JP2001138212A - Precise polishing apparatus - Google Patents

Precise polishing apparatus

Info

Publication number
JP2001138212A
JP2001138212A JP32367899A JP32367899A JP2001138212A JP 2001138212 A JP2001138212 A JP 2001138212A JP 32367899 A JP32367899 A JP 32367899A JP 32367899 A JP32367899 A JP 32367899A JP 2001138212 A JP2001138212 A JP 2001138212A
Authority
JP
Japan
Prior art keywords
polishing
spiral
polishing pad
slurry
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32367899A
Other languages
Japanese (ja)
Inventor
Toshiro Doi
俊郎 土肥
Kiyoshi Seshimo
清 瀬下
Ryosuke Nozaki
亮介 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP32367899A priority Critical patent/JP2001138212A/en
Publication of JP2001138212A publication Critical patent/JP2001138212A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To further improve the flattening of a surface of a work to be ground. SOLUTION: A slurry guide groove 7 provided in a polishing surface 1a of a polishing pad 1 comprises spiral grooves 13a and 13b basically comprising the logarithmic spiral shape with a center of the polishing pad 1 as a starting point, and curved radial grooves 14 with the center part of the polishing pad 1 as a starting point. A plurality of spiral grooves are formed, and the spacing in the radial direction of a route is equal. The slurry guide grooves face at equal space the surface as the work, the distance of grinding fragments carried to the spiral grooves becomes uniform in the whole surface of the work. In addition, the load applied to the work during the polishing is uniformly distributed within the wafer, and the flattening of the surface of the work can be improved. Since the number of turns of one spiral groove can be reduced, the time of holding the polishing fragments within the grooves becomes appropriate by adjusting the number of the multiple grooves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密研磨装置に関
し、特に半導体デバイスやオプトメカトロニクス用デバ
イス(薄膜ヘッドなど)の精密研磨におけるポリシング
パッドに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision polishing apparatus, and more particularly to a polishing pad for precision polishing of a semiconductor device or a device for optomechatronics (such as a thin film head).

【0002】[0002]

【従来の技術】近年、精密研磨対象物としての例えば半
導体デバイスは集積度を高めるために多層化されるよう
になってきたが、そのため研磨対象物の表面の平坦化が
低下して表面に段差が生じる場合が出てきた。また、半
導体デバイスの製造工程において、微細加工の線幅が細
くなると、光リソグラフィの光の波長が短くなるため、
開口係数NAも大きくなって、高解像度を得るために焦
点深度が浅くなってしまう。
2. Description of the Related Art In recent years, for example, a semiconductor device as an object to be precisely polished has been multi-layered in order to increase the degree of integration. Came out. Also, in the process of manufacturing a semiconductor device, when the line width of fine processing becomes narrower, the wavelength of light in photolithography becomes shorter,
The aperture coefficient NA also increases, and the depth of focus becomes shallow to obtain high resolution.

【0003】上記したように集積度を高めるために多層
化された半導体デバイスの製造における半導体デバイス
の表面が必ずしも平坦ではないため、半導体デバイスの
製造における微細加工の線幅が細くかつ複雑になるに連
れて、半導体デバイスの表面に段差が生じるようになっ
てきている。
As described above, since the surface of a semiconductor device in the manufacture of a multilayered semiconductor device in order to increase the degree of integration is not always flat, the line width of fine processing in the manufacture of the semiconductor device becomes narrow and complicated. As a result, a step has been formed on the surface of the semiconductor device.

【0004】上記段差の存在により、配線切れや局所的
な抵抗値の増大を招き、断線による電流容量の低下など
をもたらしたり、耐圧劣化やリークの発生を招いたりす
るという問題が生じる。また、段差の存在により半導体
露光装置の焦点深度が実質的に浅くなるため、歩留まり
及び信頼性を向上させるために解像度を増大させようと
すると、焦点深度がより一層浅くなってしまい、加工が
困難であるという問題がある。
[0004] The presence of the above-described steps causes problems such as disconnection of wiring and an increase in local resistance value, resulting in a reduction in current capacity due to disconnection, a deterioration in breakdown voltage, and the occurrence of leakage. In addition, since the depth of focus of the semiconductor exposure apparatus becomes substantially shallow due to the presence of the step, if the resolution is to be increased in order to improve the yield and reliability, the depth of focus becomes further shallower, which makes processing difficult. There is a problem that is.

【0005】[0005]

【発明が解決しようとする課題】解像度を増大させた微
細加工を容易に行い得るためには半導体デバイス側の平
坦化が必要であり、例えば特開平7−321076号公
報に開示されているように、化学的機械的研磨(CMP
法)を用いたものがあり、その構造の一例を図3に示
す。
In order to easily perform fine processing with increased resolution, it is necessary to flatten the semiconductor device side. For example, as disclosed in Japanese Patent Application Laid-Open No. 7-321076. , Chemical mechanical polishing (CMP)
Method), and an example of the structure is shown in FIG.

【0006】図3において、矢印Aに示されるように回
転する定盤2上にポリシングパッド11が貼り付けら
れ、そのポリシングパッド11の上方であってかつ定盤
2の回転中心から偏倚した位置で矢印Bに示されるよう
に回転するウエハホルダ8が設けられて、そのウエハホ
ルダ8により、研磨対象物としての半導体ウエハ5がポ
リシングパッド11に対峙するように保持されている。
In FIG. 3, a polishing pad 11 is adhered on a rotating surface plate 2 as indicated by an arrow A, and is located above the polishing pad 11 and at a position deviated from the rotation center of the surface plate 2. A wafer holder 8 that rotates as shown by an arrow B is provided, and the semiconductor wafer 5 as an object to be polished is held by the wafer holder 8 so as to face the polishing pad 11.

【0007】上記半導体ウエハ5を圧力機構9によりパ
ッキングパッド12を介してポリシングパッド11に押
し付け、かつ研磨剤供給機構10により研磨剤6をポリ
シングパッド11上に滴下しながら、定盤2及びウエハ
ホルダ8を上記矢印A及び矢印Bに示されるようにそれ
ぞれ回転させることにより、半導体ウエハ5が自転しつ
つ揺動運動を行うようになり、その表面が研磨される。
While the semiconductor wafer 5 is pressed against the polishing pad 11 via the packing pad 12 by the pressure mechanism 9 and the abrasive 6 is dropped on the polishing pad 11 by the abrasive supply mechanism 10, the surface plate 2 and the wafer holder 8 Are rotated as shown by the arrows A and B, respectively, so that the semiconductor wafer 5 swings while rotating, and the surface thereof is polished.

【0008】上記ポリシングパッド11には、図4に示
されるように、中心から放射状に延びる湾曲形状のスラ
リーガイド溝15が複数本設けられている。定盤2及び
ウエハホルダ8を上記したように回転運動させることに
より、半導体ウエハ5が研磨され、その研磨により生成
された研磨屑がスラリーガイド溝15によりポリシング
パッド11の外方に排出されるようになっている。
As shown in FIG. 4, the polishing pad 11 is provided with a plurality of curved slurry guide grooves 15 extending radially from the center. By rotating the platen 2 and the wafer holder 8 as described above, the semiconductor wafer 5 is polished, and the polishing debris generated by the polishing is discharged to the outside of the polishing pad 11 by the slurry guide groove 15. Has become.

【0009】しかしながら、ポリシングパッド11の中
心側と外周側とでは各スラリーガイド溝15間の間隔が
異なる(外周側の方が広い)ため、ポリシングパッド1
1の内外周で研磨屑がスラリーガイド溝15に運ばれる
までの距離が異なり、さらには加工時にウエハにかかる
圧力(荷重)の分布がウエハ内で不均一となり、半導体
ウエハ5の研磨精度に不均一性が生じ、平坦化精度をよ
り一層高めることが困難であるという問題があった。
However, since the distance between the respective slurry guide grooves 15 is different between the center side and the outer peripheral side of the polishing pad 11 (the outer peripheral side is wider), the polishing pad 1
The distance from the inner and outer circumferences until the polishing debris is conveyed to the slurry guide groove 15 varies, and the distribution of the pressure (load) applied to the wafer during processing becomes uneven within the wafer, resulting in poor polishing accuracy of the semiconductor wafer 5. There is a problem that uniformity occurs and it is difficult to further improve the planarization accuracy.

【0010】[0010]

【課題を解決するための手段】このような課題を解決し
て、研磨対象物としての半導体デバイスやオプトメカト
ロニクス用デバイス(薄膜ヘッドなど)の表面の平坦化
をより一層向上し得る研磨装置を実現するために、本発
明に於いては、回転する定盤上にポリシングパッドを貼
り付け、前記定盤の上方にて前記定盤の回転中心から偏
倚して回転するホルダにより研磨対象物をその表面を前
記ポリシングパッドに対峙させた状態に保持すると共
に、スラリーを前記ポリシングパッド上に供給して前記
研磨対象物の表面を研磨するようにした精密研磨装置で
あって、前記ポリシングパッドの表面に、前記スラリー
を保持し得ると共に前記定盤及び前記ホルダの回転によ
り前記研磨対象物の表面の全面に前記スラリーが分散す
るようにガイドするスラリーガイド溝を設け、前記スラ
リーガイド溝が、前記ポリシングパッドの回転中心部を
始点とした渦巻き形状溝を有すると共に、前記渦巻き形
状溝の経路の半径方向間隔が等間隔にされているものと
した。
In order to solve the above-mentioned problems, a polishing apparatus capable of further improving the flatness of the surface of a semiconductor device or an opto-mechatronics device (such as a thin film head) as an object to be polished is realized. In the present invention, a polishing pad is attached to a rotating platen, and the object to be polished is placed on the surface of the plate with a holder that is deflected from the center of rotation of the platen above the platen. While maintaining the state facing the polishing pad, a precision polishing apparatus for polishing the surface of the object to be polished by supplying a slurry on the polishing pad, the surface of the polishing pad, It can hold the slurry and guide the slurry to be dispersed over the entire surface of the object to be polished by rotation of the platen and the holder. A rally guide groove is provided, and the slurry guide groove has a spiral-shaped groove starting from a rotation center portion of the polishing pad, and radial intervals of paths of the spiral-shaped groove are equally spaced. .

【0011】これによれば、スラリーガイド溝が渦巻き
形状溝を有し、その渦巻き形状溝の経路の半径方向間隔
を等間隔にしたことから、研磨屑が渦巻き形状溝の半径
方向に運ばれて溝に至るまでの距離がポリシングパッド
の半径方向について同一になるため、ポリシングパッド
の研磨面に研磨屑が保持される時間を均一化し得る。
According to this, since the slurry guide groove has a spiral groove and the path of the spiral groove is made equal in the radial direction, the polishing debris is carried in the radial direction of the spiral groove. Since the distance to the groove is the same in the radial direction of the polishing pad, the time during which polishing dust is held on the polishing surface of the polishing pad can be made uniform.

【0012】また、複数本の前記渦巻き形状溝を半径方
向に並列に配設して多条溝の渦巻き形状にすると共に、
前記複数本の渦巻き形状における各経路の半径方向間隔
を等間隔にしたことにより、1本のみの渦巻き形状溝を
多数巻きして形成すると研磨屑が溝内を通って排出され
るまでの時間が長くなってしまう場合に対して、1本の
渦巻き形状溝の巻き数を減らすことができることから、
多条溝の条数を調整することにより研磨屑が溝内に保持
される時間を適切化することができる。
In addition, a plurality of the spiral-shaped grooves are arranged in parallel in the radial direction to form a spiral shape of a multi-groove,
Since the radial intervals of each path in the plurality of spiral shapes are made equal, if only one spiral-shaped groove is formed by winding a large number of times, the time until abrasive dust is discharged through the groove is reduced. Since the number of turns of one spiral groove can be reduced for the case where the length becomes long,
By adjusting the number of the multi-grooves, the time during which the polishing dust is held in the grooves can be made appropriate.

【0013】以上は、主に半導体デバイスについて説明
したが、薄膜ヘッドの様なオプトメカトロニクス用デバ
イスの精密研磨にも用いることができる。
Although the above has been described mainly of semiconductor devices, the present invention can also be used for precision polishing of optomechatronic devices such as thin film heads.

【0014】[0014]

【発明の実施の形態】以下に添付の図面に示された具体
例に基づいて本発明の実施の形態について詳細に説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to specific examples shown in the accompanying drawings.

【0015】図1は、本発明が適用された化学的機械的
研磨装置に用いられるポリシングパッド1の要部拡大断
面図である。なお、本装置は、従来例で示したものと同
様の構造であって良く、その詳しい説明を省略する。
FIG. 1 is an enlarged sectional view of a main part of a polishing pad 1 used in a chemical mechanical polishing apparatus to which the present invention is applied. This device may have the same structure as that shown in the conventional example, and a detailed description thereof will be omitted.

【0016】図1において、本ポリシングパッド1は、
定盤2の上面に貼り付けられており、その定盤2側に設
けられた弾性層3と研磨対象物側に設けられた硬質樹脂
層4とを積層してなる。弾性層3としては従来のポリシ
ングパッドに用いられていた発泡ウレタン材や他の発泡
性樹脂材であって良く、硬質樹脂層4としては無発泡性
高分子材であるABS樹脂材を含むビニル系コポリマー
材であると良い。
In FIG. 1, the polishing pad 1 comprises:
The elastic layer 3 is attached to the upper surface of the platen 2 and the elastic layer 3 provided on the platen 2 side and the hard resin layer 4 provided on the polishing object side are laminated. The elastic layer 3 may be a urethane foam material or another foamable resin material used for a conventional polishing pad, and the hard resin layer 4 is a vinyl-based material containing an ABS resin material which is a non-foamable polymer material. It may be a copolymer material.

【0017】また、研磨対象物としての半導体ウエハ5
の表面5aに対峙する硬質樹脂層4の上面には、ポリシ
ングパッド1上に供給されるスラリー6を硬質樹脂層4
の全面に分散させるスラリーガイド溝7が設けられてい
る。このスラリーガイド溝7を設けることにより、研磨
屑の排出や、使用済みスラリー6の排出や、スラリーガ
イド溝7のエッジによる研磨効率を向上することができ
る。また、スラリー量をウエハ表面5aに均一に分散
し、余分なスラリー6を排出することによって、研磨面
を均一な温度にすることができ、ウエハ表面5aの温度
上昇を一定に保つことができるなどの効果がる。
The semiconductor wafer 5 as an object to be polished is
The slurry 6 supplied onto the polishing pad 1 is coated on the upper surface of the hard resin layer 4 facing the surface 5a of the hard resin layer 4.
Is provided with a slurry guide groove 7 for dispersing over the entire surface. By providing the slurry guide groove 7, it is possible to improve the discharge efficiency of the polishing waste, the discharge of the used slurry 6, and the polishing efficiency by the edge of the slurry guide groove 7. Further, by uniformly dispersing the amount of slurry on the wafer surface 5a and discharging excess slurry 6, the polished surface can be made to have a uniform temperature, and the temperature rise on the wafer surface 5a can be kept constant. Has the effect.

【0018】上記効果を有効にする本発明に基づく一例
を図2に示す。図2にはポリシングパッド1の研磨面1
aが示されており、その研磨面1aに上記スラリーガイ
ド溝7が設けられている。本スラリーガイド溝7は、図
に良く示されるように、ポリシングパッド1の中心部を
始点とする例えば対数渦巻きを基本として算出された渦
巻き形状の渦巻き形状溝13a・13bと、同じくポリ
シングパッド1の中心部を始点とする湾曲放射溝14と
により構成されている。
FIG. 2 shows an example according to the present invention which makes the above effects effective. FIG. 2 shows the polishing surface 1 of the polishing pad 1.
a is shown, and the slurry guide groove 7 is provided on the polishing surface 1a. As shown in the figure, the present slurry guide groove 7 includes, for example, spiral-shaped spiral grooves 13a and 13b which are calculated based on, for example, a logarithmic spiral starting from the center of the polishing pad 1 and the polishing pad 1 also. And a curved radiation groove 14 starting from the center.

【0019】上記渦巻き形状溝13a・13bは、対数
渦巻きを求める式に基づいている。対数渦巻きの半径を
Ruとすると、 Ru=aeP θ …(1) で表される。ここで、a・Pは任意の係数であり、θは
極座標の角度である。
The spiral-shaped grooves 13a and 13b are based on a formula for obtaining a logarithmic spiral. If the radius of the logarithmic spiral and Ru, represented by Ru = ae P θ ... (1 ). Here, a · P is an arbitrary coefficient, and θ is an angle in polar coordinates.

【0020】本渦巻き形状溝13a・13bは、0≦θ
≦4πまでは、上記(1)式を用いる。式(1)から、
θ=2πの点r1はae2 π Pであり、θ=4πの点r2
はae4 π Pである。ここで、渦巻き形状溝13a・13
bの経路間隔を同一にするには、その間隔をLとする
と、 L=ae4 π P−ae2 π P …(2) で求められる間隔Lを4π≦θにおいても常に保つよう
にすれば良い。
The spiral-shaped grooves 13a and 13b satisfy 0 ≦ θ.
The formula (1) is used up to ≦ 4π. From equation (1),
theta = point r1 of 2π is ae 2 π P, θ = point of 4 [pi] r2
Is ae 4 π P. Here, the spiral grooves 13a and 13
In order to make the path interval of b the same, assuming that the interval is L, the interval L obtained by L = ae 4 π P −ae 2 π P (2) is always maintained even at 4π ≦ θ. good.

【0021】したがって、4π≦θにあっては上記
(1)・(2)式から、 Ru=a[e( θ -2 π )P+(e4 π P−e2 π P)] …(3) となる。
[0021] Thus, in the 4 [pi] ≦ theta from above (1) (2), Ru = a [e (θ -2 π) P + (e 4 π P -e 2 π P)] ... ( 3)

【0022】さらに、本図示例では、2本の渦巻き形状
溝13a・13bを半径方向に互いに並列に配設するこ
とにより、2条の溝を1つの束とする渦巻きになるよう
にしている。そして、一方の渦巻き形状溝13aの経路
間には他方の渦巻き形状溝13bの経路が挟まれてお
り、各経路の半径方向間隔は等間隔にされている。
Further, in the illustrated example, two spiral grooves 13a and 13b are arranged in parallel in the radial direction to form a spiral having two grooves as one bundle. The path of the other spiral groove 13b is interposed between the paths of the one spiral groove 13a, and the intervals in the radial direction of each path are equal.

【0023】図示例では説明上2本の渦巻き形状溝13
a・13bからなる2条溝について示したが、半導体ウ
エハ5の大きさに合わせたスラリーの保持時間や研磨屑
の排出速度などを考慮して条数を決める。すなわち、N
本の渦巻き形状溝を配設してN条溝を1つの束とする場
合には、間隔LをN等分した等分間隔(L/N)を用い
れば良く、その渦巻き形状を表す式は次式のようにな
る。 Ru(n-1)=a[e( θ -2 π )P+(e4 π P−e2 π P)]−L(n−1)/N …( 4) ここで、nにはn条目の数字を代入する。すなわち、n
=1は基本溝Ru(0)を表し、n=N+1は基本溝Ru(0)
の2π後のものとなる。
In the illustrated example, two spiral grooves 13 are provided for the sake of explanation.
Although the two grooves a and 13b are shown, the number of grooves is determined in consideration of the slurry holding time and the discharge speed of the polishing debris according to the size of the semiconductor wafer 5. That is, N
When N spiral grooves are arranged as one bundle by arranging the spiral grooves, an equal interval (L / N) obtained by dividing the interval L by N may be used. It becomes like the following formula. Ru (n-1) = a [e (θ -2 π) P + (e 4 π P -e 2 π P)] - L (n-1) / N ... (4) Here, the n n Substitute the number of the item. That is, n
= 1 represents the basic groove Ru (0) , and n = N + 1 represents the basic groove Ru (0).
2π after.

【0024】なお、定盤2の回転方向に応じてθの正負
により、渦巻き方向を正転/逆転のいずれかにすること
ができる。また、a=10、P=0.15とすることに
より、図のような複数巻きの渦巻き形状が得られるが、
それらの値はnと共に任意である。
It should be noted that the direction of the spiral can be set to either forward or reverse depending on the sign of θ depending on the rotation direction of the platen 2. By setting a = 10 and P = 0.15, a spiral shape having a plurality of turns as shown in the figure can be obtained.
Their values are arbitrary along with n.

【0025】湾曲放射溝14についても、式(1)に基
づいて形成して良い。図示例のように複数本設ける場合
には2π/m間隔で座標変換することで、ポリシングパ
ッド1の中心軸回りに等角度ピッチでm本の湾曲放射溝
14を配設することができる。なお、湾曲放射溝14に
あっては、円の伸開線・螺線・サイクロイド曲線・レム
ニスケートなどから求めても良い。
The curved radiation groove 14 may be formed based on the equation (1). In the case where a plurality of grooves are provided as in the illustrated example, by performing coordinate conversion at an interval of 2π / m, m curved radiation grooves 14 can be arranged at an equal angular pitch around the central axis of the polishing pad 1. In the case of the curved radiation groove 14, it may be obtained from the open line of the circle, the spiral line, the cycloid curve, the lemniscate, or the like.

【0026】また、ポリシングパッド1の研磨面におけ
る半導体ウエハ5の移動(摺接)範囲は、図2の想像線
で示される大小の同心円で囲まれたドーナツ状の範囲で
あり、小円の大きさは、(1)式における0≦θ≦2π
を越えた所に設定する。このようにすることにより、半
導体ウエハ5の移動(摺接)範囲にあっては、渦巻き形
状溝13a・13bの経路の半径方向間隔が全て上記し
たLで統一される。
The range of movement (sliding contact) of the semiconductor wafer 5 on the polishing surface of the polishing pad 1 is a toroidal range surrounded by large and small concentric circles indicated by imaginary lines in FIG. The value is 0 ≦ θ ≦ 2π in equation (1).
Set to a place beyond. By doing so, in the movement (sliding contact) range of the semiconductor wafer 5, the radial intervals of the paths of the spiral grooves 13a and 13b are all unified with the above L.

【0027】このように、対数渦巻きに基づく渦巻き形
状溝13a・13bと湾曲放射溝14とにより構成され
たスラリーガイド溝7を形成したポリシングパッド1上
で半導体ウエハ5の研磨を行うと、半導体ウエハ5の移
動(摺接)範囲にあっては、スラリー及び研磨屑の渦巻
き形状溝13a・13bへ運ばれる距離が統一されるた
め、半導体ウエハ5の表面5aに対する研磨精度を向上
し得る。
As described above, when the semiconductor wafer 5 is polished on the polishing pad 1 on which the slurry guide grooves 7 formed by the spiral grooves 13a and 13b based on the logarithmic spiral and the curved radiation grooves 14 are formed, In the movement (sliding contact) range of 5, the distance that the slurry and the polishing debris are carried to the spiral grooves 13a and 13b is unified, so that the polishing accuracy for the surface 5a of the semiconductor wafer 5 can be improved.

【0028】また、スラリーガイド溝7はポリシングパ
ッド1の外周に達して開放されているため、溝内に入り
込んだ研磨屑などを好適に排出することができ、研磨速
度を一定に保持することができる。また、1本の渦巻き
形状の経路長を研磨屑の排出時間との兼ね合いで極力長
くすることにより、スラリーガイド溝7内におけるスラ
リー6の保持時間を適切化することができ、スラリー消
費率を向上して、コストや産業廃棄物対策などに対して
有効である。
Further, since the slurry guide groove 7 reaches the outer periphery of the polishing pad 1 and is opened, it is possible to preferably discharge polishing debris or the like that has entered the groove and to maintain a constant polishing rate. it can. In addition, by making the length of one spiral path as long as possible in consideration of the time required to discharge the polishing debris, the holding time of the slurry 6 in the slurry guide groove 7 can be made appropriate and the slurry consumption rate can be improved. Therefore, it is effective for cost and industrial waste measures.

【0029】なお、8本の渦巻き形状溝を配設し、その
経路の半径方向間隔を0.5〜10mmにすることによ
り、スラリーや研磨屑が運ばれる距離が短くなり、半導
体ウエハ5の全面に渡ってスクラッチが発生しなくする
ことができた。
By disposing the eight spiral grooves and setting the radial interval between the grooves to 0.5 to 10 mm, the distance over which the slurry or polishing debris is carried is reduced, and the entire surface of the semiconductor wafer 5 is reduced. Was able to prevent scratches from occurring.

【0030】[0030]

【発明の効果】このように本発明によれば、研磨対象物
の表面にスラリーガイド溝が等間隔で臨むようになり、
研磨屑の渦巻き形状溝に運ばれる距離が研磨対象物の全
面において均一になるため、研磨対象物の表面の平坦化
を向上し得る。これにより、研磨対象物をオプトメカト
ロニクス用デバイス(薄膜ヘッドなど)とする場合に極
めて有効である。特に、多条溝の渦巻き形状にすること
により、1本のみの渦巻き形状溝を多数巻きして形成す
ると研磨屑が溝内を通って排出されるまでの時間が長く
なってしまう場合に対して、1本の渦巻き形状溝の巻き
数を減らすことができることから、多条溝の条数を調整
することにより研磨屑が溝内に保持される時間を適切化
することができる。
As described above, according to the present invention, the slurry guide grooves face the surface of the object to be polished at regular intervals,
Since the distance that the polishing dust is conveyed to the spiral groove becomes uniform over the entire surface of the object to be polished, the surface of the object to be polished can be improved in flatness. This is extremely effective when the object to be polished is a device for optomechatronics (such as a thin film head). In particular, when the spiral shape of the multi-slot groove is used to form a single spiral shape groove by winding a large number of times, it takes a long time for abrasive chips to be discharged through the groove. (1) Since the number of turns of one spiral groove can be reduced, the time during which polishing dust is retained in the groove can be made appropriate by adjusting the number of grooves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されたポリシングパッドの要部拡
大断面図。
FIG. 1 is an enlarged sectional view of a main part of a polishing pad to which the present invention is applied.

【図2】本発明に基づくスラリーガイド溝の形状を示す
平面図。
FIG. 2 is a plan view showing a shape of a slurry guide groove according to the present invention.

【図3】化学的機械的研磨装置の構成を示す概略図。FIG. 3 is a schematic diagram showing a configuration of a chemical mechanical polishing apparatus.

【図4】従来のスラリーガイド溝の形状を示す平面図。FIG. 4 is a plan view showing the shape of a conventional slurry guide groove.

【符号の説明】[Explanation of symbols]

1 ポリシングパッド 2 定盤 3 弾性層 4 硬質樹脂層 5 半導体ウエハ、5a 表面 6 スラリー 7 溝 8 ウエハホルダ 9 圧力機構 10 研磨剤供給機構 11 ポリシングパッド 12 パッキングパッド 13a・13b 渦巻き形状溝 14 湾曲放射溝 DESCRIPTION OF SYMBOLS 1 Polishing pad 2 Surface plate 3 Elastic layer 4 Hard resin layer 5 Semiconductor wafer, 5a Surface 6 Slurry 7 Groove 8 Wafer holder 9 Pressure mechanism 10 Abrasive supply mechanism 11 Polishing pad 12 Packing pad 13a / 13b Spiral-shaped groove 14 Curved radiation groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転する定盤上にポリシングパッドを貼
り付け、前記定盤の上方にて前記定盤の回転中心から偏
倚して回転するホルダにより研磨対象物をその表面を前
記ポリシングパッドに対峙させた状態に保持すると共
に、スラリーを前記ポリシングパッド上に供給して前記
研磨対象物の表面を研磨するようにした精密研磨装置で
あって、 前記ポリシングパッドの表面に、前記スラリーを保持し
得ると共に前記定盤及び前記ホルダの回転により前記研
磨対象物の表面の全面に前記スラリーが分散するように
ガイドするスラリーガイド溝を設け、 前記スラリーガイド溝が、前記ポリシングパッドの回転
中心部を始点とした渦巻き形状溝を有すると共に、前記
渦巻き形状溝の経路の半径方向間隔が等間隔にされてい
ることを特徴とする精密研磨装置。
1. A polishing pad is pasted on a rotating surface plate, and a polishing object is rotated above the surface plate by a holder which is deviated from the center of rotation of the surface surface and the surface of the polishing object is opposed to the polishing pad. A precision polishing apparatus configured to polish a surface of the polishing target by supplying a slurry onto the polishing pad while holding the slurry in a state where the slurry is held, and holding the slurry on a surface of the polishing pad. A slurry guide groove for guiding the slurry so as to be dispersed over the entire surface of the object to be polished by the rotation of the surface plate and the holder is provided, and the slurry guide groove starts at a rotation center of the polishing pad. Characterized in that the spiral-shaped groove is formed, and the radial intervals of the path of the spiral-shaped groove are equally spaced. Location.
【請求項2】 複数本の前記渦巻き形状溝を半径方向に
並列に配設して多条溝の渦巻き形状にすると共に、前記
複数本の渦巻き形状における各経路の半径方向間隔を等
間隔にしたことを特徴とする請求項1に記載の精密研磨
装置。
2. A plurality of spirally-shaped grooves are arranged in parallel in the radial direction to form a spiral shape of a multi-slotted groove, and the intervals in the radial direction of each path in the plurality of spirally-shaped grooves are made equal. The precision polishing apparatus according to claim 1, wherein:
JP32367899A 1999-11-15 1999-11-15 Precise polishing apparatus Pending JP2001138212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32367899A JP2001138212A (en) 1999-11-15 1999-11-15 Precise polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32367899A JP2001138212A (en) 1999-11-15 1999-11-15 Precise polishing apparatus

Publications (1)

Publication Number Publication Date
JP2001138212A true JP2001138212A (en) 2001-05-22

Family

ID=18157393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32367899A Pending JP2001138212A (en) 1999-11-15 1999-11-15 Precise polishing apparatus

Country Status (1)

Country Link
JP (1) JP2001138212A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6802761B1 (en) 2003-03-20 2004-10-12 Hitachi Global Storage Technologies Netherlands B.V. Pattern-electroplated lapping plates for reduced loads during single slider lapping and process for their fabrication
JP2006005339A (en) * 2004-05-20 2006-01-05 Jsr Corp Chemical mechanical polishing pad and method
WO2006003697A1 (en) * 2004-06-30 2006-01-12 Toho Engineering Kabushiki Kaisha Grinding pad and method of producing the same
CN100341666C (en) * 2003-04-29 2007-10-10 Cmp罗姆和哈斯电子材料控股公司 Polishing pad with optimized grooves and method of using same
US7300340B1 (en) 2006-08-30 2007-11-27 Rohm and Haas Electronics Materials CMP Holdings, Inc. CMP pad having overlaid constant area spiral grooves
JP2008507417A (en) * 2004-07-21 2008-03-13 ネオパッド テクノロジーズ コーポレイション Method for generating in-situ grooves during chemical mechanical planarization (CMP) PAD and novel CMPPAD design
JP2008168430A (en) * 2008-01-21 2008-07-24 Nitta Haas Inc Polishing member
JP2008546167A (en) * 2005-02-18 2008-12-18 ネオパッド テクノロジーズ コーポレイション Customized polishing pad for CMP and method for making and using the same
US7591713B2 (en) 2003-09-26 2009-09-22 Shin-Etsu Handotai Co., Ltd. Polishing pad, method for processing polishing pad, and method for producing substrate using it
WO2010032715A1 (en) * 2008-09-17 2010-03-25 株式会社クラレ Polishing pad
JP2013248693A (en) * 2012-05-31 2013-12-12 Fujibo Holdings Inc Polishing pad
CN108994723A (en) * 2018-08-03 2018-12-14 成都时代立夫科技有限公司 A kind of CMP composite trench polishing pad
CN113579992A (en) * 2014-10-17 2021-11-02 应用材料公司 CMP pad construction with composite material properties using additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6802761B1 (en) 2003-03-20 2004-10-12 Hitachi Global Storage Technologies Netherlands B.V. Pattern-electroplated lapping plates for reduced loads during single slider lapping and process for their fabrication
CN100341666C (en) * 2003-04-29 2007-10-10 Cmp罗姆和哈斯电子材料控股公司 Polishing pad with optimized grooves and method of using same
US7591713B2 (en) 2003-09-26 2009-09-22 Shin-Etsu Handotai Co., Ltd. Polishing pad, method for processing polishing pad, and method for producing substrate using it
KR101128932B1 (en) * 2003-09-26 2012-03-27 신에쯔 한도타이 가부시키가이샤 Polishing cloth, polishing cloth processing method, and substrate manufacturing method using same
US7677957B2 (en) 2003-09-26 2010-03-16 Shin-Etsu Handotai Co., Ltd. Polishing apparatus, method for providing and mounting a polishing pad in a polishing apparatus, and method for producing a substrate using the polishing apparatus
JP4645825B2 (en) * 2004-05-20 2011-03-09 Jsr株式会社 Chemical mechanical polishing pad and chemical mechanical polishing method
JP2006005339A (en) * 2004-05-20 2006-01-05 Jsr Corp Chemical mechanical polishing pad and method
WO2006003697A1 (en) * 2004-06-30 2006-01-12 Toho Engineering Kabushiki Kaisha Grinding pad and method of producing the same
KR101234168B1 (en) * 2004-07-21 2013-02-18 넥스플래너 코퍼레이션 Methods for producing in-situ grooves in chemical mechanical planarization(cmp) pads, and novel cmp pad designs
JP2008507417A (en) * 2004-07-21 2008-03-13 ネオパッド テクノロジーズ コーポレイション Method for generating in-situ grooves during chemical mechanical planarization (CMP) PAD and novel CMPPAD design
US8932116B2 (en) 2004-07-21 2015-01-13 Nexplanar Corporation Methods for producing in-situ grooves in chemical mechanical planarization (CMP) pads, and novel CMP pad designs
KR101200312B1 (en) * 2004-07-21 2012-11-12 넥스플래너 코퍼레이션 Methods for producing in-situ grooves in chemical mechanical planarizationcmp pads, and novel cmp pad designs
US8287793B2 (en) 2004-07-21 2012-10-16 Nexplanar Corporation Methods for producing in-situ grooves in chemical mechanical planarization (CMP) pads, and novel CMP pad designs
JP2008546167A (en) * 2005-02-18 2008-12-18 ネオパッド テクノロジーズ コーポレイション Customized polishing pad for CMP and method for making and using the same
US8715035B2 (en) 2005-02-18 2014-05-06 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
JP2008068394A (en) * 2006-08-30 2008-03-27 Rohm & Haas Electronic Materials Cmp Holdings Inc Cmp pad having overlaid constant area spiral groove
TWI380853B (en) * 2006-08-30 2013-01-01 羅門哈斯電子材料Cmp控股公司 Cmp pad having overlaid constant area spiral grooves
KR101327626B1 (en) 2006-08-30 2013-11-12 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스, 인코포레이티드 CMP Pad Having Overlaid Constant Area Spiral Grooves
US7300340B1 (en) 2006-08-30 2007-11-27 Rohm and Haas Electronics Materials CMP Holdings, Inc. CMP pad having overlaid constant area spiral grooves
JP2008168430A (en) * 2008-01-21 2008-07-24 Nitta Haas Inc Polishing member
WO2010032715A1 (en) * 2008-09-17 2010-03-25 株式会社クラレ Polishing pad
JP2013248693A (en) * 2012-05-31 2013-12-12 Fujibo Holdings Inc Polishing pad
CN113579992A (en) * 2014-10-17 2021-11-02 应用材料公司 CMP pad construction with composite material properties using additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
CN108994723A (en) * 2018-08-03 2018-12-14 成都时代立夫科技有限公司 A kind of CMP composite trench polishing pad

Similar Documents

Publication Publication Date Title
US6783436B1 (en) Polishing pad with optimized grooves and method of forming same
US7300340B1 (en) CMP pad having overlaid constant area spiral grooves
US7520798B2 (en) Polishing pad with grooves to reduce slurry consumption
US9308620B2 (en) Permeated grooving in CMP polishing pads
CN1312742C (en) Polishing disk, polishing machine and method for manufacturing semiconductor
US6273806B1 (en) Polishing pad having a grooved pattern for use in a chemical mechanical polishing apparatus
JP2001138212A (en) Precise polishing apparatus
JP5635957B2 (en) Polishing method of polishing object and polishing pad
EP2202031B1 (en) High-rate polishing method
KR20080075468A (en) Dechuck using subpad with recess
US20080064302A1 (en) Polishing apparatus, polishing pad, and polishing method
JPH10180618A (en) Grinding pad adjusting method for cmp device
TWI766177B (en) Chemical mechanical polishing system and method
US6942549B2 (en) Two-sided chemical mechanical polishing pad for semiconductor processing
CN113710422A (en) Chemical mechanical polishing using time quantum control
US7520796B2 (en) Polishing pad with grooves to reduce slurry consumption
KR100546355B1 (en) Chemical mechanical polishing apparatus having insert pad for forming local step
JP2004172296A (en) Polishing method for semiconductor wafer, and polishing pad therefor
JP2003053657A (en) Polishing surface structural member and polishing device using the same
JP2005183707A (en) Polishing pad for cmp and polishing method using same
CN108214280B (en) Polishing pad and polishing method
JP4449905B2 (en) Polishing cloth, polishing cloth processing method, and substrate manufacturing method using the same
JPH11277407A (en) Polishing pad, polishing device, and polishing method
JP4289764B2 (en) Tape polishing equipment
WO2016047451A1 (en) Grinding pad

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905