JP2001148312A - Temperature detecting circuit and temperature detecting method - Google Patents

Temperature detecting circuit and temperature detecting method

Info

Publication number
JP2001148312A
JP2001148312A JP33158199A JP33158199A JP2001148312A JP 2001148312 A JP2001148312 A JP 2001148312A JP 33158199 A JP33158199 A JP 33158199A JP 33158199 A JP33158199 A JP 33158199A JP 2001148312 A JP2001148312 A JP 2001148312A
Authority
JP
Japan
Prior art keywords
winding
resistance value
temperature detection
temperature
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33158199A
Other languages
Japanese (ja)
Inventor
Haruyuki Imai
井 晴 之 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP33158199A priority Critical patent/JP2001148312A/en
Publication of JP2001148312A publication Critical patent/JP2001148312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a temperature measuring circuit capable of precisely measuring the temperatures of a transformer and a coil. SOLUTION: Since a winding 4 for detecting temperature which mutually cancels inductance component with a secondary winding 2 of a transformer 1 is arranged, and one end P of the secondary winding 2 and one end M of the winding 4 for detecting temperature are connected with a resistance measuring circuit 3, a voltage is not applied almost at all across the measuring terminals of the resistance measuring circuit 3. Consequently, the resistance measuring circuit 3 can measure the resistance summing the resistance between both ends of the secondary winding 2 and the resistance between both ends of the winding 4 for detecting the temperature without being affected by a secondary side voltage of the transformer 1, measuring precision of the resistance is improved, and a high voltage breakdown structure of the resistance measuring circuit 3 is made unnecessary. Since the resistance can be measured while the transformer 1 is operated, temperature change of the transformer 1 can be detected in realtime.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器内部の温度
やコンバータ内のコイルの温度を検出する温度検出回路
および温度検出方法に関し、特に、巻線やコイルの抵抗
値の変化を測定して温度を検出する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature detecting circuit and a temperature detecting method for detecting a temperature inside a transformer and a temperature of a coil inside a converter, and more particularly, to measuring a change in resistance of a winding or a coil. The present invention relates to a technology for detecting a temperature.

【0002】[0002]

【従来の技術】従来、変圧器(以下、トランスと呼ぶ)
やコイルの巻線の温度上昇を測定する手法として、巻線
やコイルの抵抗値の測定結果に基づいて温度を検出する
抵抗法と、熱電対を利用して温度を検出する熱電対法と
が知られている。
2. Description of the Related Art Conventionally, a transformer (hereinafter referred to as a transformer).
Methods for measuring the temperature rise of coils and coil windings include a resistance method that detects the temperature based on the measurement results of the winding and coil resistance values, and a thermocouple method that uses a thermocouple to detect the temperature. Are known.

【0003】抵抗法は、被測定物の材質(例えば、銅)
の導体率の温度変化係数に基づいて、被測定物の導体率
変化から温度変化を検知する手法であり、きわめて高精
度に温度を測定することができる。一般には、導体率の
変化を測定する代わりに、抵抗値の変化を測定する。
In the resistance method, the material of the object to be measured (for example, copper)
This is a method of detecting a temperature change from a change in the conductivity of an object to be measured based on the coefficient of temperature change of the conductivity, and can measure the temperature with extremely high accuracy. Generally, instead of measuring the change in the conductivity, the change in the resistance value is measured.

【0004】一方、熱電対法は、原理的には、図8
(a)および図(b)のような構造になっている。図8
(a)に示すように、材質の異なる2種類の金属31,
32の両端を接続して閉回路を構成し、その両端に温度
差を与えると閉回路に電圧が発生して電流が流れる現象
が、ゼーベック効果として一般に知られている。図8
(b)に示すように、この接続点の一端を開放して電圧
計33を接続すれば、熱起電力による電位差の形で検出
することができる。
On the other hand, the thermocouple method is, in principle, shown in FIG.
The structure is as shown in FIG. FIG.
As shown in (a), two kinds of metals 31 having different materials are used.
A phenomenon in which a voltage is generated in the closed circuit and a current flows when a temperature difference is applied to both ends of the closed circuit by connecting both ends of the 32 is generally known as the Seebeck effect. FIG.
As shown in (b), if one end of this connection point is opened and the voltmeter 33 is connected, it is possible to detect in the form of a potential difference due to thermoelectromotive force.

【0005】熱起電力は、組み合わせる金属の種類と両
接点の温度差に依存する特性を有するため、図8(b)
に示すように、電圧計33を接続した一端を基準温度
(例えば、室温)に設定し、他方の接触点を被測定物に
接触させれば、両接点の温度差(t2−t1)に応じた
電圧が電圧計33により測定される。
[0005] Since the thermoelectromotive force has characteristics depending on the type of metal to be combined and the temperature difference between the two contacts, FIG.
As shown in (2), if one end to which the voltmeter 33 is connected is set to a reference temperature (for example, room temperature), and the other contact point is brought into contact with an object to be measured, the temperature difference (t2-t1) according to the two contacts The measured voltage is measured by the voltmeter 33.

【0006】[0006]

【発明が解決しようとする課題】抵抗法で温度を測定す
る場合、測定対象であるトランスの巻線やコイルに対し
て、直流電圧やインダクタンス成分の影響を受けない程
度の低周波交流電圧を印加して電流を流し、この状態で
オームの法則を利用してトランスやコイルの抵抗値を測
定する。トランスやコイルが動作中に抵抗法で温度を測
定しようとすると、トランスやコイルの巻線に印加され
ている電圧がそのまま抵抗値測定回路に印加されるた
め、抵抗値測定回路が故障するおそれがある。
When the temperature is measured by the resistance method, a low-frequency AC voltage that is not affected by a DC voltage or an inductance component is applied to a winding or a coil of a transformer to be measured. In this state, the resistance of the transformer or coil is measured using Ohm's law. If the temperature is measured by the resistance method while the transformer or coil is operating, the voltage applied to the winding of the transformer or coil is directly applied to the resistance measurement circuit, and the resistance measurement circuit may fail. is there.

【0007】また、抵抗値測定回路の測定端子間に印加
される電圧は測定条件により変動するため、トランスの
巻線やコイルの抵抗値を精度よく測定することができな
いという問題もある。
Further, since the voltage applied between the measurement terminals of the resistance value measurement circuit varies depending on the measurement conditions, there is a problem that the resistance values of the windings and coils of the transformer cannot be measured accurately.

【0008】図9はトランス1の内部温度を測定する従
来の温度検出回路の回路図である。トランス1の二次巻
線2の両端に抵抗値測定回路3が接続されている。抵抗
値測定回路3は、二次巻線2の両端間の抵抗を測定し、
抵抗値の変化によりトランス1の温度を検出する。
FIG. 9 is a circuit diagram of a conventional temperature detecting circuit for measuring the internal temperature of the transformer 1. A resistance measuring circuit 3 is connected to both ends of the secondary winding 2 of the transformer 1. The resistance value measuring circuit 3 measures the resistance between both ends of the secondary winding 2,
The temperature of the transformer 1 is detected from a change in the resistance value.

【0009】図9の抵抗値測定回路3には、二次巻線2
の両端間の電圧が印加されるため、抵抗値測定回路3は
この電圧に耐えられるような電圧耐性を持たなければな
らない。このため、抵抗値測定回路3のコストが高くな
るという問題がある。
The resistance measurement circuit 3 shown in FIG.
Is applied, the resistance value measurement circuit 3 must have a voltage resistance that can withstand this voltage. Therefore, there is a problem that the cost of the resistance value measuring circuit 3 is increased.

【0010】一方、熱電対法で温度を測定する場合、ト
ランス1の巻線やコイルの温度を測定するには、トラン
ス1のフェライトコア部やコイルの巻線部に熱電対用の
プローブを当てなければならず、プローブと被測定物と
の密着具合により、温度の測定結果が変化し、測定精度
にばらつきが生じるという問題がある。
On the other hand, when measuring the temperature by the thermocouple method, in order to measure the temperature of the windings and coils of the transformer 1, a probe for a thermocouple is applied to the ferrite core and the windings of the coil of the transformer 1. However, there is a problem that the measurement result of the temperature changes depending on the degree of close contact between the probe and the object to be measured, and the measurement accuracy varies.

【0011】さらに、二次側に複数の巻線を有するトラ
ンス1や、巻線が何層にも及ぶトランス1の場合、トラ
ンス1の内層部の温度を正確に測定するには、熱電対プ
ローブを巻線とともに内層に巻き込んだトランス1を作
製せざるを得ないが、巻き込まれた熱電対自体に伝わる
放熱経路ができることや、熱電対の周囲に隙間ができる
ために、被測定物の温度測定結果に悪影響が生じ、正確
な測定ができないという問題がある。
Further, in the case of a transformer 1 having a plurality of windings on the secondary side or a transformer 1 having a plurality of windings, a thermocouple probe is required to accurately measure the temperature of the inner layer of the transformer 1. The transformer 1 must be manufactured with the coil wound in the inner layer together with the windings. However, since there is a heat dissipation path to be transmitted to the wound thermocouple itself and a gap is formed around the thermocouple, the temperature measurement of the object to be measured There is a problem that the result is adversely affected and accurate measurement cannot be performed.

【0012】また、熱電対法の場合、点接触による温度
測定を行うため、巻線全体の温度を精度よく測定するこ
とはできないという問題がある。
In the case of the thermocouple method, since the temperature is measured by point contact, there is a problem that the temperature of the entire winding cannot be accurately measured.

【0013】さらに、抵抗法にしても、熱電対法にして
も、評価用としてトランス1やコイルの温度を検出する
ことはできても、量産段階の製品の動作中温度を検出す
ることは、原理的にきわめて難しいという問題がある。
In addition, even if the temperature of the transformer 1 or the coil can be detected for evaluation using the resistance method or the thermocouple method, it is not possible to detect the operating temperature of the product in the mass production stage. There is a problem that it is extremely difficult in principle.

【0014】本発明は、このような点に鑑みてなされた
ものであり、その目的は、トランスやコイルが動作中で
あっても、トランスやコイルの温度を精度よく測定する
ことができる温度測定回路を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to measure the temperature of a transformer or a coil with high accuracy even when the transformer or the coil is operating. It is to provide a circuit.

【0015】[0015]

【課題を解決するための手段】上述した課題を解決する
ために、請求項1の発明は、変圧器の一次巻線、二次巻
線または補助巻線の抵抗値を測定する抵抗値測定回路を
備え、前記抵抗値測定回路による測定結果により前記変
圧器内部の温度を検出する温度検出回路において、前記
一次巻線、二次巻線または前記補助巻線と磁気結合した
温度検出用巻線を備え、前記温度検出用巻線と、前記一
次巻線、二次巻線または前記補助巻線とは、互いのイン
ダクタンス成分が相殺されるように接続され、前記抵抗
値測定回路は、前記温度検出用巻線の両端間の抵抗値
と、前記一次巻線、二次巻線または前記補助巻線の両端
間の抵抗値とを合成した抵抗値を測定する。
In order to solve the above-mentioned problems, a first aspect of the present invention is a resistance value measuring circuit for measuring a resistance value of a primary winding, a secondary winding or an auxiliary winding of a transformer. In the temperature detection circuit for detecting the temperature inside the transformer according to the measurement result by the resistance value measurement circuit, the temperature detection winding magnetically coupled to the primary winding, the secondary winding or the auxiliary winding The temperature detection winding and the primary winding, the secondary winding, or the auxiliary winding are connected so that their respective inductance components cancel each other, and the resistance value measuring circuit includes the temperature detection winding. A resistance value obtained by combining a resistance value between both ends of the service winding and a resistance value between both ends of the primary winding, the secondary winding, or the auxiliary winding is measured.

【0016】請求項1の発明では、一次巻線、二次巻線
または補助巻線と互いにインダクタンス成分を相殺しあ
う温度検出用巻線を設けるため、抵抗値測定回路は変圧
器の二次側電圧に影響されることなく、抵抗値を測定で
きる。
According to the first aspect of the present invention, since the primary winding, the secondary winding, or the auxiliary winding is provided with a temperature detecting winding that cancels out the inductance component, the resistance value measuring circuit is provided on the secondary side of the transformer. The resistance value can be measured without being affected by the voltage.

【0017】請求項2の発明では、温度検出用巻線を、
一次巻線、二次巻線または補助巻線と同一巻数で同一極
性にするため、温度検出用巻線と、一次巻線、二次巻線
または補助巻線との互いのインダクタンス成分を相殺で
きる。
According to the second aspect of the present invention, the temperature detecting winding is
Since the number of turns is the same as that of the primary winding, the secondary winding or the auxiliary winding and the polarity is the same, the mutual inductance components of the temperature detection winding and the primary winding, the secondary winding or the auxiliary winding can be offset. .

【0018】請求項3の発明では、変圧器の内側に温度
検出用巻線を配置するため、従来は測定不可能であっ
た、変圧器内部の温度上昇を精度よく検出できる。
According to the third aspect of the present invention, since the temperature detecting winding is arranged inside the transformer, the temperature rise inside the transformer, which cannot be measured conventionally, can be accurately detected.

【0019】請求項4の発明は、電圧変換用コイルにエ
ネルギーを蓄積し、あるいは前記電圧変換用コイルに蓄
積されたエネルギーを放出することにより、直流電圧レ
ベルの変換を行うコンバータ回路における、前記電圧変
換用コイルの抵抗値を測定する抵抗値測定回路を備え、
前記抵抗値測定回路による測定結果に基づいて、前記電
圧変換用コイル内部の温度を検出する温度検出回路にお
いて、前記電圧変換用コイルと磁気結合した温度検出用
巻線を備え、前記温度検出用巻線と前記電圧変換用コイ
ルとは、互いのインダクタンス成分が相殺されるように
接続され、前記抵抗値測定回路は、前記温度検出用巻線
の両端間の抵抗値と、前記電圧変換用コイルの両端間の
抵抗値とを合成した抵抗値に基づいて、前記電圧変換用
コイル内部の温度を検出する。
According to a fourth aspect of the present invention, there is provided a converter circuit for converting a DC voltage level by storing energy in a voltage conversion coil or discharging energy stored in the voltage conversion coil. Equipped with a resistance value measurement circuit that measures the resistance value of the conversion coil,
A temperature detection circuit for detecting a temperature inside the voltage conversion coil based on a measurement result by the resistance value measurement circuit, comprising a temperature detection winding magnetically coupled to the voltage conversion coil; The wire and the voltage conversion coil are connected such that their inductance components are canceled each other, and the resistance value measurement circuit includes a resistance value between both ends of the temperature detection winding and a resistance value of the voltage conversion coil. A temperature inside the voltage conversion coil is detected based on a resistance value obtained by combining the resistance value between both ends.

【0020】請求項5の発明では、電圧変換用コイルと
互いにインダクタンス成分を相殺し合う温度検出用巻線
を設けるため、抵抗値測定回路は電圧変換用コイルの両
端間電圧に影響されることなく、抵抗値を測定できる。
According to the fifth aspect of the present invention, since the voltage conversion coil and the temperature detection winding for canceling the inductance component are provided, the resistance value measuring circuit is not affected by the voltage between both ends of the voltage conversion coil. , The resistance value can be measured.

【0021】請求項6の発明では、温度検出用巻線を電
圧変換用コイルと同一巻数で同一極性にするため、温度
検出用巻線と電圧変換用コイルとの互いのインダクタン
ス成分を相殺できる。
According to the sixth aspect of the present invention, since the temperature detection winding has the same number of turns and the same polarity as the voltage conversion coil, the mutual inductance components of the temperature detection winding and the voltage conversion coil can be canceled.

【0022】請求項7の発明は、電圧変換用コイルにエ
ネルギーを蓄積し、あるいは前記電圧変換用コイルに蓄
積されたエネルギーを放出することにより、直流電圧レ
ベルの変換を行うコンバータ回路における、前記電圧変
換用コイルの抵抗値を抵抗値測定回路で測定した結果に
基づいて、前記電圧変換用コイルの温度を測定する温度
検出方法において、前記電圧変換用コイルと磁気結合し
た温度検出用巻線と、前記電圧変換用コイルとを、互い
のインダクタンス成分が相殺されるように接続し、前記
温度検出用巻線の両端間の抵抗値と、前記電圧変換用巻
線の両端間の抵抗値とを合成した抵抗値に基づいて、前
記変圧器内部の温度を検出する。
According to a seventh aspect of the present invention, there is provided a converter circuit for converting a DC voltage level by storing energy in a voltage conversion coil or discharging energy stored in the voltage conversion coil. In a temperature detection method for measuring the temperature of the voltage conversion coil based on the result of measuring the resistance of the conversion coil with a resistance measurement circuit, a temperature detection winding magnetically coupled to the voltage conversion coil, The voltage conversion coil and the voltage conversion coil are connected such that their mutual inductance components cancel each other, and the resistance between both ends of the temperature detection winding and the resistance between both ends of the voltage conversion winding are combined. The temperature inside the transformer is detected based on the obtained resistance value.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る温度検出回路
について、図面を参照しながら具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a temperature detecting circuit according to the present invention will be specifically described with reference to the drawings.

【0024】(第1の実施形態)第1の実施形態は、ト
ランスの二次側電圧に影響されることなく、トランス内
部の温度を正確に測定できることを特徴とする。
(First Embodiment) The first embodiment is characterized in that the temperature inside the transformer can be accurately measured without being affected by the secondary voltage of the transformer.

【0025】図1は本発明に係る温度検出回路の第1の
実施形態の回路図である。図1では、図9と共通する構
成部分には同一符号を付している。図1の温度検出回路
は、トランス1の二次巻線2と同一巻数で同一極性の温
度検出用巻線4を備えている。この温度検出用巻線4の
一端Gは二次巻線2の一端に接続され、他端Mは抵抗値
測定回路3に接続されている。また、二次巻線2の他端
Pも抵抗値測定回路3に接続されている。
FIG. 1 is a circuit diagram of a first embodiment of a temperature detecting circuit according to the present invention. In FIG. 1, the same components as those in FIG. 9 are denoted by the same reference numerals. The temperature detection circuit shown in FIG. 1 includes a temperature detection winding 4 having the same number of turns and the same polarity as the secondary winding 2 of the transformer 1. One end G of the temperature detecting winding 4 is connected to one end of the secondary winding 2, and the other end M is connected to the resistance measuring circuit 3. The other end P of the secondary winding 2 is also connected to the resistance value measuring circuit 3.

【0026】トランス1の一次巻線5には、スイッチン
グ素子21と、このスイッチング素子21のオン・オフ
を制御する一次側制御回路22とが接続されている。ま
た、二次巻線2には、ダイオード23と負荷24が接続
され、負荷24に並列にコンデンサ25が接続されてい
る。
The primary winding 5 of the transformer 1 is connected to a switching element 21 and a primary side control circuit 22 for controlling ON / OFF of the switching element 21. Further, a diode 23 and a load 24 are connected to the secondary winding 2, and a capacitor 25 is connected in parallel with the load 24.

【0027】トランス1の一次巻線5に図1の実線矢印
Y1の向きに電圧が印加されると、二次巻線2と温度検
出用巻線4には実線矢印Y2の向きに電圧が誘起され
る。また、一次巻線5に点線矢印Y3の向きに電圧が印
加されると、二次巻線2と温度検出用巻線4には点線矢
印Y4の向きに電圧が誘起される。
When a voltage is applied to the primary winding 5 of the transformer 1 in the direction of the solid arrow Y1 in FIG. 1, a voltage is induced in the secondary winding 2 and the temperature detecting winding 4 in the direction of the solid arrow Y2. Is done. When a voltage is applied to the primary winding 5 in the direction of the dotted arrow Y3, a voltage is induced in the secondary winding 2 and the temperature detection winding 4 in the direction of the dotted arrow Y4.

【0028】二次巻線2と温度検出用巻線4の巻数を同
一にしているため、二次巻線2と抵抗値測定回路3との
接続点Pの電圧と、温度検出用巻線4と抵抗値測定回路
3との接続点Mの電圧とは略等しくなる。
Since the number of turns of the secondary winding 2 and the temperature detection winding 4 is the same, the voltage at the connection point P between the secondary winding 2 and the resistance value measuring circuit 3 and the temperature detection winding 4 And a voltage at a connection point M between the resistance value measuring circuit 3 and the resistance value measuring circuit 3 becomes substantially equal.

【0029】図2は接続点P,Mの電圧波形を示す図で
ある。図示のように、接続点P,Mの電圧波形(図2
(a)、図2(b))はほとんど同じになる。抵抗値測
定回路3には、接続点P,M間の電圧が印加されるた
め、接続点P,Mの電圧が同じであれば、抵抗値測定回
路3の両測定端子間の電位差は略ゼロ・ボルトになる
(図2(c))。このため、抵抗値測定回路3は、トラ
ンス1の二次側に誘起される電圧の影響をほとんど受け
なくなり、従来の抵抗値測定回路3のように高耐圧構造
にする必要もなくなる。したがって、安価なコストで抵
抗値測定回路3を構成することができる。
FIG. 2 is a diagram showing voltage waveforms at the connection points P and M. As shown, the voltage waveforms at the connection points P and M (FIG. 2)
(A) and FIG. 2 (b) are almost the same. Since the voltage between the connection points P and M is applied to the resistance measurement circuit 3, if the voltages at the connection points P and M are the same, the potential difference between the two measurement terminals of the resistance measurement circuit 3 is substantially zero. -It becomes a bolt (Fig. 2 (c)). For this reason, the resistance value measuring circuit 3 is hardly affected by the voltage induced on the secondary side of the transformer 1 and does not need to have a high withstand voltage structure unlike the conventional resistance value measuring circuit 3. Therefore, the resistance value measuring circuit 3 can be configured at low cost.

【0030】図3は抵抗値測定回路3の内部構成を示す
回路図である。抵抗値測定回路3の内部には、被測定抵
抗R1の両端子間に定電流を流す定電流源6と、被測定
抵抗R1の両端間の電圧を測定する電圧計7とが設けら
れている。
FIG. 3 is a circuit diagram showing the internal configuration of the resistance value measuring circuit 3. Inside the resistance value measuring circuit 3, a constant current source 6 for flowing a constant current between both terminals of the resistance to be measured R1 and a voltmeter 7 for measuring a voltage between both ends of the resistance to be measured R1 are provided. .

【0031】図3の回路では、定電流源6により被測定
抵抗R1に定電流を流した状態で、被測定抵抗R1の抵
抗値Rを測定する。電圧計7による測定電圧をV、定電
流源6を流れる電流をIとすると、R=V/Iの関係が
成り立つ。
In the circuit shown in FIG. 3, the resistance value R of the measured resistor R1 is measured while a constant current is supplied to the measured resistor R1 by the constant current source 6. Assuming that the voltage measured by the voltmeter 7 is V and the current flowing through the constant current source 6 is I, the relationship of R = V / I holds.

【0032】図3の回路は、リード部を電流経路と電圧
測定経路とで分離した四端子メータと呼ばれる構成であ
り、リード部の配線抵抗により生じた電圧誤差を排除で
きるという特徴がある。
The circuit shown in FIG. 3 has a configuration called a four-terminal meter in which a lead portion is separated by a current path and a voltage measurement path, and has a feature that a voltage error caused by wiring resistance of the lead portion can be eliminated.

【0033】本実施形態の場合、図1の抵抗値測定回路
3は、トランス1の二次巻線2の抵抗値と温度検出用巻
線4の抵抗値とを合成した抵抗値とを測定する。
In the case of the present embodiment, the resistance value measuring circuit 3 of FIG. 1 measures a resistance value obtained by combining the resistance value of the secondary winding 2 of the transformer 1 and the resistance value of the temperature detection winding 4. .

【0034】ここで、二次巻線2と温度検出用巻線4は
ともに、等価的に、インダクタンス成分以外に、抵抗成
分を有する。図1のように接続すると、二次巻線2と温
度検出用巻線4のインダクタンス成分は互いに打ち消し
合うが、抵抗成分は両巻線の抵抗値を加算した値にな
る。
Here, both the secondary winding 2 and the temperature detecting winding 4 equivalently have a resistance component other than the inductance component. When connected as shown in FIG. 1, the inductance components of the secondary winding 2 and the temperature detection winding 4 cancel each other out, but the resistance component becomes a value obtained by adding the resistance values of both windings.

【0035】このため、図1の抵抗値測定回路3は、二
次巻線2と温度検出用巻線4の両抵抗成分を合計した抵
抗値を測定する。この抵抗値は、トランス1の温度に応
じて変化するため、抵抗値測定回路3の測定結果によ
り、トランス1の温度を精度よく検出することができ
る。
For this reason, the resistance value measuring circuit 3 of FIG. 1 measures the total resistance value of both the secondary winding 2 and the temperature detecting winding 4. Since this resistance value changes according to the temperature of the transformer 1, the temperature of the transformer 1 can be accurately detected based on the measurement result of the resistance measurement circuit 3.

【0036】図4はトランス1のコア周辺の構造を簡易
的に示した図である。トランス1のコア部分が最も温度
上昇が激しいため、温度検出用巻線4をなるべくコアに
近接配置するのが望ましい。
FIG. 4 is a diagram simply showing the structure around the core of the transformer 1. Since the temperature of the core of the transformer 1 rises most steeply, it is desirable to arrange the temperature detecting winding 4 as close to the core as possible.

【0037】図4(a)は、トランス1の最内層に一次
巻線5を巻き付け、その外側に二次巻線2と温度検出用
巻線4を交互に巻き付けた例を示している。図示の斜線
部分が温度検出用巻線4を示している。また、図4
(b)は、一次巻線5の外側に温度検出用巻線4を巻き
付け、さらにその外側に二次巻線2を巻き付けた例を示
している。
FIG. 4A shows an example in which the primary winding 5 is wound around the innermost layer of the transformer 1 and the secondary winding 2 and the temperature detecting winding 4 are alternately wound around the primary winding 5. The hatched portion in the drawing indicates the temperature detection winding 4. FIG.
(B) shows an example in which the temperature detection winding 4 is wound around the primary winding 5 and the secondary winding 2 is wound around the outside.

【0038】このように、第1の実施形態では、トラン
ス1の二次巻線2と互いにインダクタンス成分を相殺し
あう温度検出用巻線4を設け、二次巻線2の一端Pと温
度検出用巻線4の一端Mとを抵抗値測定回路3に接続す
るため、抵抗値測定回路3の測定端子間にはほとんど電
圧は印加されなくなる。したがって、抵抗値測定回路3
は、トランス1の二次側電圧に影響されずに、二次巻線
2の両端間の抵抗値と温度検出用巻線4の両端間の抵抗
値とを合計した抵抗値を測定でき、抵抗値の測定精度が
向上するとともに、抵抗値測定回路3を高耐圧構造にす
る必要もなくなる。
As described above, in the first embodiment, the temperature detection winding 4 that cancels out the inductance component with the secondary winding 2 of the transformer 1 is provided, and one end P of the secondary winding 2 is connected to the temperature detection winding. Since one end M of the use winding 4 is connected to the resistance measurement circuit 3, almost no voltage is applied between the measurement terminals of the resistance measurement circuit 3. Therefore, the resistance value measuring circuit 3
Can measure a resistance value obtained by adding a resistance value between both ends of the secondary winding 2 and a resistance value between both ends of the temperature detection winding 4 without being affected by the secondary voltage of the transformer 1. The measurement accuracy of the value is improved, and the resistance value measuring circuit 3 does not need to have a high breakdown voltage structure.

【0039】また、トランス1が動作中であっても、抵
抗値を測定できるため、トランス1の温度変動をリアル
タイムに検出できる。したがって、本実施形態による温
度検出結果を用いて各種電子機器(例えば、CPUやフ
ァン)などを制御すれば、きめの細かい温度制御が可能
になる。
Further, since the resistance value can be measured even while the transformer 1 is operating, the temperature fluctuation of the transformer 1 can be detected in real time. Therefore, if various electronic devices (for example, a CPU and a fan) are controlled using the temperature detection result according to the present embodiment, fine-grained temperature control becomes possible.

【0040】(第2の実施形態)第2の実施形態は、ト
ランス1の補助巻線と同一巻数で同一極性の温度検出用
巻線4を設けるものである。
(Second Embodiment) In the second embodiment, a temperature detecting winding 4 having the same number of turns and the same polarity as the auxiliary winding of the transformer 1 is provided.

【0041】図5は本発明に係る温度検出回路の第2の
実施形態の回路図である。図5の温度検出回路は、トラ
ンス1に補助巻線8が設けられている場合に、この補助
巻線8と同一巻数で同一極性の温度検出用巻線4を補助
巻線8に接続し、温度検出用巻線4の両端間の抵抗値と
補助巻線8の両端間の抵抗値とを合成した抵抗値を抵抗
値測定回路3で測定するものである。
FIG. 5 is a circuit diagram of a temperature detecting circuit according to a second embodiment of the present invention. When the transformer 1 is provided with the auxiliary winding 8, the temperature detecting circuit of FIG. 5 connects the temperature detecting winding 4 having the same number of turns and the same polarity as the auxiliary winding 8 to the auxiliary winding 8. The resistance value obtained by combining the resistance value between both ends of the temperature detecting winding 4 and the resistance value between both ends of the auxiliary winding 8 is measured by the resistance value measuring circuit 3.

【0042】図5の場合も、温度検出用巻線4のインダ
クタンス成分と補助巻線8のインダクタンス成分は互い
に相殺されるため、抵抗値測定回路3の両端子間には、
電圧はほとんど印加されない。したがって、第1の実施
形態と同様に、トランス1の補助巻線8間の電圧に影響
されることなく、トランス1内部の温度を検出でき、温
度の検出精度がよくなる。
In the case of FIG. 5 as well, the inductance component of the temperature detecting winding 4 and the inductance component of the auxiliary winding 8 cancel each other out.
Very little voltage is applied. Therefore, similarly to the first embodiment, the temperature inside the transformer 1 can be detected without being affected by the voltage between the auxiliary windings 8 of the transformer 1, and the temperature detection accuracy is improved.

【0043】(第3の実施形態)第3の実施形態は、DC
-DCコンバータ内のコイルの温度を抵抗法により精度よ
く検出するものである。
(Third Embodiment) In a third embodiment, a DC
-It detects the temperature of the coil in the DC converter with high accuracy by the resistance method.

【0044】図6は本発明に係る温度検出回路の第3の
実施形態の回路図であり、昇圧型コンバータ回路内のコ
イルの温度を測定する温度測定回路の一例を示してい
る。図6の温度測定回路は、昇圧型コンバータ回路内の
電圧変換用コイル9と磁気結合している温度検出用コイ
ル4と、両コイル4,9を合わせた抵抗値を測定する抵
抗値測定回路3とを備えている。
FIG. 6 is a circuit diagram of a third embodiment of a temperature detecting circuit according to the present invention, and shows an example of a temperature measuring circuit for measuring the temperature of a coil in a boost converter circuit. The temperature measurement circuit of FIG. 6 includes a temperature detection coil 4 that is magnetically coupled to a voltage conversion coil 9 in a boost converter circuit, and a resistance value measurement circuit 3 that measures a combined resistance value of the coils 4 and 9. And

【0045】昇圧型コンバータ回路は、直流電源Eと、
電圧変換用コイル9と、スイッチング素子10と、この
スイッチング素子10のオン・オフを制御する制御回路
11と、ダイオード12と、コンデンサ13と、負荷1
4とで構成されている。
The boost converter circuit includes a DC power supply E,
Voltage conversion coil 9, switching element 10, control circuit 11 for controlling ON / OFF of switching element 10, diode 12, capacitor 13, load 1
4.

【0046】温度検出用コイル4と電圧変換用コイル9
とは、共通のコアにより磁気結合しており、両コイルの
巻数は同一で、極性も同一である。温度検出用コイル4
の一端は電圧変換用コイル9の一端に接続され、温度検
出用コイル4の他端と電圧変換用コイル9の他端はいず
れも抵抗値測定回路3に接続されている。
Temperature detecting coil 4 and voltage converting coil 9
Are magnetically coupled by a common core, the number of turns of both coils is the same, and the polarity is the same. Temperature detection coil 4
Is connected to one end of the voltage conversion coil 9, and the other end of the temperature detection coil 4 and the other end of the voltage conversion coil 9 are both connected to the resistance value measurement circuit 3.

【0047】次に、図6の温度検出回路の動作を説明す
る。昇圧型コンバータ回路内のスイッチング素子10が
オンすると、直流電源Eから電圧変換用コイル9を通っ
てスイッチング素子10に電流が流れ、直流電源電圧E
に応じたエネルギーがコイル9に蓄積される。
Next, the operation of the temperature detection circuit of FIG. 6 will be described. When the switching element 10 in the boost converter circuit is turned on, a current flows from the DC power supply E to the switching element 10 through the voltage conversion coil 9, and the DC power supply voltage E
Is stored in the coil 9.

【0048】また、スイッチング素子10がオフする
と、電圧変換用コイル10に蓄積されたエネルギーが放
電されて、ダイオード12を介してコンデンサ13およ
び負荷14に電流が供給される。
When the switching element 10 is turned off, the energy stored in the voltage conversion coil 10 is discharged, and a current is supplied to the capacitor 13 and the load 14 via the diode 12.

【0049】温度検出用コイル4と電圧変換用コイル9
は、巻数が同じで極性も同じであるため、互いのインダ
クタンス成分が相殺されて、抵抗値測定回路3の両端子
間の電圧は略ゼロ・ボルトになる。したがって、抵抗値
測定回路3は、第1および第2の実施形態と同様に、電
圧変換用コイル9の両端間の電圧に影響されることな
く、抵抗値の測定を行える。
Temperature detection coil 4 and voltage conversion coil 9
Have the same number of turns and the same polarity, their inductance components cancel each other, and the voltage between both terminals of the resistance value measuring circuit 3 becomes substantially zero volts. Therefore, similarly to the first and second embodiments, the resistance value measuring circuit 3 can measure the resistance value without being affected by the voltage between both ends of the voltage conversion coil 9.

【0050】このように、第3の実施形態は、コンバー
タ回路内の電圧変換用コイル9と同一巻数で同一極性の
温度検出用コイル4を新たに設け、抵抗値測定回路3の
両測定端子間の電位差が略ゼロ・ボルトになるようにし
て電圧変換用コイル9の抵抗値を測定するため、コンバ
ータ回路が動作中であっても、電圧変換用コイル9の両
端間の電位差に影響されることなく抵抗値を測定でき、
電圧変換用コイルの温度をリアルタイムに精度よく検出
することができる。
As described above, in the third embodiment, the temperature detecting coil 4 having the same number of turns and the same polarity as the voltage converting coil 9 in the converter circuit is newly provided. The resistance value of the voltage conversion coil 9 is measured so that the potential difference of the voltage conversion coil 9 becomes substantially zero volts. Therefore, even when the converter circuit is operating, the resistance value is affected by the potential difference between both ends of the voltage conversion coil 9. Resistance value without
The temperature of the voltage conversion coil can be accurately detected in real time.

【0051】また、抵抗値測定回路3の両測定端子間に
はほとんど電圧がかからないため、高耐圧の回路素子を
用いる必要がなくなり、安価なコストで抵抗値測定回路
3を作製できる。
Further, since almost no voltage is applied between the two measuring terminals of the resistance value measuring circuit 3, there is no need to use a circuit element having a high withstand voltage, and the resistance value measuring circuit 3 can be manufactured at low cost.

【0052】なお、図6では、昇圧型コンバータ回路内
の電圧変換用コイル9の温度を測定する例について説明
したが、本発明は、降圧型コンバータ回路内の電圧変換
用コイル9の温度を測定する場合にも同様に適用可能で
ある。
Although FIG. 6 shows an example in which the temperature of the voltage conversion coil 9 in the boost converter circuit is measured, the present invention measures the temperature of the voltage conversion coil 9 in the step-down converter circuit. The same can be applied to the case of performing the above.

【0053】図7は降圧型コンバータ回路内の電圧変換
用コイル9の温度を測定する温度測定回路の回路図であ
る。図7の降圧型コンバータ回路は、直流電源Eとダイ
オード12のカソード端子との間に接続されたスイッチ
ング素子10と、このスイッチング素子10のオン・オ
フを制御する制御回路11と、電圧変換用コイル9およ
びコンデンサ13からなるローパスフィルタと、負荷1
4とを備えている。
FIG. 7 is a circuit diagram of a temperature measuring circuit for measuring the temperature of the voltage conversion coil 9 in the step-down converter circuit. The step-down converter circuit shown in FIG. 7 includes a switching element 10 connected between a DC power supply E and a cathode terminal of a diode 12, a control circuit 11 for controlling ON / OFF of the switching element 10, and a voltage conversion coil. 9 and a capacitor 13 and a load 1
4 is provided.

【0054】また、電圧変換用コイル9の一端には温度
検出用コイル4が接続され、これらコイルは互いに磁気
結合している。抵抗値測定回路3の一方の測定端子には
電圧変換用コイル9が接続され、他方の測定端子には温
度検出用コイル4が接続されている。
The temperature detecting coil 4 is connected to one end of the voltage converting coil 9, and these coils are magnetically coupled to each other. The voltage measurement coil 9 is connected to one measurement terminal of the resistance value measurement circuit 3, and the temperature detection coil 4 is connected to the other measurement terminal.

【0055】図7の回路の場合も、抵抗値測定回路3の
両測定端子間の電位差は略ゼロ・ボルトになるため、コ
ンバータ回路の動作中でも、電圧変換用コイル9の両端
間の電圧に影響されることなく、同コイルの温度を精度
よく測定することができる。
Also in the case of the circuit of FIG. 7, since the potential difference between the two measuring terminals of the resistance measuring circuit 3 is substantially zero volt, the voltage between both ends of the voltage conversion coil 9 is affected even during the operation of the converter circuit. Without this, the temperature of the coil can be accurately measured.

【0056】上述した第1〜第3の実施形態で説明した
温度検出回路は、プリンタを初めとして種々の電子機器
に適用可能である。例えば、プリンタに適用した場合に
は、温度検出回路により検出された温度が予め定めた最
大制限温度を超えると、ファンを駆動したり、プリンタ
各部に供給する電源電圧レベルを下げるなどのきめの細
かい温度制御を行うことができる。また、温度検出結果
に応じて、CPU等の半導体チップの動作周波数を可変
制御してもよい。
The temperature detection circuits described in the first to third embodiments can be applied to various electronic devices including a printer. For example, when applied to a printer, when the temperature detected by the temperature detection circuit exceeds a predetermined maximum limit temperature, fine-grained operations such as driving a fan or lowering a power supply voltage level supplied to each part of the printer are performed. Temperature control can be performed. Further, the operating frequency of a semiconductor chip such as a CPU may be variably controlled according to the temperature detection result.

【0057】上述した第1および第2の実施形態では、
二次巻線2または補助巻線8の両端間の抵抗値を測定す
る例を説明したが、一次巻線5の両端間の抵抗値を測定
した結果に基づいて、トランス1内部の温度を検出して
もよい。
In the first and second embodiments described above,
Although the example of measuring the resistance value between both ends of the secondary winding 2 or the auxiliary winding 8 has been described, the temperature inside the transformer 1 is detected based on the result of measuring the resistance value between both ends of the primary winding 5. May be.

【0058】[0058]

【発明の効果】以上詳細に説明したように、本発明によ
れば、一次巻線、二次巻線または補助巻線とインピーダ
ンスを相殺しあうような温度検出用巻線を設け、この温
度検出用巻線の抵抗値と、一次巻線、二次巻線または補
助巻線の抵抗値とを合成した抵抗値を測定するため、抵
抗値測定回路の測定端子間に多大な電圧が印加されるお
それがなくなり、抵抗値測定回路を高耐圧構造にする必
要がなくなる。したがって、部品コストを削減できる。
As described in detail above, according to the present invention, a temperature detecting winding is provided which cancels the impedance of the primary winding, the secondary winding or the auxiliary winding. A large voltage is applied between the measurement terminals of the resistance value measurement circuit to measure the resistance value obtained by combining the resistance value of the primary winding, the secondary winding, or the auxiliary winding with the resistance value of the primary winding, the secondary winding, or the auxiliary winding. This eliminates the need for the resistance measurement circuit to have a high withstand voltage structure. Therefore, parts cost can be reduced.

【0059】また、変圧器の二次側電圧の影響を受けず
に温度検出ができるため、検出精度が向上する。さら
に、変圧器の動作中でも温度検出ができるため、変圧器
の温度変動をリアルタイムに測定できる。
Since the temperature can be detected without being affected by the secondary voltage of the transformer, the detection accuracy is improved. Further, since the temperature can be detected even during the operation of the transformer, the temperature fluctuation of the transformer can be measured in real time.

【0060】このため、本発明を利用して、各種電子機
器の温度制御、例えば、CPUの動作クロック周波数の
制御や、電源電圧制御や、ファンの回転数制御等を行え
ば、温度変化に応じてきめの細かい制御が可能になり、
種々の温度条件に最適な状態で各種電子機器を動作させ
ることができるようになる。
Therefore, if the present invention is used to control the temperature of various electronic devices, for example, control the operating clock frequency of the CPU, control the power supply voltage, control the number of revolutions of the fan, etc. Fine-grained control becomes possible,
Various electronic devices can be operated in an optimal state under various temperature conditions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る温度検出回路の第1の実施形態の
回路図。
FIG. 1 is a circuit diagram of a first embodiment of a temperature detection circuit according to the present invention.

【図2】図1の接続点P,Mの電圧波形を示す図。FIG. 2 is a diagram showing voltage waveforms at connection points P and M in FIG. 1;

【図3】抵抗値測定回路の内部構成を示す回路図。FIG. 3 is a circuit diagram showing an internal configuration of a resistance value measuring circuit.

【図4】トランスのコア周辺の構造を簡易的に示した
図。
FIG. 4 is a diagram simply showing a structure around a core of a transformer.

【図5】本発明に係る温度検出回路の第2の実施形態の
回路図。
FIG. 5 is a circuit diagram of a second embodiment of the temperature detection circuit according to the present invention.

【図6】本発明に係る温度検出回路の第3の実施形態の
回路図。
FIG. 6 is a circuit diagram of a third embodiment of the temperature detection circuit according to the present invention.

【図7】降圧型コンバータ回路内の電圧変換用コイルの
温度を測定する温度測定回路の回路図。
FIG. 7 is a circuit diagram of a temperature measurement circuit that measures the temperature of a voltage conversion coil in the step-down converter circuit.

【図8】熱電対法の原理を説明する図。FIG. 8 illustrates the principle of a thermocouple method.

【図9】トランスの内部温度を測定する従来の温度検出
回路の回路図。
FIG. 9 is a circuit diagram of a conventional temperature detection circuit that measures the internal temperature of a transformer.

【符号の説明】[Explanation of symbols]

1 トランス 2 二次巻線 3 抵抗値測定回路 4 温度検出用巻線 5 一次巻線 6 定電流源 7 電圧計 8 補助巻線 9 電圧変換用コイル 31,32 金属線 33 電圧計 DESCRIPTION OF SYMBOLS 1 Transformer 2 Secondary winding 3 Resistance measuring circuit 4 Temperature detection winding 5 Primary winding 6 Constant current source 7 Voltmeter 8 Auxiliary winding 9 Voltage conversion coil 31, 32 Metal wire 33 Voltmeter

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】変圧器の一次巻線、二次巻線または補助巻
線の抵抗値を測定する抵抗値測定回路を備え、前記抵抗
値測定回路による測定結果により前記変圧器内部の温度
を検出する温度検出回路において、 前記一次巻線、二次巻線または前記補助巻線と磁気結合
した温度検出用巻線を備え、 前記温度検出用巻線と、前記一次巻線、二次巻線または
前記補助巻線とは、互いのインダクタンス成分が相殺さ
れるように接続され、 前記抵抗値測定回路は、前記温度検出用巻線の両端間の
抵抗値と、前記一次巻線、二次巻線または前記補助巻線
の両端間の抵抗値とを合成した抵抗値を測定することを
特徴とする温度検出回路。
1. A resistance measuring circuit for measuring a resistance value of a primary winding, a secondary winding or an auxiliary winding of a transformer, and a temperature inside the transformer is detected based on a measurement result by the resistance measuring circuit. A temperature detection circuit, comprising: a temperature detection winding magnetically coupled to the primary winding, the secondary winding, or the auxiliary winding, wherein the temperature detection winding, the primary winding, the secondary winding or The auxiliary winding is connected so that the inductance components of the auxiliary winding cancel each other, and the resistance value measuring circuit includes a resistance value between both ends of the temperature detection winding, the primary winding, and the secondary winding. Alternatively, a resistance value obtained by combining a resistance value between both ends of the auxiliary winding with the resistance value is measured.
【請求項2】前記温度検出用巻線は、前記一次巻線、二
次巻線または前記補助巻線と同一巻数で同一極性であ
り、 前記温度検出用巻線の一端は、前記一次巻線、二次巻線
または前記補助巻線の一端に接続され、 前記温度検出用巻線の他端と、前記一次巻線、二次巻線
または前記補助巻線の他端とは、それぞれ前記抵抗値測
定回路に接続されることを特徴とする請求項1に記載の
温度検出回路。
2. The temperature detection winding has the same number of turns and the same polarity as the primary winding, the secondary winding, or the auxiliary winding, and one end of the temperature detection winding is connected to the primary winding. Connected to one end of the secondary winding or the auxiliary winding, and the other end of the temperature detection winding and the other end of the primary winding, the secondary winding or the auxiliary winding are each connected to the resistor. The temperature detection circuit according to claim 1, wherein the temperature detection circuit is connected to a value measurement circuit.
【請求項3】前記温度検出用巻線は、前記変圧器の外表
面よりも内側に配置されることを特徴とする請求項1ま
たは2に記載の温度検出回路。
3. The temperature detection circuit according to claim 1, wherein the temperature detection winding is disposed inside an outer surface of the transformer.
【請求項4】変圧器の一次巻線、二次巻線または補助巻
線の抵抗値を測定する抵抗値測定回路による測定結果に
基づいて、前記変圧器内部の温度を測定する温度検出方
法において、 前記一次巻線、二次巻線または前記補助巻線と磁気結合
した温度検出用巻線と、前記一次巻線、二次巻線または
前記補助巻線とを、互いのインダクタンス成分が相殺さ
れるように接続し、前記温度検出用巻線の両端間の抵抗
値と、前記一次巻線、二次巻線または前記補助巻線の両
端間の抵抗値とを合成した抵抗値に基づいて、前記変圧
器内部の温度を検出することを特徴とする温度検出方
法。
4. A temperature detecting method for measuring a temperature inside a transformer based on a measurement result by a resistance value measuring circuit for measuring a resistance value of a primary winding, a secondary winding or an auxiliary winding of the transformer. The primary winding, the secondary winding, or the temperature detection winding magnetically coupled to the auxiliary winding, and the primary winding, the secondary winding, or the auxiliary winding are offset by mutual inductance components. So that the resistance value between both ends of the temperature detection winding and the resistance value obtained by combining the resistance value between both ends of the primary winding, the secondary winding or the auxiliary winding, A temperature detecting method, comprising detecting a temperature inside the transformer.
【請求項5】電圧変換用コイルにエネルギーを蓄積し、
あるいは前記電圧変換用コイルに蓄積されたエネルギー
を放出することにより、直流電圧レベルの変換を行うコ
ンバータ回路における、前記電圧変換用コイルの抵抗値
を測定する抵抗値測定回路を備え、 前記抵抗値測定回路による測定結果に基づいて、前記電
圧変換用コイル内部の温度を検出する温度検出回路にお
いて、 前記電圧変換用コイルと磁気結合した温度検出用巻線を
備え、 前記温度検出用巻線と前記電圧変換用コイルとは、互い
のインダクタンス成分が相殺されるように接続され、 前記抵抗値測定回路は、前記温度検出用巻線の両端間の
抵抗値と、前記電圧変換用コイルの両端間の抵抗値とを
合成した抵抗値に基づいて、前記電圧変換用コイル内部
の温度を検出することを特徴とする温度検出回路。
5. Energy is stored in a voltage conversion coil,
Alternatively, in a converter circuit for converting a DC voltage level by discharging energy stored in the voltage conversion coil, a resistance value measurement circuit for measuring a resistance value of the voltage conversion coil is provided; A temperature detection circuit for detecting a temperature inside the voltage conversion coil based on a measurement result by a circuit, comprising a temperature detection winding magnetically coupled to the voltage conversion coil, wherein the temperature detection winding and the voltage The conversion coil is connected so that the inductance components of each other are offset. The resistance value measurement circuit includes a resistance value between both ends of the temperature detection winding and a resistance value between both ends of the voltage conversion coil. A temperature detection circuit for detecting a temperature inside the voltage conversion coil based on a resistance value obtained by combining the temperature detection value and the resistance value.
【請求項6】前記温度検出用巻線は、前記電圧変換用コ
イルと同一巻数で同一極性であり、 前記温度検出用巻線の一端は、前記電圧変換用コイルの
一端に接続され、 前記温度検出用巻線の他端と、前記温度検出用巻線の他
端とは、前記抵抗値測定回路に接続されることを特徴と
する請求項5に記載の温度検出回路。
6. The temperature detection winding has the same number of turns and the same polarity as the voltage conversion coil, and one end of the temperature detection winding is connected to one end of the voltage conversion coil. The temperature detection circuit according to claim 5, wherein the other end of the detection winding and the other end of the temperature detection winding are connected to the resistance measurement circuit.
【請求項7】電圧変換用コイルにエネルギーを蓄積し、
あるいは前記電圧変換用コイルに蓄積されたエネルギー
を放出することにより、直流電圧レベルの変換を行うコ
ンバータ回路における、前記電圧変換用コイルの抵抗値
を抵抗値測定回路で測定した結果に基づいて、前記電圧
変換用コイルの温度を測定する温度検出方法において、 前記電圧変換用コイルと磁気結合した温度検出用巻線
と、前記電圧変換用コイルとを、互いのインダクタンス
成分が相殺されるように接続し、前記温度検出用巻線の
両端間の抵抗値と、前記電圧変換用巻線の両端間の抵抗
値とを合成した抵抗値に基づいて、前記変圧器内部の温
度を検出することを特徴とする温度検出方法。
7. Energy is stored in a voltage conversion coil,
Alternatively, in a converter circuit that converts a DC voltage level by discharging energy stored in the voltage conversion coil, based on a result of measuring a resistance value of the voltage conversion coil by a resistance value measurement circuit, In a temperature detection method for measuring a temperature of a voltage conversion coil, a temperature detection winding magnetically coupled to the voltage conversion coil and the voltage conversion coil are connected so that mutual inductance components are canceled. Detecting a temperature inside the transformer based on a resistance value obtained by combining a resistance value between both ends of the temperature detection winding and a resistance value between both ends of the voltage conversion winding. Temperature detection method.
JP33158199A 1999-11-22 1999-11-22 Temperature detecting circuit and temperature detecting method Pending JP2001148312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33158199A JP2001148312A (en) 1999-11-22 1999-11-22 Temperature detecting circuit and temperature detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33158199A JP2001148312A (en) 1999-11-22 1999-11-22 Temperature detecting circuit and temperature detecting method

Publications (1)

Publication Number Publication Date
JP2001148312A true JP2001148312A (en) 2001-05-29

Family

ID=18245263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33158199A Pending JP2001148312A (en) 1999-11-22 1999-11-22 Temperature detecting circuit and temperature detecting method

Country Status (1)

Country Link
JP (1) JP2001148312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194416A (en) * 2002-12-11 2004-07-08 Shindengen Electric Mfg Co Ltd Synchronous rectification circuit
WO2008095454A1 (en) * 2007-02-07 2008-08-14 Siemens Aktiengesellschaft Protective device and method for its operation
CN102842411A (en) * 2011-06-24 2012-12-26 北京众智同辉科技有限公司 Transformer with temperature measurement winding and method for on-line measuring temperature rise of transformer
CN109827679A (en) * 2019-03-11 2019-05-31 山东理工大学 Distribution transformer winding temperature rise on-line monitoring system and on-line monitoring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194416A (en) * 2002-12-11 2004-07-08 Shindengen Electric Mfg Co Ltd Synchronous rectification circuit
WO2008095454A1 (en) * 2007-02-07 2008-08-14 Siemens Aktiengesellschaft Protective device and method for its operation
US8243409B2 (en) 2007-02-07 2012-08-14 Siemens Aktiengesellschaft Protective device and method for its operation
KR101315935B1 (en) 2007-02-07 2013-10-08 지멘스 악티엔게젤샤프트 Protective device and method for its operation
CN102842411A (en) * 2011-06-24 2012-12-26 北京众智同辉科技有限公司 Transformer with temperature measurement winding and method for on-line measuring temperature rise of transformer
CN109827679A (en) * 2019-03-11 2019-05-31 山东理工大学 Distribution transformer winding temperature rise on-line monitoring system and on-line monitoring method

Similar Documents

Publication Publication Date Title
US7821251B2 (en) Current sensor
EP2265962B1 (en) Magnetic field sensor measuring a direction of a magnetic field in a plane and current sensor
US7990132B2 (en) Current sensor including an integrated circuit die including a first and second coil
US8896334B2 (en) System for measuring soft starter current and method of making same
US7679162B2 (en) Integrated current sensor package
US10823766B2 (en) Detector and a voltage converter
JP2011017632A (en) Flux gate leakage sensor
US11513165B2 (en) Power semiconductor module and leakage current test method for the same
US7397234B2 (en) Current sensor with reset circuit
US7739024B2 (en) Controller for operating at least one fuel injector of an internal combustion engine
JP2012037508A (en) Current sensor
JP2001148312A (en) Temperature detecting circuit and temperature detecting method
US7521919B2 (en) Measuring device for measuring an electrical current
JP4418755B2 (en) Device for measuring current intensity
JP7160005B2 (en) Temperature detection circuit for magnetostrictive sensor, magnetostrictive sensor, and temperature detection method for magnetostrictive sensor
EP3447514A1 (en) Magneto-impedance sensor
JP2000337809A (en) Differential type eddy current range finder
US10014810B1 (en) Reduced-impedance active current measurement
KR100724101B1 (en) AC current sensor using air core
US6351115B1 (en) Low profile laminated shunt
JP3064503U (en) AC current sensor
JP2005003601A (en) Hybrid sensor
Wang et al. Research on Small-Size Closed-Loop Fluxgate Transducer for Current Sensor Applications
JP2005229663A (en) Method of measuring potential difference in power converter circuit
CN110114684B (en) Current measuring device and method for measuring a current in an electrical conductor