JP2001141773A - Partial discharge detector for gas insulated appliance - Google Patents

Partial discharge detector for gas insulated appliance

Info

Publication number
JP2001141773A
JP2001141773A JP32503499A JP32503499A JP2001141773A JP 2001141773 A JP2001141773 A JP 2001141773A JP 32503499 A JP32503499 A JP 32503499A JP 32503499 A JP32503499 A JP 32503499A JP 2001141773 A JP2001141773 A JP 2001141773A
Authority
JP
Japan
Prior art keywords
antenna
partial discharge
gas
spacer
metal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32503499A
Other languages
Japanese (ja)
Other versions
JP2001141773A5 (en
Inventor
Yoshimasa Kubota
善征 久保田
Tatsuro Kato
達朗 加藤
Tomoaki Uchiumi
知明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32503499A priority Critical patent/JP2001141773A/en
Publication of JP2001141773A publication Critical patent/JP2001141773A/en
Publication of JP2001141773A5 publication Critical patent/JP2001141773A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PROBLEM TO BE SOLVED: To sensitively detect electromagnetic waves caused by a partial discharge generated in an inner insulation fault, when a partial discharge detector is not provided in a gas insulated appliance. SOLUTION: An inner partial discharge signal can be efficiently and sensitively detected by arranging a electromagnetic waves detection sensor incorporating a conductive folded antenna 4B or a half-wave dipole antenna along openings of electromagnetic waves such as outer periphery of a spacer 1 for supporting a high-voltage conductor 2 of a gas insulated equipment, a bushing or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は絶縁ガスを充填して
使用するガス遮断器、ガス絶縁開閉装置、ガス絶縁母
線、ガス絶縁変圧器などのガス絶縁機器において金属容
器内部で発生する部分放電を検出するための部分放電信
号検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas discharge device, such as a gas circuit breaker, a gas insulated switchgear, a gas insulated bus, and a gas insulated transformer, which are used by filling with an insulating gas. The present invention relates to a partial discharge signal detection device for detecting.

【0002】[0002]

【従来の技術】変電所で用いられているガス絶縁開閉装
置、ガス絶縁母線、ガス絶縁変圧器などの絶縁ガスを充
填した密閉金属容器内に高電圧導体を絶縁物により支持
してなるガス絶縁機器は、接触不良、金属異物混入など
の欠陥部があると、その欠陥部分で部分放電が発生する
ことがある。それらの部分放電を放置しておくとやがて
絶縁破壊に至り、重大な事故発生に進展する。したがっ
て、ガス絶縁機器における重大事故発生を防ぐために
は、ガス絶縁機器内部の部分放電の有無を検出する必要
がある。このような部分放電を早期に発見し、何らかの
対策を施すことにより、機器の事故を未然に防ぐことが
可能となる。この部分放電の検出方法として電流、電磁
波、音、振動、光などを検出する方法が有る。中でも検
出感度、S/N比の良さ、検出範囲の広さなどの面から
部分放電電磁波信号をアンテナにより検出することがガ
ス絶縁機器の絶縁診断に対する予防保全技術として重要
視されている。
2. Description of the Related Art Gas insulation in which a high-voltage conductor is supported by an insulator in a closed metal container filled with an insulating gas such as a gas-insulated switchgear, a gas-insulated bus, and a gas-insulated transformer used in a substation. If a device has a defective portion such as a poor contact or a foreign metal, a partial discharge may occur at the defective portion. If these partial discharges are left untreated, dielectric breakdown will eventually occur, leading to serious accidents. Therefore, in order to prevent a serious accident from occurring in the gas insulated equipment, it is necessary to detect the presence or absence of partial discharge inside the gas insulated equipment. By detecting such a partial discharge at an early stage and taking some measures, it is possible to prevent a device accident from occurring. As a method of detecting the partial discharge, there is a method of detecting a current, an electromagnetic wave, sound, vibration, light, and the like. Among them, detection of a partial discharge electromagnetic wave signal by an antenna in terms of detection sensitivity, good S / N ratio, wide detection range, and the like is regarded as important as a preventive maintenance technique for insulation diagnosis of gas insulation equipment.

【0003】図4は従来から知られる部分放電検出方法
を適用したガス絶縁機器の一例である。図4に示すよう
に、ガス絶縁機器はSF6 ガスなどの絶縁ガスが接地電
位の金属容器3内に封入され、高電圧導体がスペーサ1
で支持されている。金属容器内部の部分放電を検出する
内部検出器20は金属容器の電界の低いハンドホール部な
どに設置されている。検出器が金属容器内部に設置され
ていると、金属容器外部からのノイズ信号は減衰し、金
属容器内部の部分放電信号をS/N良く検出することが
可能である。
FIG. 4 shows an example of a gas insulated device to which a conventionally known partial discharge detection method is applied. As shown in FIG. 4, an insulating gas such as SF6 gas is sealed in a metal container 3 having a ground potential, and a high-voltage conductor is
Supported by. An internal detector 20 for detecting a partial discharge inside the metal container is installed in a handhole portion of the metal container where the electric field is low. When the detector is installed inside the metal container, the noise signal from the outside of the metal container is attenuated, and the partial discharge signal inside the metal container can be detected with good S / N.

【0004】この検出器20で検出された信号は信号引き
出し部を介して金属容器外部に引き出され、フィルタな
どによる整合回路25で検出信号の周波数帯が特定され
る。特定された信号は部分放電検出信号を処理する部分
放電検出装置である増幅器11、測定器12、判定器13によ
りガス絶縁機器の異常有無の判定が行われる。以上のよ
うな装置構成によりガス絶縁機器内部の部分放電を検出
することができる。
[0004] The signal detected by the detector 20 is extracted to the outside of the metal container via a signal extraction section, and the frequency band of the detection signal is specified by a matching circuit 25 such as a filter. Based on the specified signal, an amplifier 11, a measuring device 12, and a determiner 13 which are partial discharge detection devices that process the partial discharge detection signal determine whether or not the gas insulation device is abnormal. The partial discharge inside the gas insulated equipment can be detected by the above-described device configuration.

【0005】また、スペーサやブッシングなどのインピ
ーダンス不連続面の開口部から漏れてくる電磁波を検出
する技術においては、単にアンテナを漠然と配置するだ
けである。その他、特開平3−78429号に記載のスリット
アンテナやダイポールアンテナをスペーサフランジ部に
沿って配置する方法もあるが、スリットアンテナでは金
属容器との電気的な接続、インピーダンスの不連続、外
部ノイズの影響があるためS/N比が不十分であった。
[0005] Further, in a technique for detecting electromagnetic waves leaking from an opening of an impedance discontinuity surface such as a spacer or a bushing, the antenna is simply vaguely arranged. In addition, there is a method of arranging a slit antenna or a dipole antenna described in JP-A-3-78429 along the spacer flange portion.However, in the slit antenna, electrical connection with a metal container, discontinuity of impedance, and external noise Due to the influence, the S / N ratio was insufficient.

【0006】[0006]

【発明が解決しようとする課題】ガス絶縁機器は金属容
器による密閉構造であり、導波管の理論より電磁波が伝
搬するため、ガス絶縁機器内部にアンテナを設置するこ
とにより部分放電を感度良く検出することが可能となっ
てきた。しかし、従来例では金属容器内に設置する部分
放電検出器ではガス絶縁機器に備え付けになっているた
め、部分放電検出器が付いていないガス絶縁機器では部
分放電による絶縁異常の監視は非常に困難であった。
The gas-insulated equipment has a hermetically sealed structure formed of a metal container. Since electromagnetic waves propagate according to the theory of a waveguide, a partial discharge can be detected with high sensitivity by installing an antenna inside the gas-insulated equipment. It has become possible to do. However, in the conventional example, it is very difficult to monitor insulation abnormalities due to partial discharge in gas insulated equipment without a partial discharge detector because the partial discharge detector installed in a metal container is equipped with gas insulated equipment Met.

【0007】また、スペーサやブッシングから漏れる部
分放電電磁波を検出する試みはなされているが、ガス絶
縁機器の外部空間にアンテナを設置する方法とスリット
アンテナやダイポールアンテナをスペーサ外周に沿って
配置する方法があるが、両者とも検出感度が低下するこ
とや外部ノイズの影響を大きく受けてしまうため、S/
N比が悪く十分な精度で検出することができなかった。
前者ではアンテナをある高さの位置に取り付ける際に
は、検出器の持ち運びなどによる危険作業や停電作業が
必要であった。後者ではアンテナのスペーサへの取付作
業、外部ノイズ防止のシールド方法などに時間を要し、
使い勝手が悪く、また、アンテナの検出感度が作業毎に
異なる可能性があった。
Attempts have been made to detect partial discharge electromagnetic waves leaking from a spacer or a bushing. However, a method of installing an antenna in an external space of a gas insulating device and a method of arranging a slit antenna or a dipole antenna along the outer periphery of a spacer are described. However, in both cases, since the detection sensitivity is lowered and the influence of external noise is large, S /
The N ratio was poor and could not be detected with sufficient accuracy.
In the former case, when the antenna is mounted at a certain height, it is necessary to carry out dangerous work or power outage by carrying the detector. In the latter case, it takes time to attach the antenna to the spacer, shield the external noise, etc.
It is not easy to use, and the detection sensitivity of the antenna may be different for each operation.

【0008】本発明の目的は、上記のような従来技術で
の問題点を解決するために提案されたものであり、金属
容器外部のスペーサ周に沿って検出感度の良い折り返し
アンテナあるいは半波長ダイポールアンテナのと絶縁物
および導電性カバーとを密着一体化構造とした電磁波検
出センサとして配置することにより、部分放電検出器が
既設でないガス絶縁機器においても内部絶縁異常である
部分放電電磁波をS/N良く検出することができ、使い
勝手の良い部分放電検出装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and a folded antenna or a half-wave dipole having good detection sensitivity along the periphery of a spacer outside a metal container. By arranging an antenna and an insulator and a conductive cover as an electromagnetic wave detection sensor having a tightly integrated structure, the partial discharge electromagnetic wave having internal insulation abnormality is S / N even in a gas insulated device having no existing partial discharge detector. An object of the present invention is to provide an easy-to-use partial discharge detection device that can detect well.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のガス絶縁機器の部分放電検出装置は、ガ
ス絶縁機器の高電圧導体を支持しているスペーサの外部
の円周部分に沿って導電性の線状もしくは板状にした折
り返しアンテナと絶縁物と導電性カバーとを密着一体化
した電磁波検出センサとして配置することにより、測定
精度が安定で外部ノイズの遮断と使い勝手の良いことを
特徴とする。
In order to achieve the above object, a partial discharge detection device for a gas-insulated device according to the present invention comprises a peripheral portion outside a spacer supporting a high-voltage conductor of the gas-insulated device. By placing the folded antenna in the form of a conductive line or plate along the conductor and an electromagnetic wave detection sensor in which the insulator and the conductive cover are tightly integrated, the measurement accuracy is stable, and external noise is cut off and easy to use. It is characterized by the following.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を図面
によって説明する。図1にガス絶縁機器として知られる
ガス絶縁母線に本発明を適用した例を示す。接地電位の
金属容器3内には絶縁支持体であるスペーサ1によって
高電圧導体2が支持されるとともに、絶縁性能の優れた
SF6 ガスなどの絶縁ガスが封入されている。図1では
金属容器3外部のスペーサ外周表面に密着して折り返し
アンテナ4B、導電性カバー7を含め一体化した電磁波
検出センサ8を取り付けた例を示しており、折り返しア
ンテナ4で金属容器3内部の欠陥から発生した部分放電
の電磁波信号を検出するように構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example in which the present invention is applied to a gas-insulated bus bar known as a gas-insulated device. A high-voltage conductor 2 is supported in a metal container 3 at a ground potential by a spacer 1 serving as an insulating support, and is filled with an insulating gas such as SF6 gas having excellent insulating performance. FIG. 1 shows an example in which the folded antenna 4B and the electromagnetic wave detection sensor 8 integrated with the conductive cover 7 are attached in close contact with the outer peripheral surface of the spacer outside the metal container 3. It is configured to detect an electromagnetic wave signal of a partial discharge generated from a defect.

【0011】このような構成のガス絶縁機器の部分放電
検出装置において、図4に示す金属容器3内の欠陥21か
ら部分放電が発生すると、数GHzに及ぶ極めて高い高
周波電流パルスが発生し、電磁波22が金属容器3内を伝
搬することになる。金属容器3内では導波管理論により
インピーダンスの不連続がなければ減衰が少なく電磁波
信号が伝播する。しかし、スペーサ1や図示しないブッ
シングなどの開口部が存在すると電磁波22はそこから外
部に漏洩する。外部に漏洩する電磁波信号をアンテナ4
により受信し、受信された信号は部分放電検出装置で判
定される。すなわち、受信信号は数GHzまでの広い周
波数帯域で増幅が可能な増幅器11により増幅され、スペ
クトラムアナライザおよびオシロスコープなどの周波数
解析や時間解析が可能である測定器12により測定され
る。また、測定器12により測定された信号により、欠陥
存在の有無、欠陥種判定、劣化状況、寿命、位置標定な
どの判定を判定器13により行う。
In the partial discharge detecting device for a gas insulated device having such a configuration, when a partial discharge occurs from the defect 21 in the metal container 3 shown in FIG. 4, an extremely high frequency current pulse of several GHz is generated, and an electromagnetic wave is generated. 22 will propagate in the metal container 3. In the metal container 3, if there is no discontinuity in impedance due to the waveguide management theory, the attenuation is small and the electromagnetic wave signal propagates. However, if there is an opening such as the spacer 1 or a bushing (not shown), the electromagnetic wave 22 leaks out therefrom. The electromagnetic wave signal leaking to the outside
, And the received signal is determined by the partial discharge detection device. That is, the received signal is amplified by an amplifier 11 capable of amplifying in a wide frequency band up to several GHz, and measured by a measuring instrument 12 such as a spectrum analyzer and an oscilloscope capable of performing frequency analysis and time analysis. Further, based on the signal measured by the measuring device 12, the determining device 13 determines the presence / absence of a defect, the defect type determination, the deterioration status, the life, the location, and the like.

【0012】アンテナ4において検出された信号をノイ
ズの少ない狭い周波数帯での測定を行うためにバンドパ
スフィルタなどの整合回路25をアンテナ4と増幅器11間
および増幅器11と測定器12間に挿入する場合もある。さ
らに、アンテナ4、増幅器11、測定器12の間のインピー
ダンスマッチングを行うことにより、得られた信号が減
衰することなしに測定することができる。
A matching circuit 25 such as a band-pass filter is inserted between the antenna 4 and the amplifier 11 and between the amplifier 11 and the measuring device 12 in order to measure a signal detected by the antenna 4 in a narrow frequency band with little noise. In some cases. Further, by performing impedance matching between the antenna 4, the amplifier 11, and the measuring device 12, the obtained signal can be measured without being attenuated.

【0013】一般的に、半波長ダイポールアンテナのア
ンテナインピーダンスは73+j42(Ω)であり、75
Ωや50Ωの同軸ケーブルによる信号伝播にインピーダ
ンスマッチングを特に行わなくても反射や減衰は少ない
が、必要なときにはアンテナ4と増幅器11間に整合回路
25を挿入したりアンテナ4と同軸ケーブル9の接続部分
にバルンなどを挿入するなどの方法によりインピーダン
スマッチングを行う。
In general, the antenna impedance of a half-wave dipole antenna is 73 + j42 (Ω) and 75
Although there is little reflection or attenuation even if impedance matching is not particularly performed for signal propagation through a Ω or 50 Ω coaxial cable, a matching circuit is required between the antenna 4 and the amplifier 11 when necessary.
Impedance matching is performed by a method such as inserting 25 or inserting a balun or the like into a connection portion between the antenna 4 and the coaxial cable 9.

【0014】半波長ダイポールタイプのアンテナは導電
性の線状および板を直線状に2つ並べる構造である。板
状の半波長ダイポールアンテナの場合は広い周波数帯で
検出することが可能である。線状のアンテナ受信部の場
合はアンテナの長さに対応する共振周波数帯が狭くな
り、狭い周波数バンドで高い利得を得たいときに用い
る。
The half-wavelength dipole type antenna has a structure in which two conductive lines and two plates are arranged linearly. In the case of a plate-like half-wavelength dipole antenna, detection can be performed in a wide frequency band. In the case of a linear antenna receiving section, the resonance frequency band corresponding to the length of the antenna becomes narrow, and is used when it is desired to obtain a high gain in a narrow frequency band.

【0015】つまり、完全に測定する周波数が決まって
いる場合は線状のアンテナを用い、測定周波数が決まっ
ておらず広い周波数帯域を測定する場合は板状のアンテ
ナを用いるように使い分けると良い。
That is, a linear antenna is preferably used when the frequency to be measured is completely determined, and a plate-shaped antenna is preferably used when a wide frequency band is measured without determining the measurement frequency.

【0016】アンテナ4の向きは図1に示すようにスペ
ーサ1外表面の円周方向の向きにアンテナの長手方向と
なる向き、もしくは金属容器3と高電圧導体2で構成す
る同軸円筒の軸方向とアンテナ4の長手方向が垂直とな
るように配置することにより、スペーサ1からの漏れ電
磁波を感度良く検出できる。
As shown in FIG. 1, the direction of the antenna 4 is the circumferential direction of the outer surface of the spacer 1 and the longitudinal direction of the antenna, or the axial direction of the coaxial cylinder formed by the metal container 3 and the high-voltage conductor 2. By arranging the antenna 4 and the antenna 4 in such a manner that the longitudinal direction of the antenna 4 is vertical, it is possible to detect electromagnetic waves leaking from the spacer 1 with high sensitivity.

【0017】アンテナの大きさの幅と長さが同じで、形
状を図5に示す3種類変えてアンテナの出力強度につい
て検討を試みたところ、図6に示すように、4Bの折り
返しアンテナの検出感度が最も大きい結果が得られた。
4Aは半波長ダイポールアンテナ、4Cは折り返しアン
テナの変形である。半波長ダイポールアンテナ4Aに比
較して約1桁検出感度が良い。折り返しアンテナ4Bは
約1波長の導体を折り曲げて作られたアンテナで、共振
時の給電点での電流が2倍になった半波長ダイポールア
ンテナと等価とみなせる。したがって、受信電力は4倍
となる反面、インピーダンスが4倍となるので厳密には
信号伝播のインピーダンスとマッチングが必要となる
が、先に述べたマッチング方法を実施すれば問題ない。
このように、折り返しアンテナを使用することにより、
より高感度の検出アンテナを提供できる。
When the width and length of the antenna were the same and the shape of the antenna was changed to three types as shown in FIG. 5 to examine the output intensity of the antenna, as shown in FIG. The result with the highest sensitivity was obtained.
4A is a half-wave dipole antenna, and 4C is a modification of a folded antenna. The detection sensitivity is about one digit better than that of the half-wave dipole antenna 4A. The folded antenna 4B is an antenna formed by bending a conductor of about one wavelength, and can be regarded as equivalent to a half-wavelength dipole antenna in which the current at the feeding point at the time of resonance is doubled. Therefore, while the received power is quadrupled, the impedance is quadrupled, so that strictly matching with the impedance of signal propagation is required. However, there is no problem if the above-described matching method is implemented.
Thus, by using a folded antenna,
A more highly sensitive detection antenna can be provided.

【0018】図2は可撓性のある板状の折り返しアンテ
ナ4Bに絶縁フイルム5を接着した上に絶縁物6と導電
性のカバー7を密着一体化し、かつ、絶縁フイルム5の
外周部に端部導電カバー7−1を絶縁フイルム5の上下と
周囲を囲むように密着接続し、電磁波検出センサ8とし
てスペーサ1に取り付けた断面の実施例も示している。
FIG. 2 shows a state in which an insulating film 5 is adhered to a flexible plate-shaped folded antenna 4B, an insulator 6 and a conductive cover 7 are tightly integrated, and an end is formed on the outer peripheral portion of the insulating film 5. The embodiment also shows a cross section in which the unit conductive cover 7-1 is tightly connected so as to surround the top and bottom of the insulating film 5 and the periphery thereof, and is attached to the spacer 1 as the electromagnetic wave detection sensor 8.

【0019】このカバー7と端部カバー7−1は導電的
に接続され、かつ、金属容器のハンドホール板厚3−1
の外側まで導電的に接触する構成なので、スペーサ1か
ら漏洩してくる電磁波信号をアンテナ4に効果的に集束
させることと、外部からのノイズ信号を遮断するためで
ある。周辺外部ノイズを遮断することによりS/N比を
良くしている。このカバー7と7−1は、金属容器3と
隙間がないように電気的に接触していることが望ましい
が、測定周波数の電磁波を遮断できるほどの隙間であれ
ば問題ない。
The cover 7 and the end cover 7-1 are conductively connected to each other, and have a handhole thickness 3-1 of the metal container.
This is for the purpose of effectively converging the electromagnetic wave signal leaking from the spacer 1 to the antenna 4 and blocking external noise signals. The S / N ratio is improved by blocking peripheral external noise. It is desirable that the covers 7 and 7-1 are in electrical contact with the metal container 3 so that there is no gap, but there is no problem as long as the gap is large enough to block electromagnetic waves at the measurement frequency.

【0020】図2に示す断面図では、折り返しアンテナ
4Bとカバー7間にギャップ長がある構造としている。
アンテナ4Bと接地タンク3間の静電容量が大きい場合
には、高周波数帯域の信号減衰が大きくなってしまう。
高周波数帯域の信号をできるだけ減衰なしに測定器12ま
で導くためには、受信アンテナと距離を離なした静電容
量が小さくる位置に導電性カバー7を配置する必要があ
る。
The sectional view shown in FIG. 2 has a structure in which there is a gap length between the folded antenna 4B and the cover 7.
When the capacitance between the antenna 4B and the ground tank 3 is large, the signal attenuation in a high frequency band increases.
In order to guide the signal in the high frequency band to the measuring device 12 with as little attenuation as possible, it is necessary to dispose the conductive cover 7 at a position away from the receiving antenna and at a small capacitance.

【0021】そこで、折り返しアンテナ4Bとカバー7
間のギャップ長と出力との関係について図7に示した。
図に示すようにギャップが離れるほど出力は大きくなる
事が分かる。図例では測定周波数対象波長のλ/4を100
%とした時、50%の出力には、約λ/40のギャップ長と
なることを示している。感度良く検出するには、少なく
とも30%程度以上でλ/75のギャップ長が必要である。
もちろん、これ以下でも測定可能である。
Therefore, the folded antenna 4B and the cover 7
FIG. 7 shows the relationship between the gap length and the output.
As shown in the figure, it can be seen that the output increases as the gap increases. In the figure, λ / 4 of the wavelength to be measured is 100
% Indicates that a 50% output has a gap length of about λ / 40. In order to detect with high sensitivity, a gap length of λ / 75 is required at least about 30% or more.
Of course, it can be measured even below this.

【0022】本発明例では、折り返しアンテナ4Bに絶
縁フイルム5を接着した上に絶縁物6と導電性のカバー
7、端部カバー7−1を密着一体化した電磁波検出セン
サ8を示しているが、絶縁物6を外しても問題なく特性
上は変わりない。なお、絶縁フイルム5、絶縁物6は可
撓性があり、誘電率が低い例えば、ポリテトラオロロエ
チレン(フッソ樹脂:PTFE)、ポリエステルフイル
ム、発泡ゴム各種、ウレタン各種などである。カバー7
はアンテナ4、絶縁フイルム5、絶縁物6の外側を銅
板、アルミ板また銅箔、アルミ箔などや蛇腹構造の可撓
性材料で全体を覆いシールドする構造としている。した
がって、全体としては、フレキシブル構造となる。な
お、本発明では、折り返しアンテナで説明したが、半波
長ダイポールアンテナ4Aでも検出可能である。カバー
7、7−1の大きさはアンテナ4の大きさを覆うことが
できる長さが最低限必要である。
In the example of the present invention, the electromagnetic wave detection sensor 8 is shown in which the insulating film 5 is adhered to the folded antenna 4B, and the insulator 6, the conductive cover 7, and the end cover 7-1 are integrated. Even if the insulator 6 is removed, the characteristics do not change without any problem. The insulating film 5 and the insulating material 6 are flexible and have a low dielectric constant, for example, polytetrafluoroethylene (fluororesin: PTFE), polyester film, various types of foamed rubber, various types of urethane, and the like. Cover 7
Has a structure in which the outside of the antenna 4, the insulating film 5, and the insulator 6 is entirely covered and shielded with a copper plate, an aluminum plate, a copper foil, an aluminum foil, or a flexible material having a bellows structure. Therefore, a flexible structure is obtained as a whole. In the present invention, the folded antenna has been described, but the half-wave dipole antenna 4A can also be detected. The size of the covers 7 and 7-1 needs to be at least a length that can cover the size of the antenna 4.

【0023】ガス絶縁機器のサイズの大きさが異なる場
合には、スペーサ1の外周のサイズが異なる、すなわ
ち、スペーサ外周の曲率半径Rが異なることになる。サ
イズの異なるスペーサに対して、本発明の電磁波検出セ
ンサ8はフレキシブルな導電性の板、箔材料や蛇腹構造
としているので曲率半径Rが異なっていても適用でき
る。
When the size of the gas insulating device is different, the outer circumference of the spacer 1 has a different size, that is, the radius of curvature R of the outer circumference of the spacer 1 is different. Since the electromagnetic wave detection sensor 8 of the present invention has a flexible conductive plate, foil material or bellows structure for spacers having different sizes, the electromagnetic wave detection sensor 8 can be applied even if the radius of curvature R is different.

【0024】なお、スペーサの厚み分の導電性カバー
7、7−1については、図示しないが導電性カバーのみ
を変える構造とすれば可能である。
Although not shown, the conductive covers 7 and 7-1 corresponding to the thickness of the spacer can be formed by changing only the conductive cover.

【0025】図3は電磁波検出センサ8をスペーサ1に
取り付けた実装的な使用例を示し、スペーサ1が電磁波
的に遮断されていない電磁波検出センサ8と外周保護カ
バー7−2で金属的に接続してスペーサ1の全周にわた
ってシールドするような構造としている。図示してない
が、取扱いの便利さを考慮してスペーサ1の全周にわた
ってシールドせず電磁波検出センサ8でもよいが外部ノ
イズが進入して測定精度が低下する。また、折り返しア
ンテナ4Bに侵入する外部ノイズを完全に遮断するため
には保護カバー7をスペーサ1の全周にわたりシールド
構造としてもよい。
FIG. 3 shows a mounting example in which the electromagnetic wave detection sensor 8 is mounted on the spacer 1, and the spacer 1 is metallically connected to the electromagnetic wave detection sensor 8 which is not electromagnetically shielded by the outer peripheral protection cover 7-2. In such a structure, the spacer 1 is shielded over the entire circumference. Although not shown, the electromagnetic wave detection sensor 8 may be used without shielding over the entire circumference of the spacer 1 in consideration of the convenience of handling, but external noise enters and the measurement accuracy is reduced. In order to completely block external noise that enters the folded antenna 4B, the protective cover 7 may have a shield structure over the entire circumference of the spacer 1.

【0026】本発明による金属容器3内部の部分放電信
号の測定例を図8に示す。図8から検出された部分放電
信号は数GHzの周波数帯域にわたって検出されている
ことがわかる。ダイポールアンテナの周波数特性から感
度の最も高いアンテナ長は半波長λ/2のときであり、
例えば、アンテナ長が300mmの場合の共振周波数は5
00MHzとなる。部分放電電磁波の発生する周波数は
数百MHzから数GHzであるが、板状ダイポールアン
テナの場合は広い周波数帯で検出することが可能である
ので、半波長λ/2の長さであればカバーできると思わ
れる。当然、測定周波数帯が決まり、より検出感度を高
くして測定するにはアンテナ長を100〜1500mmに
決めれば良い。
FIG. 8 shows a measurement example of the partial discharge signal inside the metal container 3 according to the present invention. FIG. 8 shows that the detected partial discharge signal is detected over a frequency band of several GHz. From the frequency characteristic of the dipole antenna, the antenna length with the highest sensitivity is at half wavelength λ / 2,
For example, when the antenna length is 300 mm, the resonance frequency is 5
00 MHz. The frequency at which the partial discharge electromagnetic wave is generated is several hundred MHz to several GHz. However, in the case of a plate-shaped dipole antenna, it can be detected in a wide frequency band. It seems possible. Naturally, the measurement frequency band is determined. To measure with higher detection sensitivity, the antenna length may be determined to be 100 to 1500 mm.

【0027】ガス絶縁機器の電磁波の開口部はスペーサ
1に限らず、その他、例えば電圧を引き込むブッシング
においても電磁波が漏れる。スペーサ1の外周と同様に
図示してないブッシングの下部に電磁波検出センサ8を
配置することによってもガス絶縁機器の部分放電測定が
可能である。
The opening of the electromagnetic wave of the gas-insulated equipment is not limited to the spacer 1, and the electromagnetic wave leaks, for example, in a bushing for drawing a voltage. By arranging the electromagnetic wave detection sensor 8 below the bushing (not shown) similarly to the outer periphery of the spacer 1, partial discharge measurement of the gas insulated device can be performed.

【0028】本発明を適用するガス絶縁機器としては、
前記のようなガス絶縁母線やガス絶縁開閉装置以外にガ
ス絶縁変圧器なども可能である。
As the gas insulation equipment to which the present invention is applied,
In addition to the gas-insulated bus and gas-insulated switchgear as described above, a gas-insulated transformer and the like are also possible.

【0029】[0029]

【発明の効果】以上説明したように、本発明によるガス
絶縁機器の部分放電検出装置によれば、機器内部に部分
放電検出装置を内蔵していないガス絶縁機器において外
部から容器内部の欠陥からの部分放電信号をS/N良く
高感度に検出することが可能である。また、検出部を電
磁波検出センサとしているので、取り付け作業が短時間
ですみ、検出感度が予め校正されているので測定精度が
高く、かつ、持ち運びが容易で、ポータブルにガス絶縁
機器の部分放電測定が可能となる。
As described above, according to the partial discharge detecting device for a gas insulated device according to the present invention, in a gas insulated device that does not have a built-in partial discharge detecting device inside, a device for detecting a defect inside the container from the outside. It is possible to detect the partial discharge signal with high S / N and high sensitivity. In addition, since the detection unit is an electromagnetic wave detection sensor, installation work is short, detection sensitivity is pre-calibrated, so measurement accuracy is high, easy to carry, portable and partial discharge measurement of gas insulated equipment Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるガス絶縁機器の部分放
電検出装置を示す概略図。
FIG. 1 is a schematic view showing a partial discharge detection device for a gas insulated device according to an embodiment of the present invention.

【図2】本発明による電磁波検出センサを示す断面図。FIG. 2 is a sectional view showing an electromagnetic wave detection sensor according to the present invention.

【図3】本発明のアンテナカバー形状を示す概略図。FIG. 3 is a schematic diagram showing an antenna cover shape of the present invention.

【図4】ガス絶縁機器の部分放電検出装置の従来実施例
を示す概略図。
FIG. 4 is a schematic diagram showing a conventional example of a partial discharge detection device for a gas insulated device.

【図5】本発明のアンテナの種類を示す図。FIG. 5 is a diagram showing types of antennas of the present invention.

【図6】本発明のアンテナの種類による出力強度比較を
説明する図。
FIG. 6 is a view for explaining comparison of output intensity according to the type of antenna of the present invention.

【図7】本発明のアンテナと導電性カバー間の距離と相
対出力との関係を説明する図。
FIG. 7 is a diagram illustrating a relationship between a distance between an antenna and a conductive cover and a relative output according to the present invention.

【図8】本発明による周波数スペクトラムの実測例を示
す特性図。
FIG. 8 is a characteristic diagram showing an actual measurement example of a frequency spectrum according to the present invention.

【符号の説明】[Explanation of symbols]

1…スペーサ、2…高電圧導体、3…金属容器、4…部
分放電検出アンテナ、4B…折り返しアンテナ、5…絶
縁フイルム、6…絶縁物、7…導電性カバー、7−1…
端部導電性カバー、7−2…外周導電性カバー、8…電
磁波検出センサ、9…同軸ケーブル、10…フランジ、
11…増幅器、12…測定器、13…判定器、20…内
部検出器、21…内部欠陥、22…電磁波、25…整合
回路。
DESCRIPTION OF SYMBOLS 1 ... Spacer, 2 ... High voltage conductor, 3 ... Metal container, 4 ... Partial discharge detection antenna, 4B ... Folded antenna, 5 ... Insulating film, 6 ... Insulator, 7 ... Conductive cover, 7-1 ...
End conductive cover, 7-2: outer conductive cover, 8: electromagnetic wave detection sensor, 9: coaxial cable, 10: flange,
11: Amplifier, 12: Measuring device, 13: Judgment device, 20: Internal detector, 21: Internal defect, 22: Electromagnetic wave, 25: Matching circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内海 知明 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 2G015 AA09 BA02 BA10 CA01 5G017 EE02 5G365 DF03 DN04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomoaki Utsumi 7-2-1, Omika-cho, Hitachi City, Ibaraki Prefecture F-term in Hitachi, Ltd. Electric Power and Electric Development Laboratory 2G015 AA09 BA02 BA10 CA01 5G017 EE02 5G365 DF03 DN04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁ガスを封入し、スペーサにより支持
される高電圧通電導体など収納する密閉金属容器より形
成されるガス絶縁機器と、前記密閉金属容器内で発生す
る部分放電に起因する電磁波を検出するために、前記密
閉金属容器の外部間に接続される前記スペーサ外部円周
表面に沿って取り付ける導電性の線状もしくは板状にし
たアンテナと、部分放電検出信号を処理する部分放電検
出装置とにおいて、前記、アンテナと少なくとも1種類
以上の絶縁物と外側にアンテナ受信部とは電気的に絶縁
されている導電性カバーとを密着一体化してなる構造の
電磁波検出センサとしたことを特徴とするガス絶縁機器
の部分放電検出装置。
1. A gas-insulated device formed of a sealed metal container that encloses an insulating gas and accommodates a high-voltage current-carrying conductor supported by a spacer, and an electromagnetic wave caused by a partial discharge generated in the sealed metal container. A conductive linear or plate-shaped antenna attached along the outer circumferential surface of the spacer connected between the outside of the closed metal container for detecting, and a partial discharge detection device for processing a partial discharge detection signal Wherein the electromagnetic wave detection sensor has a structure in which an antenna, at least one or more kinds of insulators, and a conductive cover that is electrically insulated on the outside are closely integrated with an electrically conductive cover. Partial discharge detector for gas insulated equipment.
【請求項2】 請求項1記載のアンテナが半波長ダイポ
ールアンテナあるいは折り返しアンテナで、絶縁物の絶
縁フイルムに接着剤などで密着一体化され、かつ、前記
アンテナ外周の外側に位置する絶縁フイルム上下に少な
くとも密閉金属容器フランジ板厚の外側端部まで接蝕す
る幅で密着接続する端部導電カバーが、スペーサ周方向
にフレキシブルに曲り、前記アンテナの導電部表面がス
ペーサ面に密着できる構造とすることを特徴とするガス
絶縁機器の部分放電検出装置。
2. The antenna according to claim 1, wherein the antenna is a half-wave dipole antenna or a folded antenna. The antenna is tightly integrated with an insulating film made of an insulating material by an adhesive or the like, and is disposed above and below the insulating film located outside the outer periphery of the antenna. An end conductive cover that is in close contact with a width that is in contact with at least the outer end of the thickness of the sealed metal container flange plate is flexibly bent in the circumferential direction of the spacer so that the conductive portion surface of the antenna can be in close contact with the spacer surface. A partial discharge detection device for gas-insulated equipment, characterized in that:
【請求項3】 請求項1記載のアンテナと前記導電性カ
バー間のギャップ長を少なくとも測定対象波長λの1/7
5から1/4の間にしたことを特徴とするガス絶縁機器の
部分放電検出装置。
3. The gap length between the antenna according to claim 1 and the conductive cover is at least 1/7 of the wavelength λ to be measured.
Partial discharge detection device for gas insulated equipment, characterized in that it is between 5 and 1/4.
【請求項4】 請求項1記載の電磁波検出センサと前記
スペーサ全周を覆うようにした外周導電性カバーとを接
続構成する構造としたことを特徴とするガス絶縁機器の
部分放電検出装置。
4. A partial discharge detection device for gas-insulated equipment, wherein the electromagnetic wave detection sensor according to claim 1 is connected to an outer conductive cover that covers the entire circumference of the spacer.
JP32503499A 1999-11-16 1999-11-16 Partial discharge detector for gas insulated appliance Pending JP2001141773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32503499A JP2001141773A (en) 1999-11-16 1999-11-16 Partial discharge detector for gas insulated appliance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32503499A JP2001141773A (en) 1999-11-16 1999-11-16 Partial discharge detector for gas insulated appliance

Publications (2)

Publication Number Publication Date
JP2001141773A true JP2001141773A (en) 2001-05-25
JP2001141773A5 JP2001141773A5 (en) 2004-10-28

Family

ID=18172421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32503499A Pending JP2001141773A (en) 1999-11-16 1999-11-16 Partial discharge detector for gas insulated appliance

Country Status (1)

Country Link
JP (1) JP2001141773A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441942B1 (en) * 2001-10-24 2004-07-27 한국전력공사 Apparatus and Method for the Risk Assessment on Free Conducting Particle in Gas-insulated Switchgear
KR100477505B1 (en) * 2002-12-11 2005-03-17 한국전기연구원 Antenna covered or molded with insulating safety cover for detecting partial discharge
WO2006019164A1 (en) * 2004-08-20 2006-02-23 Kabushiki Kaisha Toshiba Device and method for detecting partial discharge of rotary electric machine
KR100666505B1 (en) 2005-02-17 2007-01-09 (주) 피에스디테크 External Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
KR100679084B1 (en) * 2005-02-17 2007-02-05 (주) 피에스디테크 Internal Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
JP2008139207A (en) * 2006-12-04 2008-06-19 Toshiba Corp Partial discharge detector
KR100852435B1 (en) * 2004-12-22 2008-08-14 현대중공업 주식회사 External sensor combination structure for partial discharge detection for GIS
KR100885847B1 (en) * 2007-04-25 2009-02-27 엘에스산전 주식회사 Partial discharge detection apparatus for medium voltage switchgear
WO2010077024A3 (en) * 2008-12-30 2010-10-07 주식회사 효성 Method for manufacturing a composite bushing, and partial discharge diagnosis system for a composite bushing
US20110080161A1 (en) * 2009-10-02 2011-04-07 Shiro Maruyama Partial discharge detector for gas-insulated electric apparatus
KR101113193B1 (en) * 2004-06-29 2012-03-13 가부시키가이샤 니혼 에이이 파워시스템즈 Sensor and apparatus for detecting partial discharge and gas insulated electrical machinery having sensor for detecting partial discharge
CN102608505A (en) * 2012-03-30 2012-07-25 重庆大学 Multi-region detection system for partial discharge decomposition components of insulating gas and method thereof
WO2013124886A1 (en) * 2012-02-21 2013-08-29 三菱電機株式会社 Partial discharge sensor
US8754327B2 (en) 2008-08-29 2014-06-17 Kabushiki Kaisha Toshiba Gas insulated device
JP2014224743A (en) * 2013-05-16 2014-12-04 三菱電機株式会社 Partial discharge sensor
JP2015224888A (en) * 2014-05-26 2015-12-14 三菱電機株式会社 Partial discharge sensor
JP2016194466A (en) * 2015-04-01 2016-11-17 東京電力ホールディングス株式会社 Partial discharge measurement device
CN106574943A (en) * 2014-07-28 2017-04-19 阿尔斯通技术有限公司 Device for detecting a partial discharge from gas-insulated high-voltage equipment, and associated high-voltage electrical substation
WO2017116090A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Gas insulated switchgear partial discharge diagnosis method and device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441942B1 (en) * 2001-10-24 2004-07-27 한국전력공사 Apparatus and Method for the Risk Assessment on Free Conducting Particle in Gas-insulated Switchgear
KR100477505B1 (en) * 2002-12-11 2005-03-17 한국전기연구원 Antenna covered or molded with insulating safety cover for detecting partial discharge
KR101113193B1 (en) * 2004-06-29 2012-03-13 가부시키가이샤 니혼 에이이 파워시스템즈 Sensor and apparatus for detecting partial discharge and gas insulated electrical machinery having sensor for detecting partial discharge
WO2006019164A1 (en) * 2004-08-20 2006-02-23 Kabushiki Kaisha Toshiba Device and method for detecting partial discharge of rotary electric machine
KR100852435B1 (en) * 2004-12-22 2008-08-14 현대중공업 주식회사 External sensor combination structure for partial discharge detection for GIS
KR100679084B1 (en) * 2005-02-17 2007-02-05 (주) 피에스디테크 Internal Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
KR100666505B1 (en) 2005-02-17 2007-01-09 (주) 피에스디테크 External Sensor for Diagnosis Partial Discharge of Gas-Insulated Switchgear
JP2008139207A (en) * 2006-12-04 2008-06-19 Toshiba Corp Partial discharge detector
KR100885847B1 (en) * 2007-04-25 2009-02-27 엘에스산전 주식회사 Partial discharge detection apparatus for medium voltage switchgear
US8754327B2 (en) 2008-08-29 2014-06-17 Kabushiki Kaisha Toshiba Gas insulated device
WO2010077024A3 (en) * 2008-12-30 2010-10-07 주식회사 효성 Method for manufacturing a composite bushing, and partial discharge diagnosis system for a composite bushing
US8981784B2 (en) 2008-12-30 2015-03-17 Hyosung Corporation Method for manufacturing a composite bushing, and partial discharge diagnostic system for composite bushing
US20120036677A1 (en) * 2008-12-30 2012-02-16 Hyosung Corporation Method for manufacturing a composite bushing, and partial discharge diagnostic system for composite bushing
CN102033191A (en) * 2009-10-02 2011-04-27 株式会社东芝 Partial discharge detector for gas insulated electric apparatus
US8981761B2 (en) 2009-10-02 2015-03-17 Kabushiki Kaisha Toshiba Partial discharge detector for gas-insulated electric apparatus
US20110080161A1 (en) * 2009-10-02 2011-04-07 Shiro Maruyama Partial discharge detector for gas-insulated electric apparatus
WO2013124886A1 (en) * 2012-02-21 2013-08-29 三菱電機株式会社 Partial discharge sensor
JP5693782B2 (en) * 2012-02-21 2015-04-01 三菱電機株式会社 Partial discharge sensor
US9383402B2 (en) 2012-02-21 2016-07-05 Mitsubishi Electric Corporation Partial discharge sensor
CN102608505A (en) * 2012-03-30 2012-07-25 重庆大学 Multi-region detection system for partial discharge decomposition components of insulating gas and method thereof
JP2014224743A (en) * 2013-05-16 2014-12-04 三菱電機株式会社 Partial discharge sensor
JP2015224888A (en) * 2014-05-26 2015-12-14 三菱電機株式会社 Partial discharge sensor
CN106574943A (en) * 2014-07-28 2017-04-19 阿尔斯通技术有限公司 Device for detecting a partial discharge from gas-insulated high-voltage equipment, and associated high-voltage electrical substation
JP2017522569A (en) * 2014-07-28 2017-08-10 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Device for detecting partial discharge from gas-insulated high-voltage equipment
JP2016194466A (en) * 2015-04-01 2016-11-17 東京電力ホールディングス株式会社 Partial discharge measurement device
WO2017116090A1 (en) * 2015-12-31 2017-07-06 주식회사 효성 Gas insulated switchgear partial discharge diagnosis method and device

Similar Documents

Publication Publication Date Title
KR100658820B1 (en) Partial discharge detector of gas-insulated apparatus
JP3299547B2 (en) Partial discharge detector for gas insulated equipment
JP5105841B2 (en) Partial discharge detector
KR100695967B1 (en) A method and device for detecting a partial discharge in an electrical device
US8981761B2 (en) Partial discharge detector for gas-insulated electric apparatus
JP2001141773A (en) Partial discharge detector for gas insulated appliance
JP2007232496A (en) Partial discharge detection sensor for gis, and insulation abnormality monitoring system using this
KR100923748B1 (en) Partial discharge detector of gas-insulated apparatus
JP2017208913A (en) Degradation monitoring device for gas-insulation switchgear
KR100477505B1 (en) Antenna covered or molded with insulating safety cover for detecting partial discharge
JP2000162263A (en) Partial discharge detector for gas insulated equipment
JPH10341520A (en) Partial discharge detector
KR100518370B1 (en) Discharge diagnostic system of Gas Insulation Switchgea
JP2002022790A (en) Partial discharge detecting device for gas insulating equipment
KR100893396B1 (en) Partial discharge detector of gas insulated apparatus having sensor
US20020024467A1 (en) Partial discharge detector for gas insulated apparatus
JP2978718B2 (en) Normal connection of power cable
JPH01282471A (en) Method for detecting partial discharge of gas insulating switch device
JP2763143B2 (en) Partial discharge detector for high voltage equipment
JP3292115B2 (en) Insulation abnormality diagnostic device for gas insulated electrical equipment
JPH03250711A (en) Partial discharge detecting device for compressed gas insulation equipment
JPH0815364A (en) Gas insulatd electric apparatus
JP2007199008A (en) Diagnostic device for gas insulated electronic apparatus
JPH033328B2 (en)
JPH08178999A (en) Partial discharge detecting terminal for gas-insulated switching apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205