JP2001143666A - Cylindrical lithium ion cell - Google Patents

Cylindrical lithium ion cell

Info

Publication number
JP2001143666A
JP2001143666A JP32628299A JP32628299A JP2001143666A JP 2001143666 A JP2001143666 A JP 2001143666A JP 32628299 A JP32628299 A JP 32628299A JP 32628299 A JP32628299 A JP 32628299A JP 2001143666 A JP2001143666 A JP 2001143666A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
lithium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32628299A
Other languages
Japanese (ja)
Other versions
JP3752930B2 (en
Inventor
Kenji Nakai
賢治 中井
Toshiaki Konuki
利明 小貫
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP32628299A priority Critical patent/JP3752930B2/en
Publication of JP2001143666A publication Critical patent/JP2001143666A/en
Application granted granted Critical
Publication of JP3752930B2 publication Critical patent/JP3752930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical ion cell having an excellent life proper even if a lithium transition metal complex oxide is used in a positive electrode. SOLUTION: Lithium manganate is used as a positive electrode active substance and an amorphous carbon is used a negative electrode active substance to prepare a cylindrical lithium ion cell 21. A surface roughness of a surface of a cell vessel 5 is set at Ra=5 μm by a sand blast treatment. A surface area of the cell vessel 5 increases and a radiant heat efficiency is enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は円筒形リチウムイオ
ン電池に係り、特に正極集電体に充放電によりリチウム
を放出・収容可能な正極活物質を塗着した帯状の正極
と、負極集電体に充放電によりリチウムを収容・放出可
能な負極活物質を塗着した帯状の負極とが、リチウムイ
オンが通過可能な帯状のセパレータを介して軸芯の回り
に捲回された電極捲回群を備え、電極捲回群は軸芯と共
に円筒形電池容器に内蔵され、前記電池容器内で支持又
は固定された構造の円筒形リチウムイオン電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical lithium ion battery, and more particularly to a belt-shaped positive electrode in which a positive electrode current collector is coated with a positive electrode active material capable of releasing and containing lithium by charging and discharging, and a negative electrode current collector A band-shaped negative electrode coated with a negative electrode active material capable of containing and releasing lithium by charging and discharging, and an electrode winding group wound around an axis through a band-shaped separator through which lithium ions can pass. The present invention relates to a cylindrical lithium ion battery having a structure in which an electrode winding group is incorporated in a cylindrical battery container together with a shaft core and is supported or fixed in the battery container.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、高出力、高
エネルギー密度である点から、EV(電気自動車)用電
源として注目されている。リチウムイオン二次電池はそ
の形状で、円筒形と角形とに分類することができる。通
常、円筒形電池の内部は、電極が正極、負極共に活物質
が金属箔に塗着された帯状であり、正極、負極が直接接
触しないようにセパレータを挟んで円筒状の軸芯の回り
に断面が渦巻状に捲回され、電極捲回群が形成された捲
回式構造が採られている。そして、電池容器となる円筒
形の缶又は容器に電極捲回群が収納され、電解液注液
後、封口し、初充電することで電池としての機能が付与
される。
2. Description of the Related Art Lithium ion secondary batteries have attracted attention as power sources for EVs (electric vehicles) because of their high output and high energy density. Lithium ion secondary batteries can be classified into cylindrical and prismatic shapes according to their shapes. Normally, the inside of a cylindrical battery is a band in which the active material is coated on a metal foil for both the positive electrode and the negative electrode. A wound structure is employed in which a cross section is spirally wound and an electrode winding group is formed. Then, the electrode winding group is housed in a cylindrical can or container serving as a battery container, and after injection of the electrolyte solution, sealing and charging for the first time, a function as a battery is provided.

【0003】EV用電源用途に適した概ね容量30Ah
以上の高容量、高出力のリチウムイオン二次電池におい
ては、電池長さ、電池径ともに大きくなる。上述したよ
うに、活物質が金属箔に塗着された帯状の電極は、大き
な電池径に対応させるべく、活物質の塗着量を増加させ
て電極を厚くすると、活物質層が剥離、脱落して電極形
状が維持できなくなる。このため、活物質の塗着厚さを
薄くした長尺の帯状の電極とし、その捲回回数を多くす
ることで電極捲回群の径を大きくしている。
[0003] Approximately 30 Ah capacity suitable for EV power supply
In the above-described high-capacity, high-output lithium ion secondary battery, both the battery length and the battery diameter increase. As described above, in the case of a band-shaped electrode in which the active material is applied to a metal foil, when the amount of the active material applied is increased and the electrode is made thicker so as to correspond to a large battery diameter, the active material layer peels and falls off. As a result, the electrode shape cannot be maintained. For this reason, a long strip-shaped electrode having a thin coating of the active material is used, and the number of windings is increased to increase the diameter of the electrode winding group.

【0004】一方、大電流放電が可能で高出力の電池を
得るために、例えば特開平第9−92335号公報に
は、電極から数多くのリードを取り出し、そのリードを
集結させて電池端子を兼ねる集電部材を電池内に構成す
る技術が提案されている。
On the other hand, in order to obtain a high-power battery capable of discharging a large current, for example, Japanese Patent Application Laid-Open No. 9-92335 discloses that a large number of leads are taken out from an electrode and the leads are combined to also serve as a battery terminal. Techniques have been proposed for configuring a current collecting member in a battery.

【0005】[0005]

【本発明が解決しようとする課題】ところが、以上のよ
うな捲回式構造を有し、電極捲回群が長く、多数回捲回
された電極捲回群においては、高出力が得られる反面、
大電流放電、大電流充電(急速充電や回生)によるジュ
ール熱でしばしば発熱を伴い、電極捲回群自体が大きい
ことから、電池表面からの放熱が追いつかず蓄熱に至
る。EVに搭載された電池の蓄熱対策として、EVの電
池室内に空気を取り入れたり、又は循環させたりする工
夫や、更にその効率を向上させるべく電池室構造の工夫
が考案されている。
However, the electrode-wound group having the above-mentioned wound structure, the electrode-wound group having a long length and a large number of windings, can provide a high output. ,
Joule heat due to large current discharge and large current charge (rapid charge and regeneration) often generates heat, and since the electrode winding group itself is large, heat dissipation from the battery surface cannot catch up and leads to heat storage. As measures for heat storage of a battery mounted on an EV, a device for taking in or circulating air into the battery room of the EV, and a device for the structure of the battery room for further improving the efficiency have been devised.

【0006】正極活物質として充放電によりリチウムを
放出、収容することができるリチウム−遷移金属複酸化
物を、負極活物質として充放電によりリチウムを収容、
放出することができる炭素質物質を用いたリチウムイオ
ン電池は、常温環境下に対して高温環境下では、寿命特
性が低下する。EVに搭載された電池は、低温環境、高
温環境にかかわらず、充放電されることになるので、と
りわけ高温環境下での寿命特性を改善することは、EV
の寿命にそのまま反映されることとなり、EVの電池搭
載方法だけでなく、電池自体の放熱効率を向上させるこ
とは極めて重要な課題となる。
A lithium-transition metal complex oxide capable of releasing and containing lithium by charge and discharge as a positive electrode active material, and lithium by charge and discharge as a negative electrode active material,
The life characteristics of a lithium ion battery using a carbonaceous substance that can be released are deteriorated in a high temperature environment as compared with a normal temperature environment. A battery mounted on an EV is charged and discharged regardless of a low-temperature environment or a high-temperature environment.
Is directly reflected in the life of the battery, and it is extremely important to improve the heat radiation efficiency of the battery itself as well as the method of mounting the battery on the EV.

【0007】本発明は上記事案に鑑み、リチウム−遷移
金属複酸化物を正極に用いても寿命特性に優れる円筒形
リチウムイオン電池を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a cylindrical lithium-ion battery having excellent life characteristics even when a lithium-transition metal double oxide is used for a positive electrode.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、正極集電体に充放電によりリチウムを放
出・収容可能な正極活物質を塗着した帯状の正極と、負
極集電体に充放電によりリチウムを収容・放出可能な負
極活物質を塗着した帯状の負極とが、リチウムイオンが
通過可能な帯状のセパレータを介して軸芯の回りに捲回
された電極捲回群を備え、前記電極捲回群は前記軸芯と
共に円筒形電池容器に内蔵され、前記電池容器内で支持
又は固定された構造の円筒形リチウムイオン電池におい
て、前記電池容器の表面粗さRaが5μm以上であるこ
とを特徴とする。
In order to solve the above problems, the present invention provides a strip-shaped positive electrode in which a positive electrode current collector is coated with a positive electrode active material capable of releasing and containing lithium by charging and discharging, and a negative electrode collector. An electrode winding in which a strip-shaped negative electrode coated with a negative electrode active material capable of containing and releasing lithium by charging and discharging the electric body is wound around an axis through a strip-shaped separator through which lithium ions can pass. A group, the electrode winding group is built in a cylindrical battery container together with the shaft core, and in a cylindrical lithium ion battery having a structure supported or fixed in the battery container, the surface roughness Ra of the battery container is It is characterized by being at least 5 μm.

【0009】本発明では、電池容器の表面粗さRaを5
μm以上とすることにより、電池容器表面積が大きくな
り、電池容器表面の放熱効率を向上させることができる
ので、高温下で寿命が低下するリチウム−遷移金属複酸
化物を正極に用いた円筒形リチウムイオン電池の寿命特
性を改善することができる。
In the present invention, the surface roughness Ra of the battery container is set to 5
When the thickness is at least μm, the surface area of the battery container is increased, and the heat dissipation efficiency of the battery container surface can be improved. The life characteristics of the ion battery can be improved.

【0010】この場合において、正極活物質にリチウム
マンガン複酸化物を、及び/又は負極活物質に非晶質炭
素を用いるようにすれば、円筒形リチウムイオン電池の
寿命特性の改善効果を大きくすることができる。
In this case, if the lithium manganese double oxide is used as the positive electrode active material and / or the amorphous carbon is used as the negative electrode active material, the effect of improving the life characteristics of the cylindrical lithium ion battery is enhanced. be able to.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明をE
V搭載用円筒形リチウムイオン電池に適用した実施の形
態について説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
An embodiment applied to a cylindrical lithium ion battery for mounting V will be described.

【0012】<電池製造方法> [正極板の作製]充放電によりリチウムを放出・収容可能
な活物質であるコバルト酸リチウム(LiCoO)粉
末やマンガン酸リチウム(LiMn)粉末87重
量部と、導電剤として鱗片状黒鉛(平均粒径:20μ
m)8.7重量部と、結着剤としてポリフッ化ビニリデ
ン(PVdF)4.3重量部と、を混合し、これに分散
溶媒のN−メチル−2−ピロリドン(NMP)を添加、
混練したスラリを、厚さ20μmのアルミニウム箔(正
極集電体)の両面に塗布した。このとき、正極板長寸方
向の一方の側縁に幅50mmの未塗布部を残した。その
後乾燥、プレス、裁断して幅300mm、後述する所定
長さ及び正極活物質合剤塗布部所定厚さの帯状の正極板
を得た。正極活物質合剤層の空隙率はいずれも35+−
2%とした。正極板のスラリ未塗布部に切り欠きを入
れ、切り欠き残部をリード片とした。また、隣り合うリ
ード片を20mm間隔とし、リード片の幅は10mmと
した。
<Battery Manufacturing Method> [Preparation of Positive Electrode] 87 parts by weight of lithium cobaltate (LiCoO 2 ) powder and lithium manganate (LiMn 2 O 4 ) powder which are active materials capable of releasing and containing lithium by charge and discharge And flaky graphite (average particle size: 20μ) as a conductive agent
m) 8.7 parts by weight and 4.3 parts by weight of polyvinylidene fluoride (PVdF) as a binder were mixed, and N-methyl-2-pyrrolidone (NMP) as a dispersion solvent was added thereto,
The kneaded slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 μm. At this time, an uncoated portion having a width of 50 mm was left on one side edge in the longitudinal direction of the positive electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a belt-shaped positive electrode plate having a width of 300 mm, a predetermined length described later, and a predetermined thickness of a positive electrode active material mixture application portion predetermined thickness. The porosity of the positive electrode active material mixture layer was 35 +-
2%. A notch was formed in the slurry-uncoated portion of the positive electrode plate, and the remaining portion of the notch was used as a lead piece. Adjacent lead pieces were set at intervals of 20 mm, and the width of the lead pieces was set at 10 mm.

【0013】[負極板の作製]充放電によりリチウムを収
容・放出可能な黒鉛質炭素である大阪ガスケミカル株式
会社(以下、大阪ガスケミカルという。)製のMCMB
粉末や、非晶質炭素である呉羽化学工業株式会社(以
下、呉羽化学という。)製カーボトロンP粉末92重量
部に結着剤として8重量部のポリフッ化ビニリデンを添
加し、これに分散溶媒のN−メチル−2−ピロリドンを
添加、混練したスラリを、厚さ10μmの圧延銅箔(負
極集電体)の両面に塗布した。このとき、負極板長寸方
向の一方の側縁に幅50mmの未塗布部を残した。その
後乾燥、プレス、裁断して幅305mm、後述する所定
長さ及び負極活物質塗布部所定厚さの帯状の負極板を得
た。負極活物質層の空隙率はいずれも35+−2%とし
た。負極板のスラリ未塗布部に正極板と同様に切り欠き
を入れ、切り欠き残部をリード片とした。また、隣り合
うリード片を20mm間隔とし、リード片の幅を10m
mとした。
[Preparation of negative electrode plate] MCMB manufactured by Osaka Gas Chemical Co., Ltd. (hereinafter referred to as Osaka Gas Chemical), which is a graphite carbon capable of containing and releasing lithium by charge and discharge.
8 parts by weight of polyvinylidene fluoride as a binding agent was added to 92 parts by weight of powder or amorphous carbon, Carbotron P powder manufactured by Kureha Chemical Industry Co., Ltd. (hereinafter referred to as Kureha Chemical). The slurry to which N-methyl-2-pyrrolidone was added and kneaded was applied to both sides of a 10 μm-thick rolled copper foil (negative electrode current collector). At this time, an uncoated portion having a width of 50 mm was left on one side edge in the longitudinal direction of the negative electrode plate. Thereafter, drying, pressing, and cutting were performed to obtain a strip-shaped negative electrode plate having a width of 305 mm, a predetermined length described below, and a predetermined thickness of the negative electrode active material application portion. The porosity of each of the negative electrode active material layers was 35 + -2%. A cutout was made in the slurry-uncoated portion of the negative electrode plate in the same manner as the positive electrode plate, and the remaining cutout was used as a lead piece. Adjacent lead pieces are set at intervals of 20 mm, and the width of the lead pieces is set to 10 m.
m.

【0014】[電池の作製]上記作製した帯状の正極板と
負極板とをこれら両極板が直接接触しないように厚さ4
0μm、幅310mmのポリエチレン製セパレータと共
に、直径14mm、内径8mmのガラス繊維をフィラー
として30%分散混入させたポリプロピレン製中空管で
捲回中心となる軸芯11の回りに、40回以上捲回し
た。このとき、正極板及び負極板のリード片(図1の符
号9参照)が、それぞれ捲回群(電極捲回群)の互いに
反対側の両端面に位置するようにした。捲回群径は、正
極板、負極板及びセパレータの長さ及び正極板、負極板
の厚さを調整し、63+−0.5mmとした。
[Preparation of Battery] The strip-shaped positive electrode plate and negative electrode plate prepared above were formed to a thickness of 4 so that these two electrode plates did not come into direct contact with each other.
A polyethylene hollow separator having a diameter of 14 mm and an inner diameter of 8 mm is used as a filler together with a polyethylene separator having a width of 0 μm and a width of 310 mm. did. At this time, the lead pieces (see reference numeral 9 in FIG. 1) of the positive electrode plate and the negative electrode plate were respectively positioned on opposite end surfaces of the wound group (electrode wound group). The diameter of the wound group was adjusted to 63 + -0.5 mm by adjusting the lengths of the positive electrode plate, the negative electrode plate, and the separator, and the thicknesses of the positive electrode plate and the negative electrode plate.

【0015】図1に示すように、正極板から導出されて
いるリード片9を変形させ、その全てを、軸芯11のほ
ぼ延長線上にある極柱(正極外部端子1)周囲から一体
に張り出している集電部材の一部としての鍔部7周面付
近に集合、接触させた後、リード片9と鍔部7周面とを
超音波溶接してリード片9を鍔部7周面に接続し固定し
た。また、負極外部端子1’と負極板から導出されてい
るリード片9との接続操作も、正極外部端子1と正極板
から導出されているリード片9との接続操作と同様に行
った。
As shown in FIG. 1, the lead pieces 9 led out from the positive electrode plate are deformed, and all of them are integrally extended from the periphery of the pole (positive electrode external terminal 1) substantially on the extension of the shaft core 11. After being assembled and brought into contact with the periphery of the flange 7 as a part of the current collecting member, the lead piece 9 and the periphery of the flange 7 are ultrasonically welded to each other to attach the lead 9 to the periphery of the flange 7. Connected and fixed. The connection operation between the negative external terminal 1 'and the lead piece 9 derived from the negative electrode plate was performed in the same manner as the connection operation between the positive external terminal 1 and the lead piece 9 derived from the positive electrode plate.

【0016】その後、正極外部端子1及び負極外部端子
1’の鍔部7周面全周に絶縁被覆8を施した。この絶縁
被覆8は、捲回群6外周面全周にも及ぼした。絶縁被覆
8には、基材がポリプロピレンで、その片面にヘキサメ
タアクリレートからなる粘着剤を塗布した粘着テープを
用いた。この粘着テープを鍔部7周面から捲回群6外周
面に亘って少なくとも1周以上巻いて絶縁被覆8とし
た。そして、捲回群6を外径67mm、内径66mmの
ステンレス(SUS304)製電池容器5内に挿入し
た。後述するように、この電池容器5の電池表面側の表
面粗さRaは5μm以上とした。
Thereafter, an insulating coating 8 was applied to the entire periphery of the flange 7 of the positive external terminal 1 and the negative external terminal 1 '. This insulating coating 8 also extended to the entire circumference of the winding group 6. For the insulating coating 8, a pressure-sensitive adhesive tape was used in which the base material was polypropylene and one side thereof was coated with a pressure-sensitive adhesive made of hexamethacrylate. This adhesive tape was wound at least one or more times from the circumferential surface of the flange 7 to the outer circumferential surface of the winding group 6 to form an insulating coating 8. Then, the wound group 6 was inserted into a stainless steel (SUS304) battery container 5 having an outer diameter of 67 mm and an inner diameter of 66 mm. As will be described later, the surface roughness Ra of the battery container 5 on the battery surface side is set to 5 μm or more.

【0017】次に、アルミナ製で円盤状電池蓋4(蓋
板)裏面と当接する部分の厚さ2mm、内径16mm、
外径25mmの第2のセラミックワッシャ3’を、図1
に示すように、先端が正極外部端子1を構成する極柱、
先端が負極外部端子1’を構成する極柱にそれぞれ嵌め
込んだ。また、アルミナ製で厚さ2mm、内径16m
m、外径28mmの平板状の第1のセラミックワッシャ
3を電池蓋4に載置し、正極外部端子1、負極外部端子
1’をそれぞれ第1のセラミックワッシャ3に通した。
その後、電池蓋4周端面を電池容器5開口部に嵌合し、
双方の接触部全域をレーザ溶接した。このとき、正極外
部端子1、負極外部端子1’は、電池蓋4の中心に形成
された穴を貫通して電池蓋4外部に突出している。そし
て、図1に示すように、第1のセラミックワッシャ3、
金属製ナット2底面よりも平滑な金属ワッシャ14を、
この順に正極外部端子1、負極外部端子1’にそれぞれ
嵌め込んだ。なお、電池蓋4には電池の内圧上昇に応じ
て開裂する開裂弁10が設けられている。開裂弁10の
開裂圧は、1.3×10〜1.8×10Pa(13
0〜180N/cm)とした。
Next, a portion made of alumina, which is in contact with the back surface of the disc-shaped battery cover 4 (cover plate), has a thickness of 2 mm and an inner diameter of 16 mm.
The second ceramic washer 3 'having an outer diameter of 25 mm was
As shown in the figure, a pole whose tip constitutes the positive electrode external terminal 1,
The tip was fitted into each of the poles constituting the negative electrode external terminal 1 '. It is made of alumina and has a thickness of 2 mm and an inner diameter of 16 m.
The first ceramic washer 3 having a plate shape of m and an outer diameter of 28 mm was placed on the battery cover 4, and the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ were respectively passed through the first ceramic washer 3.
Thereafter, the peripheral end surface of the battery cover 4 is fitted into the opening of the battery container 5,
The entire area of both contact portions was laser welded. At this time, the positive external terminal 1 and the negative external terminal 1 ′ penetrate a hole formed at the center of the battery cover 4 and protrude outside the battery cover 4. Then, as shown in FIG. 1, the first ceramic washer 3,
A metal washer 14 that is smoother than the bottom of the metal nut 2
In this order, they were fitted into the positive external terminal 1 and the negative external terminal 1 ', respectively. The battery cover 4 is provided with a cleavage valve 10 that is cleaved according to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 is 1.3 × 10 6 to 1.8 × 10 6 Pa (13
0 to 180 N / cm 2 ).

【0018】次いで、ナット2を正極外部端子1、負極
外部端子1’にそれぞれ螺着し、第2のセラミックワッ
シャ3’、第1のセラミックワッシャ3、金属ワッシャ
14を介して電池蓋4を鍔部7とナット2の間で締め付
けにより固定した。このときの締め付けトルク値は5N
・mとした。なお、締め付け作業が終了するまで金属ワ
ッシャ14は回転しなかった。この状態で、電池蓋4裏
面と鍔部7の間に介在させたゴム(EPDM)製Oリン
グ16の圧縮により電池容器5内部の発電要素は外気か
ら遮断される。
Next, nuts 2 are screwed to the positive external terminal 1 and the negative external terminal 1 ′, respectively, and the battery cover 4 is flanged via the second ceramic washer 3 ′, the first ceramic washer 3, and the metal washer 14. It was fixed between the part 7 and the nut 2 by tightening. The tightening torque value at this time is 5N
・ It was m. The metal washer 14 did not rotate until the fastening operation was completed. In this state, the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the flange portion 7 blocks the power generation element inside the battery container 5 from the outside air.

【0019】その後、電池蓋4に設けた注液口15から
電解液を所定量電池容器5内に注入し、その後注液口1
5を封止することにより円筒形リチウムイオン電池21
を完成させた。
Thereafter, a predetermined amount of electrolyte is injected into the battery container 5 from a liquid injection port 15 provided in the battery cover 4, and then the liquid injection port 1 is filled.
5 by sealing the cylindrical lithium-ion battery 21
Was completed.

【0020】電解液には、エチレンカーボネートとジメ
チルカーボネートとジエチルカーボネートの体積比1:
1:1の混合溶液中へ6フッ化リン酸リチウム(LiP
)を1モル/リットル溶解したものを用いた。な
お、円筒形リチウムイオン電池21には、電池容器5の
内圧の上昇に応じて電流を遮断する電流遮断機構は設け
られていない。
The electrolytic solution contains ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1:
Lithium hexafluorophosphate (LiP
F 6) was used after dissolving 1 mole / liter. It should be noted that the cylindrical lithium ion battery 21 is not provided with a current cutoff mechanism that cuts off current in response to an increase in the internal pressure of the battery container 5.

【0021】(実施例)次に、本実施形態に従って作製
した円筒形リチウムイオン電池21の実施例について説
明する。まず、本実施例の正極板及び負極板を次のよう
に作製した。
(Example) Next, an example of the cylindrical lithium ion battery 21 manufactured according to the present embodiment will be described. First, the positive electrode plate and the negative electrode plate of this example were produced as follows.

【0022】<正極板> [正極板C−1] 正極活物質に日本化学工業株式会社
(以下、日本化学という。)製セルシードC−10を用
いたコバルト酸リチウムとし、正極集電体を含んだ電極
厚さ195μm、長さ636cmの正極板を作製した
(以下、この正極板を正極板C−1という。)。このと
きの正極活物質合剤層のかさ密度は2.77g/cm
とした。 [正極板C−2] 正極活物質に日本化学製セルシードC
−10を用いたコバルト酸リチウムとし、正極集電体を
含んだ電極厚さ199μm、長さ629cmの正極板を
作製した(以下、この正極板を正極板C−2とい
う。)。このときの正極活物質合剤層のかさ密度は2.
77g/cmとした。 [正極板M−1] 正極活物質を三井金属株式会社(以
下、三井金属という。)製のマンガン酸リチウムとし、
正極集電体を含んだ電極厚さ240μm、長さ620c
mの正極板を作製した(以下、この正極板を正極板M−
1という。)。このときの正極活物質合剤層のかさ密度
は2.61g/cmとした。 [正極板M−2] 正極活物質を三井金属製のマンガン酸
リチウムとし、正極集電体を含んだ電極厚さ243μ
m、長さ618cmの正極板を作製した(以下、この正
極板を正極板M−2という。)。このときの正極活物質
合剤層のかさ密度は2.61g/cmとした。
<Positive Electrode Plate> [Positive Electrode Plate C-1] Lithium cobalt oxide using Cell Seed C-10 manufactured by Nippon Chemical Industry Co., Ltd. (hereinafter, referred to as Nippon Chemical Co., Ltd.) as a positive electrode active material, including a positive electrode current collector A positive electrode plate having a thickness of 195 μm and a length of 636 cm was prepared (hereinafter, this positive electrode plate is referred to as positive electrode plate C-1). At this time, the bulk density of the positive electrode active material mixture layer was 2.77 g / cm 3.
And [Positive electrode plate C-2] Cell seed C manufactured by Nippon Chemical Co., Ltd.
A positive electrode plate including a positive electrode current collector and having a thickness of 199 μm and a length of 629 cm was prepared from lithium cobalt oxide using -10 (hereinafter, this positive electrode plate is referred to as positive electrode plate C-2). At this time, the bulk density of the positive electrode active material mixture layer was 2.
77 g / cm 3 . [Positive electrode plate M-1] The positive electrode active material is lithium manganate manufactured by Mitsui Kinzoku Co., Ltd. (hereinafter, referred to as Mitsui Metals).
The electrode thickness including the positive electrode current collector is 240 μm, and the length is 620 c.
m (hereinafter referred to as a positive electrode plate M-
One. ). At this time, the bulk density of the positive electrode active material mixture layer was 2.61 g / cm 3 . [Positive electrode plate M-2] The positive electrode active material was lithium manganate manufactured by Mitsui Metals, and the electrode thickness including the positive electrode current collector was 243 µm.
A positive electrode plate having a length of m and a length of 618 cm was produced (hereinafter, this positive electrode plate is referred to as a positive electrode plate M-2). At this time, the bulk density of the positive electrode active material mixture layer was 2.61 g / cm 3 .

【0023】<負極板> [負極板B−1] 黒鉛質炭素として、大阪ガスケミカル
製のMCMBを用い、負極集電体を含んだ電極厚さ17
3μm、長さ654cmの負極板を作製した(以下、こ
の負極板を負極板B−1という。)。このときの負極活
物質合剤層のかさ密度は1.35g/cmとした。 [負極板B−2] 黒鉛質炭素として、大阪ガスケミカル
製のMCMBを用い、負極集電体を含んだ電極厚さ14
1μm、長さ638cmの負極板を作製した(以下、こ
の負極板を負極板B−2という。)。このときの負極活
物質合剤層のかさ密度は1.35g/cmとした。 [負極板P−1] 非晶質炭素として、呉羽化学製カーボ
トロンPを用い、負極集電体を含んだ電極厚さ175μ
m、長さ647cmの負極板を作製した(以下、この負
極板を負極板P−1という。)。このときの負極活物質
合剤層のかさ密度は0.98g/cmとした。 [負極板P−2] 非晶質炭素として、呉羽化学製カーボ
トロンPを用い、負極集電体を含んだ電極厚さ140μ
m、長さ636cmの負極板を作製した(以下、この負
極板を負極板P−2という。)。このときの負極活物質
合剤層のかさ密度は0.98g/cmとした。
<Negative electrode plate> [Negative electrode plate B-1] As graphite carbon, MCMB manufactured by Osaka Gas Chemicals was used.
A negative electrode plate having a length of 3 μm and a length of 654 cm was manufactured (hereinafter, this negative electrode plate is referred to as negative electrode plate B-1). At this time, the bulk density of the negative electrode active material mixture layer was 1.35 g / cm 3 . [Negative electrode plate B-2] As graphite carbon, MCMB manufactured by Osaka Gas Chemicals was used, and the electrode thickness 14 including the negative electrode current collector was used.
A negative electrode plate having a length of 1 μm and a length of 638 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate B-2). At this time, the bulk density of the negative electrode active material mixture layer was 1.35 g / cm 3 . [Negative electrode plate P-1] Carbotron P manufactured by Kureha Chemical Co., Ltd. was used as the amorphous carbon, and the electrode thickness including the negative electrode current collector was 175 µm.
A negative electrode plate having a length of m and a length of 647 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate P-1). At this time, the bulk density of the negative electrode active material mixture layer was 0.98 g / cm 3 . [Negative electrode plate P-2] Carbotron P manufactured by Kureha Chemical Co., Ltd. was used as the amorphous carbon, and the electrode thickness including the negative electrode current collector was 140 µm.
A negative electrode plate having a length of m and a length of 636 cm was produced (hereinafter, this negative electrode plate is referred to as negative electrode plate P-2). At this time, the bulk density of the negative electrode active material mixture layer was 0.98 g / cm 3 .

【0024】<構成> (実施例1)表1に示すように、正極板C−1と負極板
B−1とを組み合わせた電池21を作製した。電池容器
5の表面を、サンドブラスト処理により表面粗さRa=
5μmとした。電池容器5は円筒状に加工されたままの
状態では、金属光沢を示しているが、サンドブラスト処
理により金属光沢が弱まり、ややくすんだ表面外観とな
る。
<Configuration> (Example 1) As shown in Table 1, a battery 21 was prepared by combining a positive electrode plate C-1 and a negative electrode plate B-1. The surface of the battery container 5 is subjected to sand blasting to make the surface roughness Ra =
The thickness was 5 μm. Although the battery container 5 has a metallic luster in a state in which it is processed into a cylindrical shape, the metallic luster is weakened by sandblasting, and the surface appearance becomes slightly dull.

【0025】[0025]

【表1】 [Table 1]

【0026】(実施例2)表1に示すように、正極板C
−2と負極板P−1とを組み合わせ、それ以外は実施例
1と同様に電池21を作製した。 (実施例3)表1に示すように、正極板M−1と負極板
B−2とを組み合わせ、それ以外は実施例1と同様に電
池21を作製した。 (実施例4)表1に示すように、正極板M−2と負極板
P−2とを組み合わせ、それ以外は実施例1と同様に電
池21を作製した。 (実施例5)表1に示すように、サンドブラスト処理に
より表面粗さRa=10μmとした電池容器5を用いた
以外は実施例4と同様に電池21を作製した。 (実施例6)表1に示すように、サンドペーパー処理に
より表面粗さRa=5μmとした電池容器5を用いた以
外は実施例4と同様に電池21を作製した。
(Example 2) As shown in Table 1, the positive electrode plate C
-2 and the negative electrode plate P-1 were combined, and the other conditions were the same as in Example 1 to produce a battery 21. Example 3 As shown in Table 1, a battery 21 was produced in the same manner as in Example 1, except that the positive electrode plate M-1 and the negative electrode plate B-2 were combined. Example 4 As shown in Table 1, a battery 21 was produced in the same manner as in Example 1 except that the positive electrode plate M-2 and the negative electrode plate P-2 were combined. (Example 5) As shown in Table 1, a battery 21 was produced in the same manner as in Example 4, except that a battery container 5 having a surface roughness Ra of 10 µm by sandblasting was used. (Example 6) As shown in Table 1, a battery 21 was produced in the same manner as in Example 4, except that a battery container 5 having a surface roughness Ra of 5 µm by sandpaper treatment was used.

【0027】<比較例の構成>また、以上の実施例と比
較するために、同時に比較例1〜比較例5の円筒形リチ
ウムイオン電池を作製した。なお、比較例1〜比較例4
の電池は、それぞれ実施例1〜実施例4の電池と電池容
器5の表面粗さRaを除いて同仕様(同一構成)とし
た。
<Structure of Comparative Example> For comparison with the above examples, cylindrical lithium ion batteries of Comparative Examples 1 to 5 were simultaneously manufactured. Comparative Examples 1 to 4
The batteries of Examples 1 to 4 had the same specifications (the same configuration) except for the surface roughness Ra of the battery case 5 and the batteries of Examples 1 to 4.

【0028】(比較例1)表1に示すように、サンドブ
ラスト処理により表面粗さRa=4μmとした電池容器
5を用いた以外は実施例1と同様に電池を作製した。 (比較例2)表1に示すように、サンドブラスト処理に
より表面粗さRa=4μmとした電池容器5を用いた以
外は実施例2と同様に電池を作製した。 (比較例3)表1に示すように、サンドブラスト処理に
より表面粗さRa=4μmとした電池容器5を用いた以
外は実施例3と同様に電池を作製した。 (比較例4)表1に示すように、サンドブラスト処理に
より表面粗さRa=4μmとした電池容器5を用いた以
外は実施例4と同様に電池を作製した。 (比較例5)表1に示すように、円筒状に加工されたま
まの状態の電池容器5を用いた以外は実施例4と同様に
電池を作製した。なお、この電池容器5の表面粗さRa
は0.5μmであった。
Comparative Example 1 As shown in Table 1, a battery was manufactured in the same manner as in Example 1 except that a battery container 5 having a surface roughness Ra of 4 μm by sandblasting was used. (Comparative Example 2) As shown in Table 1, a battery was manufactured in the same manner as in Example 2 except that a battery container 5 having a surface roughness Ra of 4 µm by sandblasting was used. Comparative Example 3 As shown in Table 1, a battery was manufactured in the same manner as in Example 3 except that a battery container 5 having a surface roughness Ra of 4 μm by sandblasting was used. (Comparative Example 4) As shown in Table 1, a battery was manufactured in the same manner as in Example 4 except that a battery container 5 having a surface roughness Ra of 4 µm by sandblasting was used. (Comparative Example 5) As shown in Table 1, a battery was produced in the same manner as in Example 4 except that the battery container 5 in a state of being processed into a cylindrical shape was used. In addition, the surface roughness Ra of this battery container 5
Was 0.5 μm.

【0029】<試験・評価> [試験]次に、以上のように作製した実施例及び比較例の
各電池について、25+−3°Cにて、4.2V定電
圧、電流制限(上限)30A、5時間の充電の後、30
A定電流、終止電圧2.5Vの条件で放電し、放電容量
を計測した。
<Test / Evaluation> [Test] Next, for each of the batteries of the Examples and Comparative Examples produced as described above, a constant voltage of 4.2 V and a current limit (upper limit) of 30 A at 25 + -3 ° C. After charging for 5 hours, 30
Discharge was performed under the conditions of A constant current and a final voltage of 2.5 V, and the discharge capacity was measured.

【0030】その後、電池温度を60+−3°Cまで加
温し、環境温度60+−3°Cにて、4.2V定電圧、
電流制限30A、充電終止条件:定電圧時の電流が0.
3Aに到達した時点、で充電の後、30A定電流、終止
電圧2.5Vの条件で充放電サイクルを繰り返した。充
電と放電、放電と充電の切り替え時には、15分間の休
止期間を設けた。
Thereafter, the battery temperature was raised to 60 + -3 ° C, and at an environmental temperature of 60 + -3 ° C, a 4.2V constant voltage,
Current limit 30 A, charge termination condition: current at constant voltage is 0.
After reaching 3 A, after charging, the charge / discharge cycle was repeated under the conditions of a constant current of 30 A and a final voltage of 2.5 V. At the time of switching between charging and discharging, and between discharging and charging, a rest period of 15 minutes was provided.

【0031】[試験結果]初期放電容量計測結果と充放電
サイクル寿命特性試験結果と下表2に示す。なお、表2
において、充放電サイクル寿命特性は、各電池の初期放
電容量を100としたときの300サイクル時点での放
電容量を百分率で示した放電容量維持率で表している。
また、表2において「同仕様との差」は、電池容器5の
表面粗さRa以外は電極を含めて同仕様の比較例の電池
との放電容量維持率に対する差を示している(例えば、
実施例1の電池の場合には、比較例1の電池との差{8
7(%)−77(%)}=10(ポイント))。
[Test Results] The initial discharge capacity measurement results, the charge / discharge cycle life characteristics test results, and the results are shown in Table 2 below. Table 2
In the above, the charge / discharge cycle life characteristic is represented by a discharge capacity retention rate expressed as a percentage of the discharge capacity at 300 cycles when the initial discharge capacity of each battery is 100.
Further, in Table 2, “difference from the same specification” indicates a difference with respect to the discharge capacity retention ratio from the battery of the comparative example of the same specification including the electrodes except for the surface roughness Ra of the battery container 5 (for example,
In the case of the battery of Example 1, the difference from the battery of Comparative Example 1 was # 8.
7 (%)-77 (%)} = 10 (point)).

【0032】[0032]

【表2】 [Table 2]

【0033】[評価]表2から明らかなように、電池容器
5の表面粗さRaが5μm以上である実施例1〜6の電
池は、表面粗さRaが5μm未満である比較例1〜5の
電池と比べて放電容量維持率、換言すれば、サイクル寿
命、が向上している。このようにサイクル寿命が向上す
る理由は、適切な表面粗さRaを持った電池容器5を用
いることで、電池容器5の表面面積が大きくなり、電池
表面からの放熱効果が向上したことによると考えられ
る。
[Evaluation] As is clear from Table 2, the batteries of Examples 1 to 6 in which the surface roughness Ra of the battery container 5 is 5 μm or more are Comparative Examples 1 to 5 in which the surface roughness Ra is less than 5 μm. The discharge capacity retention ratio, in other words, the cycle life, is improved as compared with the battery of the above. The reason why the cycle life is improved is that the use of the battery container 5 having the appropriate surface roughness Ra increases the surface area of the battery container 5 and improves the heat radiation effect from the battery surface. Conceivable.

【0034】また、サンドペーパーで処理した電池容器
5を用いた実施例6の電池が、サンドブラストで処理
し、同じ表面粗さRaの電池容器5を用いた実施例4の
電池に対して若干放電容量維持率(サイクル寿命)が向
上していた。これは、サンドペーパー処理の方が、電池
容器5の表面が粗面化し表面積が増大したことによるも
のと思われる。
Further, the battery of Example 6 using the battery container 5 treated with sandpaper was slightly discharged from the battery of Example 4 using the battery container 5 treated with sandblast and having the same surface roughness Ra. The capacity retention rate (cycle life) was improved. This is considered to be because the surface of the battery container 5 was roughened and the surface area was increased in the sandpaper treatment.

【0035】更に、実施例1〜4の電池からも明らかな
ように、適切な表面粗さRaの電池容器5を用いること
で、正極活物質や負極活物質の種類に限定されることな
く放電容量維持率(サイクル寿命)は向上するが、表2
に示した同仕様との差を参照すると、正極活物質に、リ
チウムマンガン複酸化物であるマンガン酸リチウムを用
いた実施例3及び4の電池は、電池容器5の表面粗さR
a以外は同仕様の比較例3及び4の電池と比べてサイク
ル寿命向上の効果が大きく、また、負極活物質に、非晶
質炭素を用いた実施例2及び4の電池は、電池容器5の
表面粗さRa以外は同仕様の比較例2及び4の電池と比
べてサイクル寿命向上の効果が大きいことが分かる。特
に、正極活物質に、リチウムマンガン複酸化物であるマ
ンガン酸リチウムを、負極活物質に、非晶質炭素を用い
た実施例4の電池は、電池容器5の表面粗さRa以外は
同仕様の比較例4の電池と比べてひときわサイクル寿命
向上の効果が大きくなっている(同仕様との差15ポイ
ント)。
Further, as is apparent from the batteries of Examples 1 to 4, by using the battery container 5 having an appropriate surface roughness Ra, the discharge can be performed regardless of the type of the positive electrode active material and the negative electrode active material. Although the capacity retention rate (cycle life) improves,
Referring to the difference from the same specification shown in FIG. 5, the batteries of Examples 3 and 4 using lithium manganate, which is a lithium manganese double oxide, as the positive electrode active material, have the surface roughness R of the battery container 5.
Except for “a”, the effect of improving the cycle life was larger than that of the batteries of Comparative Examples 3 and 4 having the same specifications. Also, the batteries of Examples 2 and 4 using amorphous carbon as the negative electrode active material It can be seen that the effect of improving the cycle life is larger than those of the batteries of Comparative Examples 2 and 4 having the same specifications except for the surface roughness Ra of the above. In particular, the battery of Example 4 using lithium manganate, which is a lithium-manganese double oxide, as the positive electrode active material and amorphous carbon as the negative electrode active material has the same specifications except for the surface roughness Ra of the battery container 5. Compared with the battery of Comparative Example 4, the effect of significantly improving the cycle life is greater (15 points difference from the same specification).

【0036】本実施形態では、EV搭載用の大型の円筒
形リチウムイオン電池について例示したが、本発明は、
実質3Ah以上の放電容量を有する円筒形リチウムイオ
ン電池であれば、電池の用途や放電容量の大小に拘わら
ず効果を発揮することができる。また、本発明の円筒形
リチウムイオン電池は、エンジンルーム等50°C程度
の高温下に配置されても長寿命であり、高容量、高出力
の電池にも適用可能であるので、特に電気自動車の電源
としてふさわしい。
In the present embodiment, a large cylindrical lithium ion battery for mounting an EV has been exemplified.
As long as the cylindrical lithium ion battery has a discharge capacity of substantially 3 Ah or more, the effect can be exerted regardless of the use of the battery and the magnitude of the discharge capacity. In addition, the cylindrical lithium ion battery of the present invention has a long life even when placed at a high temperature of about 50 ° C. in an engine room or the like, and is applicable to a high-capacity, high-power battery. Suitable as a power supply for

【0037】なお、本実施形態では電池容器5に円盤状
電池蓋4をレーザ溶接した場合を例示したが、有底筒状
容器(缶)に電池上蓋がカシメによって封口されている
構造の円筒形リチウムイオン電池にも本発明の適用は可
能である。
In this embodiment, the case where the disk-shaped battery cover 4 is laser-welded to the battery case 5 is exemplified. However, the cylindrical case having a structure in which the battery top cover is sealed by caulking in a bottomed cylindrical container (can). The present invention is also applicable to lithium ion batteries.

【0038】また、本実施形態では、絶縁被覆8に、基
材がポリプロピレンで、その片面にヘキサメタアクリレ
ートからなる粘着剤を塗布した粘着テープを用いたが、
これに限定されるものではなく、例えば、基材がポリイ
ミドやポリエチレン等のポリオレフィンで、その片面又
は両面にヘキサメタアクリレートやブチルアクリレート
等のアクリル系粘着剤を塗布した粘着テープや、粘着剤
を塗布しないポリオレフィンやポリイミドからなるテー
プ等を好適に使用することができる。
In this embodiment, an adhesive tape is used in which the insulating coating 8 is made of polypropylene as a base material and an adhesive made of hexamethacrylate is applied on one surface thereof.
The present invention is not limited to this.For example, a base material is a polyolefin such as polyimide or polyethylene, and an adhesive tape or an adhesive coated with an acrylic adhesive such as hexamethacrylate or butyl acrylate on one or both surfaces thereof is applied. For example, a tape made of polyolefin or polyimide which is not used can be suitably used.

【0039】更に、本実施形態では、リチウムイオン電
池用の正極にコバルト酸リチウムやマンガン酸リチウ
ム、負極に黒鉛質炭素や非晶質炭素、電解液にエチレン
カーボネートとジメチルカーボネートとジエチルカーボ
ネートの体積比1:1:1の混合液中へ6フッ化リン酸
リチウムを1モル/リットル溶解したものを用いたが、
本発明の電池の製造方法には特に制限はなく、また結着
剤、負極活物質、非水電解液も通常用いられているいず
れのものも使用可能である。EV用途向け高容量、高出
力の電池で、かつ安全性を確実に確保するためには、正
極活物質としてリチウム・コバルト複合酸化物やリチウ
ム・ニッケル複合酸化物を用いるよりも、リチウムマン
ガン複酸化物であるマンガン酸リチウムを用いることが
より望ましい。
Further, in this embodiment, the positive electrode for lithium ion batteries is lithium cobaltate or lithium manganate, the negative electrode is graphite carbon or amorphous carbon, and the electrolyte is ethylene carbonate, dimethyl carbonate and diethyl carbonate in volume ratio. A 1: 1: 1 mixture of lithium hexafluorophosphate dissolved at 1 mol / l was used.
The method for producing the battery of the present invention is not particularly limited, and any of binders, negative electrode active materials, and nonaqueous electrolytes that are commonly used can be used. In order to ensure high-capacity, high-output batteries for EV applications and to ensure safety, it is better to use lithium manganese double oxide than lithium-cobalt composite oxide or lithium-nickel composite oxide as the positive electrode active material. It is more desirable to use lithium manganate which is a substance.

【0040】また、本実施形態ではポリフッ化ビニリデ
ンを結着剤として使用したが、これ以外のリチウムイオ
ン電池用極板活物質結着剤としては、テフロン、ポリエ
チレン、ポリスチレン、ポリブタジエン、ブチルゴム、
ニトリルゴム、スチレン/ブタジエンゴム、多硫化ゴ
ム、ニトロセルロース、シアノエチルセルロース、各種
ラテックス、アクリロニトリル、フッ化ビニル、フッ化
ビニリデン、フッ化プロピレン、フッ化クロロプレン等
の重合体及びこれらの混合体等を用いてもよい。
In this embodiment, polyvinylidene fluoride is used as a binder. Other binders for the electrode plate active material for lithium ion batteries include Teflon, polyethylene, polystyrene, polybutadiene, butyl rubber, and the like.
Using polymers such as nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride, and mixtures thereof. You may.

【0041】更に、本実施形態に示した以外のリチウム
二次電池用正極活物質としては、リチウムを挿入・脱離
可能な材料であり、予め十分な量のリチウムを挿入した
リチウムマンガン複酸化物が好ましく、スピネル構造を
有したマンガン酸リチウムや、結晶中のマンガンやリチ
ウムの一部をそれら以外の元素で置換又はドープした材
料を使用してもよい。また、リチウムとマンガンとの原
子比が化学量論比からずれた活物質を使用しても以上の
実施形態と同様の効果を得ることができる。
Further, as the positive electrode active material for a lithium secondary battery other than that shown in the present embodiment, a material capable of inserting and removing lithium, and a lithium manganese double oxide in which a sufficient amount of lithium has been inserted in advance. It is preferable to use lithium manganate having a spinel structure, or a material in which manganese or lithium in the crystal is partially substituted or doped with another element. Further, even when an active material in which the atomic ratio of lithium and manganese deviates from the stoichiometric ratio is used, the same effect as in the above embodiment can be obtained.

【0042】また更に、以上の実施形態に示した以外の
リチウムイオン電池用負極活物質を使用しても本発明の
適用は制限されない。例えば、天然黒鉛や、人造の各種
黒鉛材、コークスなどの炭素質材料等を使用してもよ
く、その粒子形状においても、鱗片状、球状、繊維状、
塊状等、特に制限されるものではない。
Further, the application of the present invention is not limited by using a negative electrode active material for a lithium ion battery other than those shown in the above embodiment. For example, natural graphite, artificial graphite materials, carbonaceous materials such as coke and the like may be used, and in the particle shape, flaky, spherical, fibrous,
It is not particularly limited, such as a lump.

【0043】また、電解液としては、一般的なリチウム
塩を電解質とし、これを有機溶媒に溶解した電解液を使
用してもよく、リチウム塩や有機溶媒にも特に制限され
るものではない。例えば、電解質としては、LiClO
、LiAsF、LiPF 、LiBF、LiB
(C、CHSOLi、CFSOLi
等やこれらの混合物を用いることができる。
As the electrolyte, a common lithium is used.
Salt is used as an electrolyte, and an electrolytic solution in which this is dissolved in an organic solvent is used.
May be used, and are particularly limited to lithium salts and organic solvents.
Not something. For example, as the electrolyte, LiClO
4, LiAsF6, LiPF 6, LiBF4, LiB
(C6H5)4, CH3SO3Li, CF3SO3Li
And mixtures thereof.

【0044】そして、本実施形態以外の非水電解液有機
溶媒としては、プロピレンカーボネート、エチレンカー
ボネート、エチルメチルカーボネート、ビニレンカーボ
ネート、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
1,3−ジオキソラン、4−メチル−1,3−ジオキソ
ラン、ジエチルエーテル、スルホラン、メチルスルホラ
ン、アセトニトリル、プロピオニトリル等又はこれら2
種類以上の混合溶媒を用いることができ、更に、混合配
合比についても限定されるものではない。
Examples of the non-aqueous electrolyte organic solvent other than the present embodiment include propylene carbonate, ethylene carbonate, ethyl methyl carbonate, vinylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, and γ-butyrolactone. , Tetrahydrofuran,
1,3-dioxolan, 4-methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile and the like or 2
More than one kind of mixed solvent can be used, and the mixing ratio is not limited.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
電池容器の表面粗さRaを5μm以上とすることによ
り、電池容器表面積が大きくなり、電池容器表面の放熱
効率を向上させることができるので、高温下で寿命が低
下するリチウム−遷移金属複酸化物を正極に用いた円筒
形リチウムイオン電池の寿命特性を改善することができ
る、という効果を得ることができる。
As described above, according to the present invention,
By setting the surface roughness Ra of the battery container to 5 μm or more, the surface area of the battery container is increased, and the heat radiation efficiency of the battery container surface can be improved. Can be obtained to improve the life characteristics of a cylindrical lithium-ion battery using the positive electrode as a positive electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用可能な実施形態のEV搭載用円筒
形リチウムイオン電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical lithium ion battery for EV mounting according to an embodiment to which the present invention can be applied.

【符号の説明】[Explanation of symbols]

4 電池蓋(蓋板) 5 電池容器 6 捲回群(電極捲回群) 7 鍔部(集電部材の一部) 11 軸芯 21 円筒形リチウムイオン電池 Reference Signs List 4 Battery cover (cover plate) 5 Battery container 6 Winding group (electrode winding group) 7 Flange (part of current collecting member) 11 Shaft core 21 Cylindrical lithium ion battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H003 AA00 AA04 BB01 BB05 5H011 AA02 CC06 DD10 KK01 5H028 AA01 AA07 CC12 CC24 5H029 AJ00 AJ05 AK03 AL06 AL07 AL08 AM03 AM05 AM07 BJ02 BJ14 CJ25 DJ02 DJ18 EJ01 HJ03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kensuke Hironaka 2-7-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H003 AA00 AA04 BB01 BB05 5H011 AA02 CC06 DD10 KK01 5H028 AA01 AA07 CC12 CC24 5H029 AJ00 AJ05 AK03 AL06 AL07 AL08 AM03 AM05 AM07 BJ02 BJ14 CJ25 DJ02 DJ18 EJ01 HJ03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体に充放電によりリチウムを放
出・収容可能な正極活物質を塗着した帯状の正極と、負
極集電体に充放電によりリチウムを収容・放出可能な負
極活物質を塗着した帯状の負極とが、リチウムイオンが
通過可能な帯状のセパレータを介して軸芯の回りに捲回
された電極捲回群を備え、前記電極捲回群は前記軸芯と
共に円筒形電池容器に内蔵され、前記電池容器内で支持
又は固定された構造の円筒形リチウムイオン電池におい
て、前記電池容器の表面粗さRaが5μm以上であるこ
とを特徴とする円筒形リチウムイオン電池。
1. A strip-shaped positive electrode having a positive electrode current collector coated with a positive electrode active material capable of releasing and storing lithium by charging and discharging, and a negative electrode active material capable of storing and releasing lithium by charging and discharging a negative electrode current collector And an electrode wound group wound around an axis via a band-shaped separator through which lithium ions can pass, and the electrode wound group is cylindrical with the axis. What is claimed is: 1. A cylindrical lithium ion battery having a structure built in a battery container and supported or fixed in the battery container, wherein the surface roughness Ra of the battery container is 5 μm or more.
【請求項2】 前記正極活物質は、リチウムマンガン複
酸化物であることを特徴とする請求項1に記載の円筒形
リチウムイオン電池。
2. The cylindrical lithium ion battery according to claim 1, wherein the positive electrode active material is a lithium manganese double oxide.
【請求項3】 前記負極活物質は、非晶質炭素であるこ
とを特徴とする請求項1又は請求項2に記載の円筒形リ
チウムイオン電池。
3. The cylindrical lithium ion battery according to claim 1, wherein the negative electrode active material is amorphous carbon.
JP32628299A 1999-11-17 1999-11-17 Cylindrical lithium-ion battery Expired - Lifetime JP3752930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32628299A JP3752930B2 (en) 1999-11-17 1999-11-17 Cylindrical lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32628299A JP3752930B2 (en) 1999-11-17 1999-11-17 Cylindrical lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2001143666A true JP2001143666A (en) 2001-05-25
JP3752930B2 JP3752930B2 (en) 2006-03-08

Family

ID=18186035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32628299A Expired - Lifetime JP3752930B2 (en) 1999-11-17 1999-11-17 Cylindrical lithium-ion battery

Country Status (1)

Country Link
JP (1) JP3752930B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077348A1 (en) * 2002-03-08 2003-09-18 Yongming Ju A rechargeable lithium-ion power battery and manufacture method of the same
JP2011216196A (en) * 2010-03-31 2011-10-27 Shin Kobe Electric Mach Co Ltd Cylindrical lithium-ion battery
US11515537B2 (en) 2017-11-22 2022-11-29 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237360A (en) * 1987-03-26 1988-10-03 Shin Kobe Electric Mach Co Ltd Lithium cell
JPH06314563A (en) * 1993-04-30 1994-11-08 Toyo Kohan Co Ltd Battery
JPH06349461A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH10188922A (en) * 1996-12-26 1998-07-21 Nisshin Steel Co Ltd Battery case mounted on electric car
JPH1125932A (en) * 1997-06-27 1999-01-29 Mitsubishi Cable Ind Ltd Heat radiating structure for sealed battery
JPH11191401A (en) * 1997-12-26 1999-07-13 Nkk Corp Steel plate for dry battery
JPH11312523A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Electrode for battery and nonaqueous electrolyte battery
JP2000106214A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237360A (en) * 1987-03-26 1988-10-03 Shin Kobe Electric Mach Co Ltd Lithium cell
JPH06314563A (en) * 1993-04-30 1994-11-08 Toyo Kohan Co Ltd Battery
JPH06349461A (en) * 1993-06-07 1994-12-22 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
JPH1064515A (en) * 1996-08-20 1998-03-06 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH10188922A (en) * 1996-12-26 1998-07-21 Nisshin Steel Co Ltd Battery case mounted on electric car
JPH1125932A (en) * 1997-06-27 1999-01-29 Mitsubishi Cable Ind Ltd Heat radiating structure for sealed battery
JPH11191401A (en) * 1997-12-26 1999-07-13 Nkk Corp Steel plate for dry battery
JPH11312523A (en) * 1998-04-28 1999-11-09 Shin Kobe Electric Mach Co Ltd Electrode for battery and nonaqueous electrolyte battery
JP2000106214A (en) * 1998-09-30 2000-04-11 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077348A1 (en) * 2002-03-08 2003-09-18 Yongming Ju A rechargeable lithium-ion power battery and manufacture method of the same
JP2011216196A (en) * 2010-03-31 2011-10-27 Shin Kobe Electric Mach Co Ltd Cylindrical lithium-ion battery
US11515537B2 (en) 2017-11-22 2022-11-29 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus

Also Published As

Publication number Publication date
JP3752930B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3368877B2 (en) Cylindrical lithium-ion battery
JP3541723B2 (en) Cylindrical lithium-ion battery
EP1126538A1 (en) Non-aqueous electrolyte secondary battery
JP4305111B2 (en) Battery pack and electric vehicle
JP2004006264A (en) Lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP2002015774A (en) Nonaqueous electrolyte lithium secondary cell
JP2001126769A (en) Cylindrical lithium ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP3511966B2 (en) Cylindrical lithium-ion battery
JP3752930B2 (en) Cylindrical lithium-ion battery
JP2005100955A (en) Winding type lithium ion battery
JP4067258B2 (en) Method for evaluating cycle life characteristics of secondary batteries
JP2001185220A (en) Cylindrical lithium ion battery
JP3624793B2 (en) Lithium ion battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP3783503B2 (en) Lithium secondary battery
JP2021077531A (en) Non-aqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP2004319308A (en) Lithium secondary battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP2012146476A (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3752930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

EXPY Cancellation because of completion of term