JP2001141536A - Measuring instrument for measuring flow rate - Google Patents

Measuring instrument for measuring flow rate

Info

Publication number
JP2001141536A
JP2001141536A JP32859699A JP32859699A JP2001141536A JP 2001141536 A JP2001141536 A JP 2001141536A JP 32859699 A JP32859699 A JP 32859699A JP 32859699 A JP32859699 A JP 32859699A JP 2001141536 A JP2001141536 A JP 2001141536A
Authority
JP
Japan
Prior art keywords
flow
flow path
fluid
rectangular
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32859699A
Other languages
Japanese (ja)
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP32859699A priority Critical patent/JP2001141536A/en
Publication of JP2001141536A publication Critical patent/JP2001141536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flow measuring instrument capable of forming a flow passage easily to straighten a fluid and to bring a velocity distribution of the fluid into a two-dimensional flow. SOLUTION: Straightening vanes 30, 32 are projected in left and right wall parts 20, 22 forming the rectangular flow passage 12 along the flow passage. Hence, the rectangular flow passage 12 is not required to be divided into plural flow passages. The straightening vanes 30, 32 are easily attached to the left and right wall parts 20, 22 since the vanes 30, 33 are not required to be arranged precisely.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流量計測装置に係
り、特に矩形流路内の流体を超音波流量センサにより計
測する流量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device, and more particularly to a flow rate measuring device for measuring a fluid in a rectangular channel by an ultrasonic flow rate sensor.

【0002】[0002]

【従来の技術】従来より、矩形流路を流れる流体を超音
波流量センサで計測する装置として流量計測装置が知ら
れている。この流量計測装置で矩形流路を流れる流体を
精度良く計測するためには、矩形流路を流れる流体を整
流にして、流体の速度分布を2次元流れ(すなわち、流
路の中央で最大流速となるような放物線状の流れ)にす
る必要がある。
2. Description of the Related Art Conventionally, a flow rate measuring device has been known as a device for measuring a fluid flowing in a rectangular flow path with an ultrasonic flow rate sensor. In order to accurately measure the fluid flowing through the rectangular flow path with this flow rate measuring device, the fluid flowing through the rectangular flow path is rectified, and the velocity distribution of the fluid is two-dimensionally flowed (ie, the maximum flow velocity at the center of the flow path and (A parabolic flow).

【0003】流量計測装置として、例えば特開平9−4
3015号公報「超音波式流量計」が知られている。こ
の流量計測装置は、矩形流路を複数の仕切板で仕切って
複数流路を形成し、各々の流路に流体を流すことで流体
を整流に保つとともに2次元流れを形成し、この状態で
流量を計測するものである。
As a flow rate measuring device, for example, Japanese Patent Application Laid-Open No. 9-4
No. 3015, “Ultrasonic flow meter” is known. This flow rate measuring device forms a plurality of flow paths by dividing a rectangular flow path with a plurality of partition plates, and keeps the fluid rectified by flowing the fluid through each flow path and forms a two-dimensional flow. It measures the flow rate.

【0004】[0004]

【発明が解決しようとする課題】ところで、流体の2次
元流れは流路の形状に応じて変わる。このため、各々の
流路を均一に形成しないと流体の2次元流れがばらつい
て測定誤差が大きくでる。従って、各々の流路を均一に
形成するためには、仕切板を精度よく配置する必要があ
る。
The two-dimensional flow of the fluid changes according to the shape of the flow path. For this reason, unless the respective flow paths are formed uniformly, the two-dimensional flow of the fluid varies, resulting in a large measurement error. Therefore, in order to form each flow path uniformly, it is necessary to arrange the partition plates with high accuracy.

【0005】しかし、仕切板を精度よく配置するために
は、製造誤差を小さく抑える必要があり、仕切板の取付
けが困難になる。このため、流路の製造時間が長くな
り、そのことが流量計測装置のコストアップの要因にな
る。
[0005] However, in order to accurately arrange the partition plates, it is necessary to keep manufacturing errors small, and it becomes difficult to mount the partition plates. For this reason, the manufacturing time of the flow path becomes longer, which causes a cost increase of the flow rate measuring device.

【0006】本発明は、前述した問題点に鑑みてなされ
たものであり、その目的は流体を整流にするとともに、
流体の速度分布を2次元流れにする流路を簡単に形成す
ることができる流量計測装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to rectify a fluid,
It is an object of the present invention to provide a flow rate measuring device that can easily form a flow path that changes the velocity distribution of a fluid into a two-dimensional flow.

【0007】[0007]

【課題を解決するための手段】前述した目的を達成する
ために、本発明は、断面矩形状の矩形流路に流体を流
し、この流体の流量を超音波流量センサで計測する流量
計測装置において、前記矩形流路を形成する壁部のうち
の対向する壁部に流路に沿って整流板を張り出したこと
を特徴としている。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention relates to a flow rate measuring apparatus for flowing a fluid through a rectangular channel having a rectangular cross section and measuring the flow rate of the fluid with an ultrasonic flow sensor. A rectifying plate is provided along the flow path on the opposing wall of the walls forming the rectangular flow path.

【0008】このように構成された流量計測装置におい
ては、矩形流路の対向する壁部に流路に沿って整流板を
張り出すことにより、矩形流路を流れる流体を整流板で
整流に保ち、かつ流体の速度分布を2次元流れにするこ
とができる。従って、矩形流路を流れる流体の流量を精
度よく計測することができる。
[0008] In the flow rate measuring device thus constructed, a flow straightening plate is extended along the flow path on the opposing wall of the rectangular flow path so that the fluid flowing through the rectangular flow path is rectified by the flow straightening plate. , And the velocity distribution of the fluid can be a two-dimensional flow. Therefore, the flow rate of the fluid flowing through the rectangular flow path can be accurately measured.

【0009】また、矩形流路の対向する壁部に流路に沿
って整流板を張り出す構成にしたので、矩形流路を複数
の流路に仕切る必要がない。このため、整流板を精度よ
く配置する必要がないので、製造誤差を小さく抑える必
要がない。従って、この流量計測装置においては、整流
板の取付けが容易になり、矩形流路の製造時間を短くす
ることができる。
[0009] Further, since the current plate is formed so as to extend along the flow path on the opposing wall of the rectangular flow path, there is no need to partition the rectangular flow path into a plurality of flow paths. For this reason, since it is not necessary to arrange the current plate with high accuracy, it is not necessary to suppress a manufacturing error. Therefore, in this flow measurement device, the straightening plate can be easily attached, and the manufacturing time of the rectangular flow path can be shortened.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る実施の形態を
図面に基づいて詳細に説明する。図1は本発明に係る第
1実施の形態を示す流量計測装置の横断面図、図2は本
発明に係る第1実施の形態を示す流量計測装置の斜視
図、図3は本発明に係る第1実施の形態を示す流量計測
装置の縦断面図、図4は図3のA−A線断面図、図5は
本発明に係る第2実施の形態を示す流量計測装置の縦断
面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a flow measuring device according to a first embodiment of the present invention, FIG. 2 is a perspective view of the flow measuring device according to a first embodiment of the present invention, and FIG. FIG. 4 is a longitudinal sectional view of a flow measuring device according to a first embodiment, FIG. 4 is a sectional view taken along line AA of FIG. 3, and FIG. 5 is a longitudinal sectional view of a flow measuring device according to a second embodiment of the present invention. is there.

【0011】図1に示すように、第1実施形態である流
量計測装置10は、断面矩形状の矩形流路12に流体を流
し、この流体の流量を超音波流量センサ35で計測する装
置であって、矩形流路12を形成する壁部20,22,24,26
(図3も参照)のうちの対向する壁部(左右の壁部)2
0,22に流路に沿って整流板30、32(図2も参照)を張
り出したものである。壁部20,22は、ハウジング 112内
に取り付け可能であり、ネジ 113にて固定してある。
As shown in FIG. 1, a flow measuring device 10 according to a first embodiment is a device for flowing a fluid through a rectangular flow path 12 having a rectangular cross section and measuring the flow rate of the fluid by an ultrasonic flow sensor 35. And the walls 20, 22, 24, 26 forming the rectangular channel 12.
Opposing walls (left and right walls) 2 (see also FIG. 3)
Rectifying plates 30, 32 (see also FIG. 2) project along 0, 22 along the flow path. The walls 20, 22 can be mounted in a housing 112 and are fixed with screws 113.

【0012】矩形流路12は、上流口13にテーパ流路14を
介して供給管15を連通し、下流口16にテーパ流路17を介
して排出管18を連通したものである。供給管15から上流
口13に流体を流す際にテーパ流路14を通すことにより流
体をスムーズに流し、下流口16から排出管18に流体を流
す際にテーパ流路17を通すことにより流体をスムーズに
流すことができる。
The rectangular flow path 12 has a supply pipe 15 connected to an upstream port 13 via a tapered flow path 14 and a discharge pipe 18 connected to a downstream port 16 via a tapered flow path 17. When the fluid flows from the supply pipe 15 to the upstream port 13, the fluid flows smoothly by passing through the tapered flow path 14, and when the fluid flows from the downstream port 16 to the discharge pipe 18, the fluid flows through the tapered flow path 17. It can flow smoothly.

【0013】超音波流量センサ35は、第1超音波振動子
36及び第2超音波振動子38を矩形流路12の上側壁部24及
び下側壁部26(図3参照)にガスの流れに斜めに超音波
ビームを伝播させるように(Z法)それぞれ対向するよ
うに配置し、第1超音波振動子36から発信した超音波を
第2超音波振動子38が受信するまでの時間を計測し、次
に第2超音波振動子38が発信した超音波を第1超音波振
動子36が受信するまでの時間を計測し、両者の計測した
時間差に基づいて演算部40で流体の速度(流速)を演算
し、求めた流速から流体の流量を演算するものである。
The ultrasonic flow sensor 35 is a first ultrasonic vibrator.
36 and the second ultrasonic vibrator 38 are opposed to the upper wall 24 and the lower wall 26 (see FIG. 3) of the rectangular flow path 12 so as to propagate the ultrasonic beam obliquely to the gas flow (Z method). The time until the second ultrasonic oscillator 38 receives the ultrasonic wave transmitted from the first ultrasonic oscillator 36 is measured, and then the ultrasonic wave transmitted by the second ultrasonic oscillator 38 is measured. Is measured until the first ultrasonic vibrator 36 receives the data, the speed (flow velocity) of the fluid is calculated by the calculation unit 40 based on the time difference measured between the two, and the flow rate of the fluid is calculated from the obtained flow rate. Things.

【0014】図3に示すように、矩形流路12は、左右の
壁部20,22と上下の壁部24,26で矩形状に形成し、左側
壁部22に3枚の整流板30を流路に沿って張り出し、右側
壁部22に3枚の整流板32を流路に沿って張り出したもの
である。
As shown in FIG. 3, the rectangular flow path 12 is formed in a rectangular shape by left and right walls 20 and 22 and upper and lower walls 24 and 26, and three rectifying plates 30 are provided on the left side wall 22. The rectifying plate 32 extends along the flow path, and three rectifying plates 32 project along the flow path on the right side wall 22.

【0015】左側壁部20には3本の溝21が流路に沿って
形成され、各々の溝21に整流板30が嵌め込まれている。
また、右側壁部22には、左側壁部20と同様に、3本の溝
23が流路に沿って形成され、各々の溝23に整流板32が嵌
め込まれている。
Three grooves 21 are formed in the left side wall portion 20 along the flow path, and a rectifying plate 30 is fitted in each groove 21.
The right side wall 22 has three grooves in the same manner as the left side wall 20.
23 are formed along the flow path, and a flow straightening plate 32 is fitted into each groove 23.

【0016】左右の壁部20、22に流路に沿って整流板3
0、32を張り出すだけで、矩形流路12を複数の流路に仕
切る必要がない。このため、整流板30、32を精度よく配
置する必要がないので、整流板30、32を容易に取付ける
ことができる。
The straightening plates 3 are formed on the left and right walls 20 and 22 along the flow path.
It is not necessary to partition the rectangular flow path 12 into a plurality of flow paths only by extending the 0 and 32. For this reason, since it is not necessary to arrange the rectifying plates 30 and 32 with high accuracy, the rectifying plates 30 and 32 can be easily attached.

【0017】前述した流量計測装置10によれば、図4に
示すように、流体を供給管15からテーパ流路14を通して
上流口13から矩形流路12の「助走区間」E1に流す。流体
が助走区間E1を流れる間に、整流板30,32で流体に剪断
力が働き流体の流れを整流状態にするとともに、2次元
流れに発達させて流体の速度分布34を一定にする。流体
を速度分布34の状態で矩形流路12の「発達した流れ」E
2を下流口16まで流し、テーパ流路17を通して排出管18
から排出する。
According to the flow rate measuring device 10 described above, as shown in FIG. 4, the fluid flows from the supply pipe 15 through the tapered flow path 14 to the "progress section" E1 of the rectangular flow path 12 from the upstream port 13. While the fluid flows through the approaching section E1, a shear force is applied to the fluid by the rectifying plates 30, 32 to make the fluid flow rectified, and the fluid develops into a two-dimensional flow to make the velocity distribution 34 of the fluid constant. The “developed flow” E of the rectangular channel 12 with the velocity distribution 34
2 to the downstream port 16 and the discharge pipe 18 through the tapered flow path 17.
Discharged from

【0018】このように流体を流しながら、超音波流量
センサ35の第1超音波振動子36から超音波を発信し、発
信した超音波を第2超音波振動子38で受信する。第1超
音波振動子36から発信した超音波を第2超音波振動子38
で受信するまでの時間を計測する。続いて、第2超音波
振動子38で発信した超音波を第1超音波振動子36で受信
し、時間を計測する。
The ultrasonic wave is transmitted from the first ultrasonic vibrator 36 of the ultrasonic flow sensor 35 while the fluid is flowing, and the transmitted ultrasonic wave is received by the second ultrasonic vibrator 38. The ultrasonic wave transmitted from the first ultrasonic vibrator 36 is transmitted to the second ultrasonic vibrator 38.
Measure the time until receiving. Subsequently, the ultrasonic wave transmitted from the second ultrasonic transducer 38 is received by the first ultrasonic transducer 36, and the time is measured.

【0019】次に、両者の計測した時間に基づいて演算
部40で流体の速度(流速)を演算し、演算した流速に基
づいて流量を求める。このように、流体の速度分布34を
流路の流れ方向に一定に保つことで、流体の最大流速
(すなわち、速度分布34の中心の流速)の値を正確に測
定することができる。
Next, the calculation unit 40 calculates the velocity (flow velocity) of the fluid based on the measured time, and determines the flow rate based on the calculated flow velocity. As described above, by keeping the velocity distribution 34 of the fluid constant in the flow direction of the flow path, the value of the maximum flow velocity of the fluid (that is, the velocity at the center of the velocity distribution 34) can be accurately measured.

【0020】また、矩形流路12の左右の壁部20,22に流
路に沿って整流板30,32を張り出したので、矩形流路12
を流れる流体を整流板30,32の剪断力で整流に保つとと
もに、流体の速度分布34を2次元流れにすることができ
る。従って、矩形流路12の流量を精度よく測定すること
ができる。
The straightening plates 30, 32 are extended along the right and left wall portions 20, 22 of the rectangular flow passage 12 along the flow passage.
The fluid flowing through the rectifier can be kept rectified by the shearing force of the rectifying plates 30 and 32, and the velocity distribution 34 of the fluid can be made into a two-dimensional flow. Therefore, the flow rate of the rectangular flow path 12 can be accurately measured.

【0021】さらに、矩形流路12に整流板30,32を配置
することにより、助走区間E1を短くすることができる。
このため、流体を効率よく2次元流れに発達させて速度
分布34を流れに沿って一定にすることができるので、矩
形流路12の流量を精度よく測定することができる。
Further, by arranging the flow straightening plates 30, 32 in the rectangular flow path 12, the approach section E1 can be shortened.
For this reason, the fluid can be efficiently developed into a two-dimensional flow, and the velocity distribution 34 can be kept constant along the flow, so that the flow rate of the rectangular flow path 12 can be accurately measured.

【0022】次に、第2実施形態を説明する。図5に示
すように、第2実施形態の矩形流路50は、左右の壁部5
2,53と上下の壁部54,55で矩形状に形成し、左側壁部5
2に3枚の整流板57を流路に沿って張り出し、右側壁部5
3に3枚の整流板58を流路に沿って張り出したものであ
る。
Next, a second embodiment will be described. As shown in FIG. 5, the rectangular flow path 50 of the second embodiment includes left and right wall portions 5.
2, 53 and the upper and lower walls 54, 55 are formed in a rectangular shape, and the left wall 5
In FIG. 2, three straightening plates 57 are extended along the flow path, and the right wall 5
In FIG. 3, three rectifying plates 58 are extended along the flow path.

【0023】すなわち、左側壁部52には3つの整流板57
が一体に形成され、右側壁部53には左側壁部52と同様に
3つの整流板58が一体に形成されている。従って、第2
実施の形態の矩形流路50によれば、左右の壁部に整流板
を取り付ける手間を省くことができるので、矩形流路50
をより簡単に形成することができる。
That is, three rectifying plates 57 are provided on the left side wall 52.
Are formed integrally with each other, and three rectifying plates 58 are integrally formed on the right side wall 53 in the same manner as the left side wall 52. Therefore, the second
According to the rectangular channel 50 of the embodiment, since the labor for attaching the current plate to the left and right walls can be omitted, the rectangular channel 50
Can be formed more easily.

【0024】なお、本発明の流量計測装置10は、前述し
た各実施形態に限定されるものでなく、適宜な変形,改
良等が可能である。例えば、前述した各実施形態は、矩
形流路12として、左右の壁部に整流板を形成したが、左
右の壁部に代へて上下の壁部に整流板を形成してもよ
い。また、左右の壁部に整流板を3枚形成したが、整流
板は3枚に限らない。さらに、左右の整流板の枚数が等
しくなくてもよい。その他、前述した各実施形態におい
て例示した超音波流量センサは本発明を達成できるもの
であれば任意であり、限定されない。
It should be noted that the flow rate measuring device 10 of the present invention is not limited to the above-described embodiments, but can be appropriately modified and improved. For example, in each of the embodiments described above, the straightening plates are formed on the left and right walls as the rectangular flow paths 12, but the straightening plates may be formed on the upper and lower walls instead of the left and right walls. Further, although three rectifying plates are formed on the left and right walls, the number of rectifying plates is not limited to three. Further, the number of the right and left current plates may not be equal. In addition, the ultrasonic flow sensor exemplified in each of the above-described embodiments is arbitrary and is not limited as long as the present invention can be achieved.

【0025】[0025]

【発明の効果】以上、説明したように、本発明によれ
ば、矩形流路を形成する壁部のうちの対向する壁部に流
路に沿って整流板を張り出しているため、矩形流路を流
れる流体を整流板で整流に保つとともに、流体の速度分
布を2次元流れにでき、これにより矩形流路を流れる流
体の流量の測定精度が向上する。
As described above, according to the present invention, the rectifying plate extends along the flow path on the opposing wall of the wall forming the rectangular flow path. The flow of the fluid flowing through the rectangular flow path can be kept rectified by the flow regulating plate, and the velocity distribution of the fluid can be made into a two-dimensional flow, thereby improving the measurement accuracy of the flow rate of the fluid flowing through the rectangular flow path.

【0026】また、矩形流路の対向する壁部に流路に沿
って整流板を張り出すだけで、矩形流路を複数の流路に
仕切る必要がないため、整流板を精度よく配置する必要
がないので、製造誤差を小さく抑える必要がない。
In addition, it is not necessary to partition the rectangular flow path into a plurality of flow paths by merely extending the flow control plate along the flow path on the opposing wall of the rectangular flow path. There is no need to keep manufacturing errors small.

【0027】従って、この流量計測装置においては、整
流板の取付けが容易になり、矩形流路の製造時間を短く
することができため、従来のような流量計測装置のコス
トアップを解消できる。
Therefore, in this flow rate measuring device, the straightening plate can be easily attached and the manufacturing time of the rectangular flow path can be shortened, so that the cost increase of the conventional flow rate measuring device can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る第1実施形態を示す流量計測装置
の横断面図である。
FIG. 1 is a cross-sectional view of a flow measuring device according to a first embodiment of the present invention.

【図2】本発明に係る第1実施形態を示す流量計測装置
の斜視図である。
FIG. 2 is a perspective view of a flow measurement device according to the first embodiment of the present invention.

【図3】本発明に係る第1実施形態を示す流量計測装置
の縦断面図である。
FIG. 3 is a longitudinal sectional view of the flow rate measuring device showing the first embodiment according to the present invention.

【図4】図3のA−A線断面図である。FIG. 4 is a sectional view taken along line AA of FIG. 3;

【図5】本発明に係る第2実施形態を示す流量計測装置
の縦断面図である。
FIG. 5 is a longitudinal sectional view of a flow rate measuring device according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 流量計測装置 12 矩形流路 35 超音波流量センサ 20 左側壁部 22 右側壁部 24 上側壁部 26 下側壁部 30,32 整流板 10 Flow measurement device 12 Rectangular flow path 35 Ultrasonic flow sensor 20 Left side wall 22 Right side wall 24 Upper side wall 26 Lower side wall 30, 32 Rectifier plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断面矩形状の矩形流路に流体を流し、こ
の流体の流量を超音波流量センサで計測する流量計測装
置において、 前記矩形流路を形成する壁部のうちの対向する壁部に流
路に沿って整流板を張り出したことを特徴とする流量計
測装置。
1. A flow rate measuring device for flowing a fluid through a rectangular flow path having a rectangular cross section and measuring the flow rate of the fluid by an ultrasonic flow rate sensor, wherein opposing walls of the walls forming the rectangular flow path A flow measuring device characterized in that a flow straightening plate is protruded along the flow path.
JP32859699A 1999-11-18 1999-11-18 Measuring instrument for measuring flow rate Pending JP2001141536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32859699A JP2001141536A (en) 1999-11-18 1999-11-18 Measuring instrument for measuring flow rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32859699A JP2001141536A (en) 1999-11-18 1999-11-18 Measuring instrument for measuring flow rate

Publications (1)

Publication Number Publication Date
JP2001141536A true JP2001141536A (en) 2001-05-25

Family

ID=18212054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32859699A Pending JP2001141536A (en) 1999-11-18 1999-11-18 Measuring instrument for measuring flow rate

Country Status (1)

Country Link
JP (1) JP2001141536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283565A (en) * 2004-03-02 2005-10-13 Yazaki Corp Flow rate measurement device
JP2006029907A (en) * 2004-07-14 2006-02-02 Toyo Gas Meter Kk Gas meter
WO2010070891A1 (en) * 2008-12-18 2010-06-24 パナソニック株式会社 Ultrasonic flowmeter
WO2011040038A1 (en) * 2009-10-01 2011-04-07 パナソニック株式会社 Ultrasonic flowmeter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283565A (en) * 2004-03-02 2005-10-13 Yazaki Corp Flow rate measurement device
JP4555669B2 (en) * 2004-03-02 2010-10-06 矢崎総業株式会社 Flow measuring device
JP2006029907A (en) * 2004-07-14 2006-02-02 Toyo Gas Meter Kk Gas meter
WO2010070891A1 (en) * 2008-12-18 2010-06-24 パナソニック株式会社 Ultrasonic flowmeter
JP2010164558A (en) * 2008-12-18 2010-07-29 Panasonic Corp Device for measuring flow of fluid
US8701501B2 (en) 2008-12-18 2014-04-22 Panasonic Corporation Ultrasonic flowmeter
WO2011040038A1 (en) * 2009-10-01 2011-04-07 パナソニック株式会社 Ultrasonic flowmeter
CN102549395A (en) * 2009-10-01 2012-07-04 松下电器产业株式会社 Ultrasonic flowmeter

Similar Documents

Publication Publication Date Title
US8701501B2 (en) Ultrasonic flowmeter
EP0391954B1 (en) Fluidic flowmeter
US6907361B2 (en) Ultrasonic flow-measuring method
KR20020021558A (en) Ultrasonic wave flow measuring method
NO851375L (en) PLANNING AND VERTILIZING MASS FLOW METERS
RU2600500C1 (en) Improved casing for vibration meter
JP2895704B2 (en) Ultrasonic flow meter
JPH0943015A (en) Ultrasonic flowmeter
JP2001141536A (en) Measuring instrument for measuring flow rate
JP2002520583A (en) Multi-code flow meter
JP2781063B2 (en) Fluidic flow meter
EP1067366B1 (en) Ultrasonic flowmeter using only one sensor
JP2008298560A (en) Ultrasonic flow meter and flow rate measurement method
JP4048964B2 (en) Ultrasonic flow meter
JP3689975B2 (en) Ultrasonic flow meter
JP2001317974A (en) Ultrasonic flowmeter
JP2004251700A (en) Fluid measuring device
JP2000065613A (en) Ultrasonic flowmeter
JP7373772B2 (en) Physical quantity measuring device
JP3521622B2 (en) Ultrasonic flow meter and ultrasonic flow meter
KR102507272B1 (en) Ultrasonic path velocity calculation method using cosine law and wet-type multi-line ultrasonic flow computer using the same
JP2007147562A (en) Ultrasonic meter device
JP3497279B2 (en) Ultrasonic flow meter
JP2008268090A (en) Ultrasonic flowmeter
JP2004170346A (en) Flow meter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324