JP2001149774A - Light immobilizing method for metallic fine particles - Google Patents

Light immobilizing method for metallic fine particles

Info

Publication number
JP2001149774A
JP2001149774A JP34214699A JP34214699A JP2001149774A JP 2001149774 A JP2001149774 A JP 2001149774A JP 34214699 A JP34214699 A JP 34214699A JP 34214699 A JP34214699 A JP 34214699A JP 2001149774 A JP2001149774 A JP 2001149774A
Authority
JP
Japan
Prior art keywords
fine particles
substrate
particles
gold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34214699A
Other languages
Japanese (ja)
Other versions
JP3989148B2 (en
Inventor
Atsushi Yamada
淳 山田
Yasuro Niitome
康郎 新留
Ayako Hori
綾子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP34214699A priority Critical patent/JP3989148B2/en
Publication of JP2001149774A publication Critical patent/JP2001149774A/en
Application granted granted Critical
Publication of JP3989148B2 publication Critical patent/JP3989148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of sticking metallic particles on a substrate, which is free from the problem on health due to a solvent and the inconvenience for a specific pretreatment on the surface of the substrate. SOLUTION: The metallic particles are immobilized on the surface of a material to be coated by dipping the material to be coated in a colloidal solution of the metallic particles and irradiating it with laser beam exciting the metallic particles in ultraviolet or near infrared wave region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物により
金属微粒子表面を修飾した金属微粒子のコロイド溶液に
被コーティング材料を浸漬して、金属微粒子を励起する
レーザー光を照射することにより金属微粒子を該被コー
ティング材料表面に固定する方法に関する。
[0001] The present invention relates to a method of immersing a material to be coated in a colloidal solution of fine metal particles whose surface has been modified with an organic compound, and irradiating the coating with a laser beam for exciting the fine metal particles. The present invention relates to a method for fixing to a surface of a material to be coated.

【0002】[0002]

【従来技術】被コーティング材料、例えば基板の表面に
金微粒子を形成する従来方法として、1.金微粒子を有
機溶媒に分散させたコロイド溶液をキャストし乾燥させ
る方法、2.ガラス表面等に吸着させたポリカチオンや
カチオン性分子膜の上に静電相互作用によって金微粒子
を吸着させる方法、さらには3.基板表面をチオール誘
導体で修飾(処理)し、金−イオウ間の自発的な結合形
成を利用して金微粒子を固定化させる方法などがある
が、1.の場合には、揮発する溶剤による健康への問題
があり、更には、任意の形状に固定化させることが困難
であり、2.および3.の場合には、基板表面を予め修
飾剤で処理しておく必要である。4.また最近では金微
粒子が負に帯電していることを利用して、電気泳動法に
より電極上に金微粒子を集積する方法も開発されている
が、基板が導電性に限定される。
2. Description of the Related Art As a conventional method for forming fine gold particles on a surface of a material to be coated, for example, a substrate, there are the following methods. 1. a method of casting and drying a colloid solution in which gold fine particles are dispersed in an organic solvent; 2. a method of adsorbing gold fine particles by electrostatic interaction on a polycation or cationic molecular film adsorbed on a glass surface or the like; There is a method of modifying (treating) the substrate surface with a thiol derivative and immobilizing gold fine particles by utilizing spontaneous gold-sulfur bond formation. In the case of (1), there is a problem of health due to the volatile solvent, and further, it is difficult to fix to an arbitrary shape, and And 3. In the case of (1), it is necessary to previously treat the surface of the substrate with a modifier. 4. Recently, a method of accumulating gold fine particles on electrodes by electrophoresis utilizing the fact that gold fine particles are negatively charged has been developed, but the substrate is limited to conductivity.

【0003】また、Au、Ag、Ptなど数十nm〜数
nmの貴金属微粒子、例えば金微粒子は、紫外域〜近赤
外域のレーザー光を吸収し、その結果、粒子の凝集と粒
子の***(分散)の両現象があらわれることが知られて
いる。
Also, noble metal fine particles of several tens nm to several nm, such as Au, Ag, and Pt, for example, gold fine particles absorb laser light in the ultraviolet to near-infrared region, and as a result, aggregation and splitting of particles ( It is known that both phenomena appear.

【0004】ところで、金属による表面加工は、種々の
機能性部材の製造にも利用されている。例えば、テフロ
ン多孔質電極はテフロン多孔膜を金属材料で処理するこ
とによって得られているし、表面増強ラマン(Surface
Enhanced Raman Spectroscopy:SERS)センサー基板
は、基板表面に金属を島状に薄く真空蒸着することによ
って得られている。従って、金属による新しい表面加工
技術の開発は、新たな機能を持った部材の開発の面でも
重要であることが認識されている。
[0004] By the way, surface processing with metal is also used for the production of various functional members. For example, a Teflon porous electrode is obtained by treating a Teflon porous membrane with a metal material, and a surface-enhanced Raman (Surface
The Enhanced Raman Spectroscopy (SERS) sensor substrate is obtained by vacuum-depositing metal in the form of islands on the substrate surface. Therefore, it has been recognized that the development of a new metal surface processing technology is also important in the development of a member having a new function.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、前記
従来の金属微粒子の固着方法における、健康への問題や
特殊な処理を予め基板表面にするという不都合がない金
属微粒子の固着方法を提供することであり、更に、新し
い機能性を持った部材が得られる金属微粒子の固着方法
を提供することにある。前記課題を解決するのに、前記
金属微粒子のコロイド溶液にレーザーを照射した時の現
象を応用できないかとの考えに基づいて鋭意検討したと
ころ、金属微粒子のコロイド溶液に金属による表面加工
すべき材料を浸漬した状態で、前記コロイド溶液および
前記加工すべき材料の表面を、紫外域〜近赤外域のレー
ザー光を照射することにより、前記加工すべき材料の表
面に金属微粒子を固定することができることを発見し、
前記課題を解決したものである。更に、前記現象は基板
を構成する材料に限定されることなく適用でき、透明基
板としては、ガラスに限らずフツ素系高分子フィルムな
どの非伝導性かつ不活性な基板に対しても適用可能であ
ることも発見された。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for fixing metal fine particles which is free from the above-mentioned conventional method for fixing metal fine particles, which does not cause health problems or special treatment on the substrate surface in advance. It is still another object of the present invention to provide a method for fixing metal fine particles from which a member having new functionality can be obtained. In order to solve the above-mentioned problems, the inventors conducted intensive studies based on the idea that the phenomenon of irradiating a laser to the colloidal solution of the metal fine particles could be applied. By irradiating the colloidal solution and the surface of the material to be processed in the immersed state with laser light in the ultraviolet to near-infrared range, metal fine particles can be fixed to the surface of the material to be processed. Discover,
This has solved the above-mentioned problem. Furthermore, the above-mentioned phenomenon can be applied without being limited to the material constituting the substrate, and the transparent substrate is not limited to glass but can be applied to non-conductive and inert substrates such as fluorine-based polymer films. Was also discovered.

【0006】[0006]

【課題を解決するための手段】本発明は、金属微粒子の
コロイド溶液中に被コーティング材料を浸積し、前記金
属微粒子を励起するレーザー光を、前記溶液および被コ
ーティング材料の表面に照射することにより金属微粒子
を該被コーティング材料表面に固定する方法であり、好
ましくは、金属微粒子のコロイド溶液は100nm未満
1nm以上の金属微粒子表面に有機化合物であるコロイ
ド安定化剤を結合し、有機溶媒中に分散したものである
ことを特徴とする前記金属微粒子を被コーティング材料
表面に固定する方法であり、更に好ましくは、レーザー
光が紫外域〜近赤外域にあり、パルス幅 5ns〜10
nsであり、かつパルスエネルギーが20mJ〜400
mJ〔20mJ〜400mJ/パルス(pulse)〕である
ことを特徴とする前記金属微粒子を被コーティング材料
表面に固定する方法である。本発明は、金属微粒子表面
に有機化合物であるコロイド安定化剤を結合したコロイ
ド溶液から、レーザー光照射により、前記基体表面への
金属微粒子の析出および固着現象があることを発見する
ことによって、前記課題を解決したのである。また、こ
のようにして固着された金属微粒子のサイズは平均約1
0nm(おおむね30nm以下であり)であり、共鳴ラ
マンセンサーとしての機能性が改善されることが予想さ
れる。
According to the present invention, a coating material is immersed in a colloidal solution of fine metal particles, and the surface of the solution and the material to be coated are irradiated with a laser beam for exciting the fine metal particles. And fixing the metal fine particles to the surface of the material to be coated by the method described below. Preferably, the colloidal solution of the metal fine particles binds a colloid stabilizer, which is an organic compound, to the surface of the metal fine particles of less than 100 nm and 1 nm or more. A method of fixing the metal fine particles to the surface of the material to be coated, wherein the laser light is in the ultraviolet to near infrared region, and the pulse width is 5 ns to 10 ns.
ns and the pulse energy is 20 mJ to 400.
mJ [20 mJ to 400 mJ / pulse], wherein the metal fine particles are fixed on the surface of the material to be coated. The present invention is based on the discovery that, from a colloidal solution in which a colloidal stabilizer, which is an organic compound, is bonded to the surface of metal fine particles, there is a phenomenon of deposition and fixation of the metal fine particles on the surface of the substrate by laser light irradiation. The problem was solved. The average size of the metal particles fixed in this manner is about 1
0 nm (about 30 nm or less), and it is expected that the functionality as a resonance Raman sensor will be improved.

【0007】[0007]

【本発明の実施の態様】本発明をより詳細に説明する。 A.本発明で使用する金属微粒子のコロイド溶液とは、
粒径1nm〜100nmの、好ましくは50nm〜5n
mの金属微粒子表面を、レーザー光照射により前記金属
微粒子表面から分離する安定化剤で安定化したものであ
る。このような材料を構成する、金属としては、Ag、
Au、Cuなどのプラズモン励起の起こし易いものを好
ましい材料として挙げることができる。安定化剤として
は、有機溶媒に可溶化する硫黄原子含有有機化合物であ
る、例えば、ドデカンチオールなどのチオール化合物
や、オレイン酸などの脂肪酸などを挙げることができ
る。 B.分散する溶媒としては、ヘキサンなどの脂肪族、シ
クロヘキサンなどの脂環式、ベンゼン、トルエンなどの
芳香族等の炭化水素類などを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. A. The colloidal solution of metal fine particles used in the present invention,
Particle size of 1 nm to 100 nm, preferably 50 nm to 5 n
m are stabilized with a stabilizer that separates the surface of the metal fine particles from the surface of the metal fine particles by laser light irradiation. Ag, as a metal constituting such a material,
Materials that easily cause plasmon excitation, such as Au and Cu, can be mentioned as preferable materials. Examples of the stabilizer include a sulfur atom-containing organic compound solubilized in an organic solvent, for example, a thiol compound such as dodecanethiol and a fatty acid such as oleic acid. B. Examples of the solvent to be dispersed include hydrocarbons such as aliphatics such as hexane, alicyclics such as cyclohexane, and aromatics such as benzene and toluene.

【0008】C.レーザー光と金属微粒子コロイドの基
板表面への金属微粒子固定現象。前記金属微粒子の基板
表面への固定には、紫外域〜近赤外域のレーザー光が利
用でき、特にパルスレーザー光の利用は効率の良い方法
である。パルスレーザー光としては、Nd:YAGレーザー
の基本波(1064nm)、2倍波(532nm)、3倍波(355n
m)、幅5ns〜10ns、およびパルスエネルギー2
0mJ〜400mJのものが、レーザー光による金属微
粒子コロイドから基板表面への金属微粒子の固定に有用
である。
C. Fixation phenomenon of metal fine particles on the substrate surface by laser light and metal fine particle colloid. For fixing the metal fine particles to the substrate surface, laser light in the ultraviolet to near-infrared range can be used. In particular, the use of pulsed laser light is an efficient method. As the pulse laser light, a fundamental wave (1064 nm) of a Nd: YAG laser, a second harmonic (532 nm), and a third harmonic (355 nm)
m), width 5 ns to 10 ns, and pulse energy 2
Those having a particle size of from 0 mJ to 400 mJ are useful for fixing metal fine particles to the substrate surface from metal fine particle colloids by laser light.

【0009】D.図1には、本発明の金属微粒子コロイ
ドから基板表面への金属微粒子の析出・固定方法を原理
的に説明するものである。パルスレーザー発生手段
(L.R)からのパルスレーザーは、マスク(M.S)
を介し、被コーティング基板、具体的にはガラス基板
(B.P)が浸漬されている金属コロイド溶液に照射さ
れる。照射された前記基板表面に金属微粒子(M.P.
L)が固定される。 前記金属微粒子の固定の工程は、
マスクを介することなく、レーザー光を所望の描画図形
に従って操作することによっても実施できる。図2は、
マスクに対応して固定された金微粒子(M.P.L)の
走査電子顕微鏡写真(SEM像)である。白い丸形のも
のが析出・固定した金コロイドである。粒径の違いはレ
ーザー光照射前の金微粒子の粒径分布にも依存するもの
と推測される。図3は、レーザー照射によるガラス表面
に付着した金コロイドの吸収スペクトルであり、金微粒
子のプラズモンバンドが540nm付近に観察されるて
いる。E.パルスレーザー発生手段としては、Nd:Y
AGレーザー(波長1064nm、532nm、355nm)、その他チ
タン:サファイヤレーザー、エキシマーレーザー等を使
用できる。
D. FIG. 1 illustrates the principle of the method for depositing and fixing metal fine particles on the substrate surface from the metal fine particle colloid of the present invention. The pulse laser from the pulse laser generating means (LR) is supplied to a mask (MS).
Is applied to the metal colloid solution in which the substrate to be coated, specifically, the glass substrate (BP) is immersed. Metal fine particles (M.P.
L) is fixed. The step of fixing the metal fine particles,
It can also be implemented by operating a laser beam according to a desired drawing figure without using a mask. FIG.
5 is a scanning electron micrograph (SEM image) of gold fine particles (MPL) fixed corresponding to a mask. The white circle is the deposited and fixed gold colloid. It is presumed that the difference in particle size also depends on the particle size distribution of the gold fine particles before laser beam irradiation. FIG. 3 is an absorption spectrum of gold colloid adhered to a glass surface by laser irradiation, and a plasmon band of gold fine particles is observed at around 540 nm. E. FIG. As the pulse laser generating means, Nd: Y
AG lasers (wavelengths 1064 nm, 532 nm, 355 nm) and other titanium: sapphire lasers, excimer lasers and the like can be used.

【0010】前記金属コロイドからの金属微粒子の析出
・固定の現象は、金属コロイドの光子吸収に伴う現象で
ある。パルスレーザー光の照射によって光子を吸収した
金微粒子は、急激な温度上昇を起こすことが知られてい
る。その際に、安定化剤として微粒子表面にくっついて
いる安定化剤(保護剤)の一部が光で外れ、分散安定性
が失われると考えられる。その結果、基体近傍に存在す
る不安定化された微粒子が、基体に固定化することで安
定化すると考えられる。一方、溶液中では、前記現象に
よる微粒子の凝集と成長も進行するものと考えられる。
したがって、固定化は、安定化剤や用いる溶媒にも影響
されるものと考えられる。
The phenomenon of deposition and fixation of the metal fine particles from the metal colloid is a phenomenon accompanying the photon absorption of the metal colloid. It is known that gold particles that have absorbed photons by irradiation with pulsed laser light cause a sharp rise in temperature. At that time, it is considered that a part of the stabilizer (protective agent) attached to the surface of the fine particles as a stabilizer is removed by light, and the dispersion stability is lost. As a result, the destabilized fine particles present in the vicinity of the base are considered to be stabilized by being fixed to the base. On the other hand, in the solution, it is considered that the aggregation and growth of the fine particles due to the above phenomenon also proceed.
Therefore, it is considered that the immobilization is affected by the stabilizer and the solvent used.

【0011】[0011]

【実施例】実施例1 金微粒子の固定 A.金コロイドの作製。 塩化金酸を水素化ホウ素ナトリウムで還元するレフ(Le
ff)らの方法(J.Phys.Chem.,99,7036(1995))により
金コロイド溶液を得た。透過電子顕微鏡(TEM)で測定
した結果、金微粒子の平均粒径は3〜4nmであった。B.
光固定化方法 前記作製した金コロイドをシクロへキサ
ンに溶解してコロイド溶液(M.C.S)とした。この溶液
3mLを蛍光測定用石英セル(4×1×4cm)(SE)に入
れ、ガラス基板(B.P)(2×2×0.02cm)を溶液中に浸
し、20℃の温度の下で、パルスレーザー光(Nd:YAGレ
ーザー、波長1064nm、パルス幅5-7ns,パルスエネルギ
ー260mJ、くり返し数10Hz)を照射した。10分程度
でガラス表面への固定化が確認できるようになった。2
0−30分でほぼ一定に達し、それ以上照射すると脱着
が認められるようになった。ガラス基板を取り出し、レ
ーザー光照射部のみに金微粒子の付着(M.P.L)が確認
された。石英セルについても、レーザー光照射部のみに
金微粒子の付着が確認された。ガラス基板の吸収スペク
トルを測定すると(図2)、金微粒子に特徴的なプラズ
モンバンドが540nm付近に観測された。また、前記金微
粒子はガラス基板上に均一に配列されて、荒くされた表
面が観察された。ガラス基板をトルエン、硝酸中に浸漬
したが、金微粒子の脱離はみとめられなかった。また超
音波照射によっても脱離は明確には認められなかった。
すなわち、金微粒子はガラス基板上に、機械力により脱
離しない付着力によって固定されていることが確認され
た。
Example 1 Fixation of gold fine particles Production of gold colloid. Reducing chloroauric acid with sodium borohydride
ff) et al. (J. Phys. Chem., 99, 7036 (1995)) to obtain a colloidal gold solution. As a result of measurement with a transmission electron microscope (TEM), the average particle size of the fine gold particles was 3 to 4 nm. B.
Light fixation method The prepared gold colloid was dissolved in cyclohexane to prepare a colloid solution (MCS). 3 mL of this solution is placed in a quartz cell for fluorescence measurement (4 × 1 × 4 cm) (SE), a glass substrate (BP) (2 × 2 × 0.02 cm) is immersed in the solution, and pulsed at a temperature of 20 ° C. Irradiation with laser light (Nd: YAG laser, wavelength 1064 nm, pulse width 5-7 ns, pulse energy 260 mJ, repetition rate 10 Hz) was performed. Immobilization on the glass surface was confirmed in about 10 minutes. 2
It reached almost constant in 0-30 minutes, and desorption was observed after further irradiation. The glass substrate was taken out, and adhesion of gold fine particles (MPL) was confirmed only on the laser beam irradiation part. Regarding the quartz cell, adhesion of the fine gold particles was confirmed only on the laser beam irradiation part. When the absorption spectrum of the glass substrate was measured (FIG. 2), a plasmon band characteristic of the fine gold particles was observed at around 540 nm. Further, the gold fine particles were uniformly arranged on the glass substrate, and a roughened surface was observed. The glass substrate was immersed in toluene and nitric acid, but no desorption of gold fine particles was observed. Desorption was not clearly observed by ultrasonic irradiation.
That is, it was confirmed that the gold fine particles were fixed on the glass substrate by an adhesive force that did not separate due to mechanical force.

【0012】実施例2 基板をフッ化カルシウム板に代えただけで、実施例1の
操作を繰り返した。フッ化カルシウム板(直径1.8cm,
厚さ0.1cm)でも同様の結果が得られた。
Example 2 The operation of Example 1 was repeated, except that the substrate was replaced with a calcium fluoride plate. Calcium fluoride plate (1.8cm in diameter,
Similar results were obtained with a thickness of 0.1 cm).

【0013】実施例3 基板をテフロンメンブレンフィルターに代えただけで、
実施例1の操作を繰り返した。テフロンメンブレンフィ
ルター(ミリポア社デュラポアVVLP、孔径100nm)で
も、照射したレーザー光の形状に金粒子が固定された。
吸収スペクトル測定から固定された粒子はコロイド的に
分散した金の微粒子(平均粒径約10nm)であること
が明らかになった。
Example 3 By simply replacing the substrate with a Teflon membrane filter,
The procedure of Example 1 was repeated. The gold particles were fixed in the shape of the irradiated laser beam even with a Teflon membrane filter (Durapore VVLP manufactured by Millipore, pore size 100 nm).
The absorption spectrum measurement revealed that the fixed particles were colloidally dispersed gold fine particles (average particle size of about 10 nm).

【0014】実施例4 照射するレーザー光の波長を変えて実施例1の操作を繰
り返した。Nd-YAGレーザーの2倍波〔532nm、38mJ/
パルス(pulse)〕のレーザー光を用いて、ガラス基板
上に金微粒子を固定できることが明らかになった。
Example 4 The operation of Example 1 was repeated while changing the wavelength of the laser light to be irradiated. Second harmonic of Nd-YAG laser [532 nm, 38 mJ /
It has been found that gold particles can be fixed on a glass substrate using a pulsed laser beam.

【0015】実施例5 照射するレーザー光の波長を変えて実施例1の操作を繰
り返した。Nd-YAGレーザーの3倍波〔355nm、20mJ/パ
ルス(pulse)〕のレーザー光を用いて、ガラス基板上
に金微粒子を固定できることが明らかになった。
Example 5 The operation of Example 1 was repeated while changing the wavelength of the laser light to be irradiated. It was revealed that gold fine particles can be fixed on a glass substrate by using a laser beam of a third harmonic (355 nm, 20 mJ / pulse) of an Nd-YAG laser.

【0016】金属の表面を荒くした基板では、吸着した
物質のラマン散乱強度が非常に増大することが知られて
いる。この現象は表面増強ラマン(Surface Enhanced R
amanSpectroscopy:SERS)といわれる。これまではこの
ような表面として、表面をエッチングした金や銀の基板
や、金属が島状に付着するように非常に薄く真空蒸著し
た基板が用いられてきた。しかし、一方で金属微粒子を
2次元的に配列した基板はSERSセンサー基板としてもっ
とも有効であるということが明らかにされている。従
来、金微粒子を基板表面に並べるためには交互吸着法や
LB法がもちいられているが、いずれの手法でも大量の
有機物が金粒子近傍に存在しているし、基板表面を予め
修飾剤で処理しておく必要がある。本手法で作成した金
属固定基板では微粒子は有機化合物に一層囲まれている
だけであり、さらにその有機分子は硝酸処理によって金
表面からはぎ取ることが可能である。得られる清浄な表
面を持つ金属微粒子固定基板はSERSセンサ基板とし
て従来に無い感受性、選択制を持たせることが可能だと
考えられる。
It is known that the Raman scattering intensity of a substance adsorbed on a substrate having a roughened metal surface is greatly increased. This phenomenon is known as Surface Enhanced Rman.
amanSpectroscopy: SERS). Heretofore, as such a surface, a substrate made of gold or silver whose surface has been etched or a substrate which has been extremely thinly vacuum-deposited so that the metal adheres in an island shape has been used. However, on the other hand, it has been revealed that a substrate on which metal fine particles are two-dimensionally arranged is the most effective as a SERS sensor substrate. Conventionally, the alternate adsorption method and the LB method have been used to arrange the gold fine particles on the substrate surface. However, in any of these methods, a large amount of organic matter is present near the gold particles, and the surface of the substrate is previously modified with a modifier. It needs to be processed. In the metal fixed substrate prepared by this method, the fine particles are only surrounded by an organic compound, and the organic molecules can be peeled off from the gold surface by nitric acid treatment. It is considered that the obtained metal fine-particle fixed substrate having a clean surface can have sensitivity and selectivity that have not existed as a SERS sensor substrate.

【0017】[0017]

【発明の効果】以上述べたように、本発明の金属微粒子
の固定化方法は、基板材料に限定されずに適用できるこ
と、レーザー手段として、本発明による金属微粒子の固
定化用のものと、熱融着作用のものとを組み合わせて用
いることなどによって、前記SERSセンサ基板の製
造、多孔質電極の製造といったものへの適用が考えられ
る点で優れた効果がもたらされる。
As described above, the method for immobilizing metal fine particles according to the present invention can be applied without being limited to the substrate material. The use of a combination of those having a fusion action, for example, provides an excellent effect in that application to the production of the SERS sensor substrate and the production of a porous electrode is conceivable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の金属微粒子コロイドから基板表面へ
の金属微粒子の析出・固定方法の原理的説明(a)、
(b)は(a)のA−A’面図
FIG. 1 is a principle explanation of a method of depositing and fixing metal fine particles on a substrate surface from a metal fine particle colloid of the present invention (a),
(B) is an AA 'view of (a).

【図2】 固定された金属微粒子(M.P.L)の走査
電子顕微鏡写真(SEM像)
FIG. 2 is a scanning electron micrograph (SEM image) of the fixed metal fine particles (MPL).

【図3】 金微粒子のプラズモンバンドの測定Fig. 3 Measurement of plasmon band of fine gold particles

【符号の説明】[Explanation of symbols]

L.R パルスレーザー発生器 M.S マスク M.C.S 金属コロイド溶液 B.P 基板 SE
セル M.P.L 固定金属微粒子
L. R pulse laser generator S mask M. C. S Metal colloid solution B. P substrate SE
Cell M. P. L Fixed metal particles

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/00 H01M 4/00 Fターム(参考) 2G043 AA06 BA01 CA03 CA06 DA02 GA07 GB21 KA01 KA02 KA03 KA08 KA09 4G059 AA01 AC30 DA02 DB04 4G075 AA27 AA30 AA62 BB05 BB08 BD16 CA36 FC04 5H050 AA01 BA08 DA09 EA22 EA23 FA17 FA18 GA00 GA13 GA21 HA05 HA19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 4/00 H01M 4/00 F term (Reference) 2G043 AA06 BA01 CA03 CA06 DA02 GA07 GB21 KA01 KA02 KA03 KA08 KA09 4G059 AA01 AC30 DA02 DB04 4G075 AA27 AA30 AA62 BB05 BB08 BD16 CA36 FC04 5H050 AA01 BA08 DA09 EA22 EA23 FA17 FA18 GA00 GA13 GA21 HA05 HA19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属微粒子のコロイド溶液中に被コーテ
ィング材料を浸漬し、前記金属微粒子を励起する紫外域
から近赤外域のレーザー光を、前記溶液および被コーテ
ィング材料の表面に照射することにより金属微粒子を該
被コーティング材料表面に固定する方法。
1. A material to be coated is immersed in a colloidal solution of fine metal particles, and the surface of the solution and the material to be coated is irradiated with laser light in the ultraviolet to near infrared range that excites the fine metal particles. A method of fixing fine particles on the surface of the material to be coated.
【請求項2】 金属微粒子のコロイド溶液は100nm
未満1nm以上の金属微粒子表面に有機化合物であるコ
ロイド安定化剤を結合し、有機溶媒中に分散したもので
あることを特徴とする請求項1に記載の金属微粒子を被
コーティング材料表面に固定する方法。
2. A colloidal solution of fine metal particles has a thickness of 100 nm.
2. The metal fine particles according to claim 1, wherein a colloid stabilizer which is an organic compound is bonded to the surface of the fine metal particles having a particle diameter of less than 1 nm and dispersed in an organic solvent. Method.
【請求項3】 パルス幅5ns〜10nsであり、かつ
パルスエネルギーが20mJ〜400mJであることを
特徴とする請求項1または2に記載の金属微粒子を被コ
ーティング材料表面に固定する方法。
3. The method according to claim 1, wherein the pulse width is 5 ns to 10 ns, and the pulse energy is 20 mJ to 400 mJ.
JP34214699A 1999-12-01 1999-12-01 Light immobilization method for metal fine particles Expired - Fee Related JP3989148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34214699A JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34214699A JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Publications (2)

Publication Number Publication Date
JP2001149774A true JP2001149774A (en) 2001-06-05
JP3989148B2 JP3989148B2 (en) 2007-10-10

Family

ID=18351488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34214699A Expired - Fee Related JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Country Status (1)

Country Link
JP (1) JP3989148B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1514880A1 (en) * 2003-09-11 2005-03-16 Shinwa Chemical Industries, Ltd. Method for coating solid substrate surface with fine particles
JP2005172569A (en) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd Fine structure, method for creating fine structure, and raman spectroscopy and spectroscope
WO2005078415A1 (en) * 2004-02-13 2005-08-25 Omron Corporation Surface plasmon resonance sensor
JP2006514286A (en) * 2003-02-18 2006-04-27 インテル・コーポレーション Metal-coated nanocrystalline silicon as a substrate for active surface enhanced Raman spectroscopy (SERS)
US7776196B2 (en) * 2006-09-28 2010-08-17 Kabushiki Kaisha Toshiba Method for arranging particles and method for manufacturing light-emitting device
JP2011111355A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Method for manufacturing thin film, and thin film element
JP2015083540A (en) * 2014-12-03 2015-04-30 株式会社リコー Thin film manufacturing method, piezoelectric element manufacturing method, and recording head manufacturing method
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite
WO2023089922A1 (en) * 2021-11-18 2023-05-25 浜松ホトニクス株式会社 Test object analysis method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514286A (en) * 2003-02-18 2006-04-27 インテル・コーポレーション Metal-coated nanocrystalline silicon as a substrate for active surface enhanced Raman spectroscopy (SERS)
JP2011221032A (en) * 2003-02-18 2011-11-04 Intel Corp Metal coated nanocrystalline silicon as substrate of surface enhanced raman spectroscopy (sers)
JP2014178327A (en) * 2003-02-18 2014-09-25 Intel Corp Metal coated nanocrystalline silicon as substrate of surface enhanced raman spectroscopy (sers)
EP1514880A1 (en) * 2003-09-11 2005-03-16 Shinwa Chemical Industries, Ltd. Method for coating solid substrate surface with fine particles
JP2005172569A (en) * 2003-12-10 2005-06-30 Fuji Photo Film Co Ltd Fine structure, method for creating fine structure, and raman spectroscopy and spectroscope
WO2005078415A1 (en) * 2004-02-13 2005-08-25 Omron Corporation Surface plasmon resonance sensor
US7776196B2 (en) * 2006-09-28 2010-08-17 Kabushiki Kaisha Toshiba Method for arranging particles and method for manufacturing light-emitting device
JP2011111355A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Method for manufacturing thin film, and thin film element
JP2015083540A (en) * 2014-12-03 2015-04-30 株式会社リコー Thin film manufacturing method, piezoelectric element manufacturing method, and recording head manufacturing method
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite
WO2023089922A1 (en) * 2021-11-18 2023-05-25 浜松ホトニクス株式会社 Test object analysis method

Also Published As

Publication number Publication date
JP3989148B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP6689272B2 (en) Method for producing transparent conductive film using multi-stage light irradiation
Sylvestre et al. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media
Chan et al. Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition
CN106353296B (en) Method for preparing high-uniformity surface-enhanced Raman active substrate
Link et al. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence
Golightly et al. Analysis of titanium nanoparticles created by laser irradiation under liquid environments
Pérez-Mayen et al. SERS substrates fabricated with star-like gold nanoparticles for zeptomole detection of analytes
AU2016238768B2 (en) Metal-polymer composite material
JP2001149774A (en) Light immobilizing method for metallic fine particles
JP2006349463A (en) Surface reinforcing raman spectroscopic analyzing jig and its manufacturing method
Lee et al. Simultaneous preparation of SERS‐active metal colloids and plates by laser ablation
JP2014509744A (en) Surface enhanced Raman scattering apparatus and method
WO2004101430A1 (en) Method for preparation of metal nano-rod and use thereof
Veziroglu et al. Photocatalytic growth of hierarchical Au needle clusters on highly active TiO2 thin film
Hesse et al. Investigation by surface-enhanced Raman spectroscopy of the effect of oxygen and hydrogen plasmas on adsorbate-covered gold and silver island films
Schmidt-Stein et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release
Kawasaki et al. Laser fragmentation of water-suspended gold flakes via spherical submicroparticles to fine nanoparticles
Sakir et al. SERS-active hydrophobic substrates fabricated by surface growth of Cu nanostructures
JP2010078482A5 (en)
EP2580373B1 (en) Procedure for preparing a mesostructured electrically conductive coating at low temperature
JP3823245B2 (en) Photodeposition and fixation method of metal fine particles on the surface of conductive material
JP3742872B2 (en) Electroless plating method using light-fixed fine particles as catalyst
WO2016024793A2 (en) Production method for transparent electrically-conductive film using multistage light irradiation
WO2008081182A1 (en) Methods of adhering particles to a material by heating
JP2004035978A (en) Method for forming fine structure of metallic microparticle group

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees