reinforcing phase particles were present at equal frequencies in all directions. As described above, a phenomenon in which the degree of orientation changes depending on the position in the manufactured ring was found.

【0027】次に、これら配向の様相を定量的に評価す
るため、ヘルマンの配向度を用いて配向を評価した。こ
こで、ヘルマンの配向度は、現在最も広く用いられてい
る2次元的配向度評価方法である。ヘルマンの配向度
は、fp=[2〈cosφ〉−1]で定義されてい
る。ここでφは配向角であり、また、〈cosφ〉は
3角法の平均である。すべての板状強化相粒子が配向し
た場合、ヘルマンの配向度fpの値は1に、すべての板
状強化相粒子が完全無秩序に存在した状態にある場合、
ヘルマンの配向度fpの値は0となる。
Next, in order to quantitatively evaluate these aspects of the orientation, the orientation was evaluated using the Hermann degree of orientation. Here, the Hermann orientation degree is a two-dimensional orientation degree evaluation method most widely used at present. The Hermann orientation degree is defined by fp = [2 <cos 2 φ> −1]. Here, φ is the orientation angle, and <cos 2 φ> is the average of the triangular method. When all the plate-like reinforcing phase particles are oriented, the value of the degree of orientation fp of Herman is 1 and when all the plate-like reinforcing phase particles are present in a completely disordered state,
The value of the Hermann orientation fp is 0.

【0028】図6にG=30の条件で製造したハイブリ
ッド傾斜機能材料におけるヘルマンの配向度の位置に関
する傾斜を示す。リングの外側では板状AlTi粒子
の配向度が高く、リング内周部に向かうに従い、配向度
は徐々に減少していた。また、配向度の傾斜の度合いは
重力倍数が大きいほど強まった。このように、板状Al
Ti粒子の配向度は緩やかに傾斜しており、配向度が
位置によって変化するハイブリッド傾斜機能材料が遠心
力法により製造可能となった。
FIG. 6 shows the inclination with respect to the position of the orientation degree of Hermann in the hybrid functionally gradient material manufactured under the condition of G = 30. Outside the ring, the degree of orientation of the plate-like Al 3 Ti particles was high, and the degree of orientation gradually decreased toward the inner periphery of the ring. Also, the degree of inclination of the degree of orientation was increased as the gravity multiple was increased. Thus, the plate Al
The degree of orientation of the 3 Ti particles is gently inclined, and a hybrid functionally graded material in which the degree of orientation changes depending on the position can be manufactured by the centrifugal force method.

【0029】次に、製造したハイブリッド傾斜機能材料
における粒状AlNi粒子の見かけの粒子径分布の一
例を図7に示す。重力倍数がG=30での条件にて製造
したものであり、図中右上にリングの規格化した位置を
示す。
Next, an example of the apparent particle size distribution of the granular Al 3 Ni particles in the manufactured hybrid functionally gradient material is shown in FIG. It is manufactured under the condition that the gravity multiple is G = 30, and the standardized position of the ring is shown in the upper right of the figure.

【0030】規格化した位置が0.9〜1.0におい
て、すなわちリング外周部における見かけの粒子径は小
さく、リング内周部に行くに従い見かけの粒子径は大き
くなっている。これは、鋳造時の冷却速度の差に起因す
るものであり、冷却速度の早いリング外側での粒子径が
小さくなっている。
When the standardized position is 0.9 to 1.0, that is, the apparent particle diameter at the outer periphery of the ring is small, and the apparent particle diameter increases toward the inner periphery of the ring. This is due to the difference in cooling rate during casting, and the particle size at the outside of the ring where the cooling rate is high is small.

【0031】この現象をわかりやすくするため、粒状強
化相粒子の形状を球状と仮定し、見かけの平均粒子径か
ら真の平均粒子径を算出した。図8に種々の重力倍数で
製造したハイブリッド傾斜機能材料における粒状Al
Ni粒子の平均粒子径の位置に関する傾斜を示す。リン
グの外側では粒状AlNi粒子の粒子径は小さく、リ
ング内周部に向かうに従い、粒子径は徐々に増大してい
た。また、粒子径の傾斜の度合いは重力倍数が大きいほ
ど強まった。このように、粒状AlNi粒子の粒子径
は緩やかに傾斜しており、粒子径が位置によって変化す
るハイブリッド傾斜機能材料が遠心力法により製造可能
となった。
In order to make this phenomenon easy to understand, the shape of the granular reinforcing phase particles was assumed to be spherical, and the true average particle size was calculated from the apparent average particle size. FIG. 8 shows granular Al 3 in a hybrid functionally graded material manufactured at various gravity multiples.
The inclination with respect to the position of the average particle diameter of the Ni particles is shown. The particle diameter of the granular Al 3 Ni particles was small outside the ring, and gradually increased toward the inner periphery of the ring. In addition, the degree of inclination of the particle diameter increased as the gravity multiple increased. As described above, the particle diameter of the granular Al 3 Ni particles is gently inclined, and a hybrid functionally graded material in which the particle diameter changes depending on the position can be manufactured by the centrifugal force method.

【0032】得られたハイブリッド傾斜機能材料の有用
性を確認するため、ピン−オン−ディスク型の摩耗試験
を行った。ここで、摩耗面はリング外周面であり、摩耗
距離は5km、負荷応力は1MPa、相手材はS45C
である。
In order to confirm the usefulness of the obtained hybrid functionally graded material, a pin-on-disk type wear test was performed. Here, the wear surface is the outer peripheral surface of the ring, the wear distance is 5 km, the applied stress is 1 MPa, and the mating material is S45C.
It is.

【0033】種々の重力倍数で製造したハイブリット傾
斜機能材料とG=50の条件で製造した純アルミニウム
の摩耗試験の結果を図9に示す。全てのハイブリッド傾
斜機能材料の摩耗量は同様の方法で製造した純アルミニ
ウム試験片に比べて摩耗量が少なかった。また、摩耗面
に金属間化合物粒子が多く存在する高重力倍数で製造し
たハイブリッド傾斜機能材料の摩耗量は、重力倍数の小
さな条件で製造したものに比べて小さく、金属間化合物
粒子が強化相として有効に働いていることがわかった。
FIG. 9 shows the results of abrasion tests of the hybrid functionally graded material manufactured at various gravitational multiples and pure aluminum manufactured under the condition of G = 50. The wear of all hybrid functionally graded materials was lower than that of pure aluminum test pieces manufactured by the same method. In addition, the amount of wear of the hybrid functionally graded material manufactured at a high gravitational multiple where there are many intermetallic compound particles on the wear surface is smaller than that produced under the condition of a small gravitational multiple, and the intermetallic compound particles serve as a strengthening phase. It turned out to be working effectively.

【0034】このように、ハイブリッド傾斜機能材料は
優れた機械的性質を示す。さらに、板状強化相粒子の配
向をも考慮すれば、位置により機械的性質およびその異
方性が変化している。したがって、必要な部位を必要な
方向で必要な量だけ強化することができ、材料設計の要
求とする機械的性質を与えることが可能となった。
As described above, the hybrid functionally graded material exhibits excellent mechanical properties. Further, taking into account the orientation of the plate-like reinforcing phase particles, the mechanical properties and the anisotropy change depending on the position. Therefore, a necessary portion can be reinforced in a required direction in a required direction by a required amount, and mechanical properties required in material design can be provided.

【0035】[0035]

【発明の効果】以上に述べたように、本発明により、複
合材料において強化相Aと強化相Bの体積分率が位置ご
とに同時に傾斜的に変化しているハイブリッド傾斜機能
材料(請求項1)を、2種類の合金を同時に溶解し、溶
解中に遠心力を印加すること(請求項2)によりを製造
することが可能となった。また、複合材料において、強
化相Aが固相、強化相Bが溶解する温度範囲で遠心力を
印加すること(請求項3)により、母相中の強化相Aの
体積分率と強化相Bの体積分率が、同時に位置ごとに傾
斜的に変化するハイブリッド傾斜機能材料を製造するこ
とが可能となった。
As described above, according to the present invention, a hybrid functionally graded material in which the volume fractions of the reinforcing phase A and the reinforcing phase B in the composite material are simultaneously and gradient-dependently changed for each position. ) Can be manufactured by simultaneously melting two types of alloys and applying a centrifugal force during the melting (claim 2). Further, in the composite material, by applying a centrifugal force in a temperature range in which the reinforcing phase A is dissolved in the solid phase and the reinforcing phase B is dissolved (claim 3), the volume fraction of the reinforcing phase A in the mother phase and the reinforcing phase B are increased. It has become possible to manufacture a hybrid functionally graded material in which the volume fraction of the composite material simultaneously changes gradiently for each position.

【0036】さらに、複合材料において、母相中の板状
AlTi強化相の体積分率と粒状AlNi強化相の
体積分率が位置ごとに同時に傾斜的に変化しているハイ
ブリッド傾斜機能材料(請求項4)を製造することが可
能となった。加えて、複合材料において、母相中の板状
AlTi粒子と粒状AlNi粒子の体積分率が位置
ごとに傾斜的に変化すると同時に、板状AlTi粒子
の配向度が位置ごとに傾斜的に変化すると同時に、粒状
AlNi粒子の粒子径が位置ごとに傾斜的に変化する
ハイブリッド傾斜機能材料(請求項5)を、Al−Ti
合金とAl−Ni合金を同時に溶解し、AlTi強化
相が固相、AlNi強化相が溶解する温度範囲におい
て遠心力を印加することによって製造することが可能と
なった(請求項6)。
Furthermore, in the composite material, a hybrid gradient function in which the volume fraction of the plate-like Al 3 Ti-reinforced phase and the volume fraction of the granular Al 3 Ni-reinforced phase in the matrix phase simultaneously and gradiently change at each position. It has become possible to produce a material (claim 4). In addition, in the composite material, the volume fraction of the plate-like Al 3 Ti particles and the granular Al 3 Ni particles in the matrix phase changes obliquely at each position, and the degree of orientation of the plate-like Al 3 Ti particles changes at each position. A hybrid functionally graded material (Claim 5) in which the particle diameter of the granular Al 3 Ni particles changes in a gradient manner for each position at the same time as changing the Al-Ti
The alloy and the Al-Ni alloy can be melted at the same time, and can be manufactured by applying a centrifugal force in a temperature range in which the Al 3 Ti reinforced phase is in a solid phase and the Al 3 Ni reinforced phase is melted. ).

【0037】配向度傾斜型傾斜機能材料は優れた機械的
性質を示すばかりでなく、位置により機械的性質および
その異方性が変化しているので、必要な部位を必要な方
向で必要な量だけ強化することができ、より高品位の傾
斜機能材料を提供し得る。また、粒子径傾斜型傾斜機能
材料は機械的性質の傾斜特性を組成傾斜と粒子径傾斜の
両者で受け持とうとする材料である。本発明で製造可能
となったハイブリッド傾斜機能材料はこれら両特性を併
せ持つ。
The graded orientation functionally graded material exhibits not only excellent mechanical properties but also mechanical properties and its anisotropy that vary depending on the position. Can provide a higher grade functionally graded material. Further, the gradient particle type gradient functional material is a material that intends to hold the gradient characteristics of the mechanical properties by both the composition gradient and the particle diameter gradient. The hybrid functionally graded material that can be manufactured by the present invention has both of these characteristics.

【0038】しかも、本発明に係る傾斜機能材料の製造
法は、簡単な装置を用いて、簡単な原理を応用した傾斜
機能材料製造方法であるので、大型の材料を安価に生産
性も高く製造できる。さらに、得られたハイブリッド傾
斜機能材料中、機械的性質のみならず熱伝導率、密度な
どの諸材料定数も変化している。従って、これらの傾斜
特性を単独あるいは組み合わせで用いることにより、さ
らに様々な分野において工業的応用が考えられる。例え
ば、エンジンなどのような摩耗を受ける部位への適応が
可能である。
Moreover, the method for producing a functionally graded material according to the present invention is a method for producing a functionally graded material using a simple apparatus and applying a simple principle, so that large-sized materials can be produced at low cost and with high productivity. it can. Further, in the obtained hybrid functionally graded material, not only mechanical properties but also various material constants such as thermal conductivity and density are changed. Therefore, industrial application in various fields can be considered by using these inclination characteristics alone or in combination. For example, it is possible to adapt to a part that is subject to wear such as an engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で得られたハイブリット傾斜機能材料の
組織の模式図である。
FIG. 1 is a schematic view of the structure of a hybrid functionally graded material obtained according to the present invention.

【図2】ハイブリッド傾斜機能材料における板状強化相
粒子の体積分率分布を示す図である。
FIG. 2 is a diagram showing a volume fraction distribution of plate-like reinforcing phase particles in a hybrid functionally gradient material.

【図3】ハイブリッド傾斜機能材料における粒状強化相
粒子の体積分率分布を示す図である。
FIG. 3 is a diagram showing a volume fraction distribution of granular reinforcing phase particles in a hybrid functionally gradient material.

【図4】ハイブリッド傾斜機能材料における両強化相粒
子の総体積分率分布を示す図である。
FIG. 4 is a diagram showing a total volume fraction distribution of both reinforcing phase particles in a hybrid functionally gradient material.

【図5】ハイブリッド傾斜機能材料における板状強化相
粒子のリング各位置における配向度分布を示す図であ
る。
FIG. 5 is a diagram showing an orientation distribution at each position of a ring of plate-like reinforcing phase particles in a hybrid functionally gradient material.

【図6】ハイブリッド傾斜機能材料における板状強化相
粒子のヘルマンの配向度の位置による変化を示す図であ
る。
FIG. 6 is a diagram showing a change in the degree of Herman orientation of plate-like reinforcing phase particles in a hybrid functionally graded material depending on the position.

【図7】ハイブリッド傾斜機能材料における粒状強化相
粒子のリング各位置における見かけの粒子径分布を示す
図である。
FIG. 7 is a view showing an apparent particle size distribution at each position of a ring of granular reinforcing phase particles in a hybrid functionally gradient material.

【図8】ハイブリッド傾斜機能材料における粒状強化相
粒子の平均粒子径の位置による変化を示す図である。
FIG. 8 is a diagram showing a change in the average particle diameter of the granular reinforcing phase particles in the hybrid functionally gradient material depending on the position.

【図9】製造したハイブリッド傾斜機能材料と純アルミ
ニウムの摩耗試験の結果を示す図である。
FIG. 9 is a view showing the results of a wear test of the manufactured hybrid functionally graded material and pure aluminum.

【符号の説明】[Explanation of symbols]

1…AlTi金属間化合物粒子 2…AlNi金属間化合物粒子1 ... Al 3 Ti intermetallic compound particles 2 ... Al 3 Ni intermetallic compound particles

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複合材料において強化相Aと強化相Bの体
積分率が位置ごとに同時に傾斜的に変化していることを
特徴とするハイブリッド傾斜機能材料。
1. A hybrid functionally graded material, wherein the volume fractions of the reinforcing phase A and the reinforcing phase B in the composite material are simultaneously gradiently changed for each position.
【請求項2】2種類の合金を同時に溶解し、溶解中に遠
心力を印加することにより、母相中の強化相Aの体積分
率と強化相Bの体積分率が、同時に位置ごとに傾斜的に
変化することを特徴とする請求項1記載のハイブリッド
傾斜機能材料の製造方法。
2. The two types of alloys are simultaneously melted, and by applying a centrifugal force during melting, the volume fraction of the strengthening phase A and the volume fraction of the strengthening phase B in the mother phase are simultaneously adjusted for each position. 2. The method for producing a hybrid functionally gradient material according to claim 1, wherein the gradient is changed in a gradient manner.
【請求項3】複合材料において、強化相Aが固相、強化
相Bが溶解する温度範囲で遠心力を印加することを特徴
とする請求項2記載のハイブリッド傾斜機能材料の製造
方法。
3. The method for producing a functionally graded hybrid material according to claim 2, wherein a centrifugal force is applied in a temperature range in which the reinforcing phase A and the reinforcing phase B are dissolved in the composite material.
【請求項4】複合材料において、母相中の板状Al
i強化相の体積分率と粒状AlNi強化相の体積分率
が位置ごとに同時に傾斜的に変化していることを特徴と
する請求項1記載のハイブリッド傾斜機能材料。
4. A composite material, comprising a plate-like Al 3 T in a matrix phase.
2. The hybrid functionally graded material according to claim 1, wherein the volume fraction of the i-reinforced phase and the volume fraction of the granular Al 3 Ni-reinforced phase simultaneously and gradiently change for each position.
【請求項5】複合材料において、母相中の板状Al
i粒子と粒状AlNi粒子の体積分率が位置ごとに傾
斜的に変化すると同時に、板状AlTi粒子の配向度
が位置ごとに傾斜的に変化すると同時に、粒状Al
i粒子の粒子径が位置ごとに傾斜的に変化することを特
徴とする請求項4記載のハイブリッド傾斜機能材料。
5. A composite material comprising a plate-like Al 3 T in a matrix phase.
At the same time as the volume fraction of the i-particles and the granular Al 3 Ni particles changes obliquely for each position, the degree of orientation of the plate-like Al 3 Ti particles changes obliquely for each position, and at the same time, the granular Al 3 N
The hybrid functionally graded material according to claim 4, wherein the particle diameter of the i-particles changes in a gradient manner for each position.
【請求項6】Al−Ti合金とAl−Ni合金を同時に
溶解し、AlTi強化相が固相、AlNi強化相が
溶解する温度範囲において遠心力を印加することによっ
て、母相中の板状AlTi粒子の体積分率と粒状Al
Ni粒子の体積分率が位置ごとに傾斜的に変化すると
同時に、板状AlTi粒子の配向度が位置ごとに傾斜
的に変化すると同時に、粒状AlNi粒子の粒子径が
位置ごとに傾斜的に変化することを特徴とする請求項5
記載のハイブリッド傾斜機能材料の製造方法。
6. An Al—Ti alloy and an Al—Ni alloy are simultaneously melted, and a centrifugal force is applied in a temperature range in which the Al 3 Ti reinforced phase is in a solid phase and the Al 3 Ni reinforced phase is in a melted state. Fraction and granular Al of plate-like Al 3 Ti particles
At the same time that the volume fraction of the 3 Ni particles changes obliquely for each position, the degree of orientation of the plate-like Al 3 Ti particles changes obliquely for each position, and the particle diameter of the granular Al 3 Ni particles changes for each position. 6. The method according to claim 5, wherein the change is performed in an inclined manner.
A method for producing the hybrid functionally graded material as described above.
JP36772499A 1999-11-18 1999-11-18 Hybrid functionally gradient material and its manufacturing method Pending JP2001152263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36772499A JP2001152263A (en) 1999-11-18 1999-11-18 Hybrid functionally gradient material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36772499A JP2001152263A (en) 1999-11-18 1999-11-18 Hybrid functionally gradient material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001152263A true JP2001152263A (en) 2001-06-05

Family

ID=18490040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36772499A Pending JP2001152263A (en) 1999-11-18 1999-11-18 Hybrid functionally gradient material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001152263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101152776B (en) * 2006-09-28 2010-05-26 中南大学 Double -gradient composite coating
EP2669028A4 (en) * 2011-01-25 2016-08-24 Nagoya Inst Technology Crystal grain refining agent for casting and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101152776B (en) * 2006-09-28 2010-05-26 中南大学 Double -gradient composite coating
EP2669028A4 (en) * 2011-01-25 2016-08-24 Nagoya Inst Technology Crystal grain refining agent for casting and method for producing the same

Similar Documents

Publication Publication Date Title
CN109996625B (en) Material and method for producing metal nanocomposites, and metal nanocomposites obtained thereby
Zhu et al. The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg 2 Si morphology in die-cast Al–Mg–Si alloys
US4647321A (en) Dispersion strengthened aluminum alloys
CN106457388A (en) Hydride-coated microparticles and methods for making the same
US6248453B1 (en) High strength aluminum alloy
AU732289B2 (en) Particulate field distributions in centrifugally cast metal matrix composites
Rahmani et al. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation
Rahvard et al. Characterization of the graded distribution of primary particles and wear behavior in the A390 alloy ring with various Mg contents fabricated by centrifugal casting
JP4521714B2 (en) Method for producing materials reinforced with nanoparticles
BR112015032930B1 (en) parts manufacturing process
JP2008537763A (en) Metal composite material and method of forming the same
Watanabe et al. Microstructures of functionally graded materials fabricated by centrifugal solid-particle and in-situ methods
CN107022758B (en) Coated articles and methods of manufacture
JP5753304B1 (en) Aluminum or aluminum alloy powder carrying ceramic nanoparticles, ceramic-aluminum composite material using the same, and method for producing the powder
JP2016520715A (en) Tin-based plain bearing alloy
US20210095361A1 (en) Maraging steel alloy and methods of making the same
US3147110A (en) Die-expressed article of aluminum-base alloy and method of making
Lei et al. Effect of Si content on microstructure and thermo-physical properties of the joint of Sip/6063Al composite by laser melting deposition
JP2001152263A (en) Hybrid functionally gradient material and its manufacturing method
CN1788097A (en) Method for treating tungsten carbide particles
Jia et al. Formulation of Al–Bi–Sn immiscible alloys versus the solidification behaviors and structures
Mittal et al. Thickness uniformity and microstructure of disc shape spray formed Al-Si-Pb alloys
JP2005506451A (en) Aluminum, magnesium and titanium metal matrix composites using silicon hexaboride, calcium hexaboride, silicon tetraboride and calcium tetraboride
JPH04323338A (en) Manufacture of alloy containing mg2 si
JP2002069546A (en) Crystallized grain gradient type functionally gradient material and its production method