JP2001135868A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element

Info

Publication number
JP2001135868A
JP2001135868A JP31630399A JP31630399A JP2001135868A JP 2001135868 A JP2001135868 A JP 2001135868A JP 31630399 A JP31630399 A JP 31630399A JP 31630399 A JP31630399 A JP 31630399A JP 2001135868 A JP2001135868 A JP 2001135868A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
temperature side
thermoelectric
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31630399A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Nobuhiro Sadatomi
信裕 貞富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP31630399A priority Critical patent/JP2001135868A/en
Publication of JP2001135868A publication Critical patent/JP2001135868A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flexible and sheet-like thermoelectric conversion element wherein, regardless of kind of thermoelectric conversion material, the Seebeck factor and Seebeck current of the thermoelectric conversion element are significantly improved. SOLUTION: With the kind of metal electrode different between a positive pole side and negative pole side, the thermoelectric conversion efficiency significantly improves compared to the case where the metal electrodes of the same kind are used even if the thermoeleetric performance index of the thermoelectric material itself is low and the temperature gradient is relatively small. For example, one kind among Ag, Pt, Cu, Ti, and alloy of them is preferred to be used as the electrode material on a high-temperature side while one kind, which is different from that of high-temperature side, among Cu, Pt, Al, Au, Fe, Mo, Zn, and alloy of them is preferred to be used for the electrode material on low-temperature side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、シート状の熱電
変換素子に関し、熱電変換材料の低温側と高温側の電極
材料として、それぞれ異なる最適な金属電極を選択する
ことにより、高いゼーベック係数と高いゼーベック電流
を発生させて熱電変換効率を向上させた熱電変換素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-like thermoelectric conversion element, which has a high Seebeck coefficient and a high Seebeck coefficient by selecting different optimal metal electrodes as electrode materials on the low-temperature side and the high-temperature side of the thermoelectric conversion material. The present invention relates to a thermoelectric conversion element that generates Seebeck current to improve thermoelectric conversion efficiency.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効活用の観点から実用化が
期待されているデバイスであり、例えば、排熱を利用し
電気エネルギーに変換するシステムや、屋外で簡単に電
気を得るための小型携帯用発電装置、ガス機器の炎セン
サー等、非常に広範囲の用途が検討されている。
2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries, and for example, a system that converts waste heat into electric energy. Also, a very wide range of applications such as a small portable power generator for easily obtaining electricity outdoors and a flame sensor for gas appliances are being studied.

【0003】熱電変換素子は、例えば、p型とn型半導体を粉
末冶金的に直接接合して素子となした構成、あるいはp
型とn型半導体を銀ろう等の金属でpn接合して素子とな
した構成などがある。
[0003] A thermoelectric conversion element has, for example, a structure in which a p-type and an n-type semiconductor are directly joined by powder metallurgy to form an element, or
There is a configuration in which a device and an n-type semiconductor are formed as a device by pn junction with a metal such as silver solder.

【0004】前記素子を形成するための熱電変換材料とし
て、高性能を有するIrSb3、Bi2Te 3、PbTe等のカルコゲ
ン系化合物のほか、熱電特性は低いが資源的に豊富なFe
Si2、SiGe等のケイ化物が知られている。
[0004] As a thermoelectric conversion material for forming the element,
IrSb with high performanceThree, BiTwoTe ThreeChalcogen such as PbTe
Fe-based compounds with low thermoelectric properties but abundant resources
SiTwoAnd silicides such as SiGe are known.

【0005】[0005]

【発明が解決しようとする課題】しかし、熱電変換素子
の変換効率は、他のエネルギー変換効率、例えば火力発
電(約50%)や太陽電池(約20%)等に比べて非常に低く、ほ
んの数%にすぎなかった。この低い変換効率が実用化を
遅らせていた主な原因である。
However, the conversion efficiency of the thermoelectric conversion element is very low as compared with other energy conversion efficiencies, for example, thermal power generation (about 50%) and solar cells (about 20%). Only a few percent. This low conversion efficiency is the main reason for delaying practical use.

【0006】熱電変換材料の性能指数を向上させるための材
料研究は、現在も活発に行われているが、材料特性の向
上だけでは熱電変換効率の向上には限界がある。
[0006] Materials research for improving the figure of merit of thermoelectric conversion materials is still being actively conducted, but there is a limit to improvement in thermoelectric conversion efficiency only by improving material properties.

【0007】また、従来の熱電変換素子は、主にバルク状の
熱電材料に所定の温度勾配を与えて熱起電力を発生させ
ていたが、これでは太陽熱、各種廃熱を有効利用するた
めに想定されるフレキシブルな熱電変換素子を作製する
ことはできない。
In the conventional thermoelectric conversion element, a thermoelectric material is mainly generated by giving a predetermined temperature gradient to a bulk thermoelectric material. However, this method is used to effectively utilize solar heat and various kinds of waste heat. An assumed flexible thermoelectric conversion element cannot be produced.

【0008】この発明は、熱電変換材料種にかかわらず、熱
電変換素子のゼーベック係数とゼーベック電流を飛躍的
に向上させることを目的としている。また、熱電変換効
率に優れたフレキシブルなシート状の熱電変換素子の提
供を目的としている。
An object of the present invention is to dramatically improve the Seebeck coefficient and the Seebeck current of a thermoelectric conversion element regardless of the type of the thermoelectric conversion material. Another object of the present invention is to provide a flexible sheet-like thermoelectric conversion element having excellent thermoelectric conversion efficiency.

【0009】[0009]

【課題を解決するための手段】発明者らは、太陽熱、各
種廃熱を有効利用するためには、フレキシブルなシート
状の高性能熱電変換素子が極めて有用であると考え、こ
のフレキシブルな熱電変換素子を作製するために、温度
勾配のある熱電変換材料の高温側と低温側に異種のさま
ざま金属電極を取り付けて、発生する電圧と電流を種々
調査した結果、ある特定の組み合わせの金属電極対で、
非常に高い出力電力が得られることを知見した。
The present inventors consider that a flexible sheet-like high-performance thermoelectric conversion element is extremely useful for effectively utilizing solar heat and various kinds of waste heat. In order to fabricate the device, different types of metal electrodes were attached to the high-temperature side and low-temperature side of a thermoelectric conversion material with a temperature gradient, and the resulting voltage and current were investigated in various ways. ,
It has been found that very high output power can be obtained.

【0010】発明者らは、従来の熱電材料に取り付けた正負
の金属電極が同一金属であるのに対して、正極側と負極
側で金属電極の種類を変えることによって、熱電材料自
体の熱電性能指数が低くても、また温度勾配が比較的小
さくても、熱電変換効率が同一種類の金属電極を使用し
た場合に比べて飛躍的に向上することを知見し、この発
明を完成した。
[0010] The inventors have found that the positive and negative metal electrodes attached to a conventional thermoelectric material are the same metal, but by changing the type of metal electrode on the positive electrode side and the negative electrode side, the thermoelectric performance of the thermoelectric material itself is improved. The inventors have found that even if the index is low and the temperature gradient is relatively small, the thermoelectric conversion efficiency is dramatically improved as compared with the case where the same type of metal electrode is used.

【0011】すなわち、この発明は、温度勾配のある熱電変
換材料の高温側の電極材料にAg,Pt,Cu,Ti及びそれらの
合金のうち1種、低温側の電極材料にCu,Pt,Al,Au,Fe,M
o,Zn及びそれらの合金のうち高温側と異なる1種を用い
たことを特徴とする熱電変換素子である。
[0011] That is, the present invention provides a high-temperature side electrode material of a thermoelectric conversion material having a temperature gradient of Ag, Pt, Cu, Ti and one of alloys thereof, and a low-temperature side electrode material of Cu, Pt, Al. , Au, Fe, M
A thermoelectric conversion element characterized in that one of o, Zn and their alloys different from the high-temperature side is used.

【0012】また、この発明による熱電変換素子は、シート
状又は薄膜の熱電変換材料の両主面に上記の各電極をシ
ート状又は薄膜にて設けた3層構造とすることにより、
フレキシブルな金属箔や樹脂シート状として容易に提供
できる。
[0012] Further, the thermoelectric conversion element according to the present invention has a three-layer structure in which the above-described electrodes are provided on both main surfaces of a sheet-like or thin-film thermoelectric conversion material in the form of a sheet or a thin film.
It can be easily provided as a flexible metal foil or resin sheet.

【0013】さらに、この発明は、上記の3層構造の熱電変
換素子を絶縁材を介して積層することにより、多層素子
構造として熱電変換効率を大きく向上させることが可能
になる。
Further, according to the present invention, by stacking the above-described thermoelectric conversion elements having a three-layer structure via an insulating material, it is possible to greatly improve thermoelectric conversion efficiency as a multilayer element structure.

【0014】[0014]

【発明の実施の形態】従来のバルク状の熱電変換材料の
場合には、ゼーベック係数は温度勾配の大きさに応じて
比較的高く取り出せたので、ぜーベック係数を上げるた
めの金属電極の選択はそれほど重要ではなかった。しか
し、薄膜状の熱電変換素子の場合には、温度勾配が数℃
以下と一般的に非常に小さいために、金属電極の選択は
熱電変換効率に非常に大きな影響を与える。
BEST MODE FOR CARRYING OUT THE INVENTION In the case of a conventional bulk thermoelectric conversion material, the Seebeck coefficient can be taken out relatively high according to the magnitude of the temperature gradient. It was not so important. However, in the case of a thin-film thermoelectric conversion element, the temperature gradient is several degrees Celsius.
The choice of metal electrode has a very large effect on thermoelectric conversion efficiency, generally because it is very small:

【0015】これは、前述した発明者らの知見から明らかな
ように、熱電変換材料の高温側と低温側に使用する電極
金属の種類によってゼーベック係数が大きく変わるから
である。もちろんゼーベック係数が上がれば、負荷抵抗
に流れる電流自体も増加し、強いて言えば出力電力も増
加することになる。なお、異種金属電極を配置すること
は、後述の薄膜構成の素子のみならず、従来のバルク状
熱電変換材料の場合にも当然有効である。
[0015] This is because the Seebeck coefficient greatly changes depending on the types of electrode metals used on the high-temperature side and the low-temperature side of the thermoelectric conversion material, as is apparent from the above-mentioned findings of the inventors. Of course, if the Seebeck coefficient increases, the current flowing through the load resistance itself increases, and if it says, the output power also increases. The disposition of the dissimilar metal electrodes is naturally effective not only for a device having a thin film configuration described later but also for a conventional bulk thermoelectric conversion material.

【0016】薄膜の金属電極としては、比較的耐食性に優
れ、しかも蒸着などの気相成長しやすい金属が好まし
い。特に高温で高特性を示す熱電材料では高融点の金属
を電極として使用することが好ましい。熱電変換材料の
高温側の電極材料としては、Ag,Pt,Cu,Ti、低温側の電
極材料としてはCu,Pt,Al,Au,Fe,Mo,Znが好ましい。又、
これらの金属の合金を用いることもできる。
As the metal electrode of the thin film, a metal which is relatively excellent in corrosion resistance and which is easily grown by vapor phase such as vapor deposition is preferable. In particular, it is preferable to use a metal having a high melting point as an electrode for a thermoelectric material exhibiting high characteristics at high temperatures. Ag, Pt, Cu, Ti is preferable as the electrode material on the high temperature side of the thermoelectric conversion material, and Cu, Pt, Al, Au, Fe, Mo, Zn is preferable as the electrode material on the low temperature side. or,
Alloys of these metals can also be used.

【0017】熱電変換材料の高温側と低温側に使用する電極
金属の種類、組合せは、熱電変換材料種によってそれぞ
れ異なる。例えば、FeSi2化合物の場合は、高温側にP
t、低温側にCu、Bi2Te3化合物の場合は、高温側にPt、
低温側にAl、Si1-xGex(x≦0.20)の場合は、高温側にP
t、低温側にAl、などが好ましい。
The types and combinations of electrode metals used on the high-temperature side and the low-temperature side of the thermoelectric conversion material differ depending on the type of the thermoelectric conversion material. For example, in the case of FeSi 2 compound, P
t, Cu on the low temperature side, Pt on the high temperature side for Bi 2 Te 3 compounds,
In the case of Al, Si 1-x Ge x (x ≦ 0.20) on the low temperature side, P on the high temperature side
t, Al on the low temperature side, etc. are preferred.

【0018】この発明によるフレキシブルな熱電変換素子の
構成としては、例えば、柔軟性のある有機フィルムの上
にアルミナ絶縁膜を蒸着した上に、金属電極を蒸着した
後、比較的電気抵抗率の高い薄膜の熱電材料を蒸着し、
異種の金属薄膜の電極を蒸着し、さらにその上からアル
ミナ絶縁膜を蒸着した3層構造がある。この場合、有機
フィルムが強度主体でアルミナ絶縁膜は絶縁保護膜とし
て機能している。
As a configuration of the flexible thermoelectric conversion element according to the present invention, for example, an alumina insulating film is vapor-deposited on a flexible organic film, a metal electrode is vapor-deposited, and then a relatively high electric resistivity is obtained. Evaporating thin film thermoelectric material,
There is a three-layer structure in which electrodes of different types of metal thin films are deposited, and an alumina insulating film is further deposited thereon. In this case, the organic film mainly functions as the strength, and the alumina insulating film functions as the insulating protective film.

【0019】金属電極膜/熱電材料膜/金属電極膜の3層構造
にした熱電素子を作製する場合、温度勾配に垂直方向の
面積は大きく、熱電変換材料は温度勾配の方向では非常
に短いために、材料設計としては電気抵抗率が比較的高
い材料でも使用できる利点がある。またドーパントの添
加量によって電気抵抗率が制御できる材料の場合には、
電気抵抗率を膜厚と膜面積に応じて適宜選定するとよい
When manufacturing a thermoelectric element having a three-layer structure of a metal electrode film / thermoelectric material film / metal electrode film, the area in the direction perpendicular to the temperature gradient is large, and the thermoelectric conversion material is very short in the direction of the temperature gradient. In addition, there is an advantage that a material having a relatively high electric resistivity can be used as a material design. In the case of a material whose electric resistivity can be controlled by the addition amount of the dopant,
The electric resistivity may be appropriately selected according to the film thickness and the film area.

【0020】また、上記構成でさらにアルミナ絶縁膜上に3
層構造を成膜し、この操作を繰り返し、熱電変換素子の
多層構造体を何層か積み上げることにより、熱電変換効
率を向上させることができる。このシート状熱電変換素
子の温度勾配をできる限り大きくしたい場合には、該3
層膜の間に絶縁膜を上下に挟んで多層構造にして各電極
膜からリード線をとって、素子全体として温度勾配を大
きくとり、熱電変換効率を向上させることも可能であ
る。
Further, with the above configuration, 3 μm is further formed on the alumina insulating film.
By forming a layer structure, repeating this operation, and stacking several layers of the multilayer structure of the thermoelectric conversion element, the thermoelectric conversion efficiency can be improved. In order to make the temperature gradient of this sheet-like thermoelectric conversion element as large as possible,
It is also possible to improve the thermoelectric conversion efficiency by increasing the temperature gradient as a whole by taking a lead wire from each electrode film in a multi-layer structure with an insulating film vertically interposed between the layer films.

【0021】蒸着するフィルム基板材料としては、200℃以
下の比較的低温で使用するのであれば、フレキシブルな
ポリビニール系樹脂、エチレン系樹脂、フェノール系樹
脂等の有機フィルム基板材料でよく、また200℃以上の
比較的高温で使用するのであれば、耐熱性の高い炭素繊
維フィルム等が良い。
As the film substrate material to be deposited, if used at a relatively low temperature of 200 ° C. or less, a flexible organic film substrate material such as a polyvinyl resin, an ethylene resin, or a phenol resin may be used. If used at a relatively high temperature of not less than ° C., a carbon fiber film having high heat resistance is preferred.

【0022】絶縁性樹脂フィルムが前記の絶縁膜を兼用した
り、互換される構成も採用できる。また、強度主体の樹
脂フィルムや炭素繊維フィルムに変えて金属箔を用いる
ことも可能で、これに受熱用、放熱用の機能を付加させ
て温度勾配を大きくすることもよい。
[0022] A configuration in which the insulating resin film also serves as the above-mentioned insulating film or is interchangeable can be adopted. It is also possible to use a metal foil instead of a resin film or a carbon fiber film mainly composed of a strength, and to add a function for receiving and radiating heat to this to increase the temperature gradient.

【0023】この発明において、所要寸法の樹脂シートの全
面に3層構造の熱電変換素子を形成した構成の他、基板
あるいはシート平面上に3層構造の当該素子が各々独立
して多数の素子として所要パターンで並列配置された構
成を採用することができる。
In the present invention, in addition to a configuration in which a thermoelectric conversion element having a three-layer structure is formed over the entire surface of a resin sheet having a required size, the three-layer structure is formed on a substrate or a sheet plane independently as a large number of elements. A configuration arranged in parallel in a required pattern can be adopted.

【0024】この発明において、成膜方法としては、真空蒸
着、CVD、PVD、スパッター、イオンプレーティング等の
公知の気相成長法を適宜選定できる。
In the present invention, a known vapor phase growth method such as vacuum deposition, CVD, PVD, sputtering, or ion plating can be appropriately selected as a film forming method.

【0025】熱電変換材料としては、Bi2Te3系の他、公知の
いずれの材質も採用可能である。例えば、出願人が先に
提案(WO99/22410)した、Si半導体中のキャリアー濃度が
1017〜1021(M/m3)になるようにP,B,Alなど種々の添加元
素の単独又は複合添加とその添加量を調整することによ
り、ゼーベック係数が極めて大きく、熱電変換効率を著
しく高めたSi基熱電変換材料が採用できる。
As the thermoelectric conversion material, any known material other than Bi 2 Te 3 can be used. For example, the carrier concentration in a Si semiconductor, proposed by the applicant earlier (WO99 / 22410),
By adding various or additional elements such as P, B, Al, etc. alone or in combination and adjusting the addition amount so as to be 10 17 to 10 21 (M / m 3 ), the Seebeck coefficient is extremely large, and the thermoelectric conversion efficiency is improved. A significantly enhanced Si-based thermoelectric conversion material can be employed.

【0026】また、Siに、Ge,C,Snのうち少なくとも1種を5
〜10原子%、SiをP型半導体またはN型半導体となすため
の添加元素のうち少なくとも1種を0.001原子%〜20原子%
含有し、多結晶Siの粒界部に前記Ge,C,Snの1種以上ある
いはさらに添加元素の1種以上が析出した結晶組織を有
するSi基熱電変換材料などの、Geを20原子%以下含有す
るSi基熱電変換材料は熱電変換効率が著しく高く好まし
い。
Further, at least one of Ge, C, and Sn is added to Si
0.001 atomic% to 20 atomic% of at least one of the additional elements for forming Si into a P-type semiconductor or an N-type semiconductor.
Ge, such as a Si-based thermoelectric conversion material having a crystal structure in which at least one of Ge, C, and Sn or at least one of additional elements is precipitated at a grain boundary portion of polycrystalline Si, Ge is at most 20 atomic%. The contained Si-based thermoelectric conversion material is preferable because the thermoelectric conversion efficiency is extremely high.

【0027】[0027]

【実施例】実施例1 表1に示すN型、P型の試料を作製するために、高純度Si
(10N)と純度3N以上の各種原料を表1に示すような割合で
配合した後、Arガス雰囲気中でアーク溶解した。得られ
たボタン状のインゴットを真空蒸着用原料として使用し
た。
EXAMPLES Example 1 In order to produce N-type and P-type samples shown in Table 1, high-purity Si
(10N) and various raw materials having a purity of 3N or more were blended at the ratios shown in Table 1, and then arc-melted in an Ar gas atmosphere. The obtained button-shaped ingot was used as a raw material for vacuum evaporation.

【0028】膜厚0.2mmのホ°リビニール系樹脂膜の上にア
ルミナを5μm蒸着した後、金属膜を5μm成膜、熱電変換
材料を10μm厚みに成膜、次いで金属膜を5μm成膜し、
さらにアルミナを5μm蒸着して面積100mm2の熱電変換素
子を作製した。
After depositing 5 μm of alumina on a 0.2 mm-thick vinyl resin film, depositing a 5 μm metal film, depositing a 10 μm thick thermoelectric material, and then depositing a 5 μm metal film.
Further, alumina was vapor-deposited at 5 μm to prepare a thermoelectric conversion element having an area of 100 mm 2 .

【0029】金属電極膜(低温側)/熱電材料膜/金属電極膜
(高温側)の3層構造にした熱電変換素子の評価方法とし
て、電極膜に熱電対を付けた該素子をホットプレート上
に置き、低温側と高温側の該電極で温度測定と同時に発
生する電圧と電流を温度測定した。
[0029] Metal electrode film (low temperature side) / thermoelectric material film / metal electrode film
As a method for evaluating a thermoelectric conversion element having a three-layer structure of (high temperature side), the element having a thermocouple attached to an electrode film is placed on a hot plate, and the temperature is simultaneously measured at the electrodes on the low temperature side and the high temperature side. Voltage and current were measured temperature.

【0030】得られた電圧と電流を1℃当たりの電圧(mV/℃)
と電流(mA/℃)に換算して1℃当たりの出力電力(W/℃2)
を求めた。FeSi2,Si0.95Ge0.05,Bi2Te3熱電変換材料に
対して、高温側と低温側の電極として金属膜の種類を変
えたと時の出力電力(W/℃2)を表2、表3に示す。
[0030] The obtained voltage and current are converted into a voltage per 1 ° C (mV / ° C).
Current output power per 1 ℃ in terms of (mA / ℃) (W / ℃ 2)
I asked. FeSi 2, Si 0.95 Ge 0.05, Bi 2 Te 3 relative thermoelectric conversion material, the hot and cold sides of the electrode as the output power when the type is changed to the metal film (W / ° C. 2) Table 2, Table 3 Shown in

【0031】[0031]

【表1】 【table 1】

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】実施例に明らかなように、熱電変換材料
種にかかわらず、正極側と負極側で金属電極の種類を変
えることによって、熱電材料自体の熱電性能指数が低く
ても、また温度勾配が比較的小さくても、熱電変換効率
が同一種類の金属電極を使用した場合に比べて飛躍的に
向上する。
As is clear from the examples, regardless of the type of thermoelectric conversion material, by changing the type of metal electrode on the positive electrode side and the negative electrode side, even if the thermoelectric performance index of the thermoelectric material itself is low, and the temperature Even if the gradient is relatively small, the thermoelectric conversion efficiency is dramatically improved as compared with the case where the same type of metal electrode is used.

【0035】また、この発明による熱電変換素子は、フレキ
シブルな金属箔や樹脂シート状として容易に提供でき、
用途を拡大することが可能であり、さらに多層素子構造
として熱電変換効率を大きく向上させることも可能にな
る。
Further, the thermoelectric conversion element according to the present invention can be easily provided as a flexible metal foil or a resin sheet.
Applications can be expanded, and the thermoelectric conversion efficiency can be greatly improved as a multilayer element structure.

【0036】シート状の熱電変換素子の用途の一例を挙げる
と、日光が当たる建築物の屋根や外壁に容易に太陽発電
シート材として設置でき、また、加熱炉や焼却炉を有す
る工場内の天井、内壁、衝立て等にも輻射熱発電シート
材として設置できる。さらに、自動車などでは、エンジ
ンや排気系の廃熱発電シートとして、エンジンルーム内
などに設置することができる。あるいはビルの窓際や駐
車中の自動車内の日よけを兼ねて太陽発電シート材とし
て設置するなど、多種多様の用途に適用できる。
As an example of the use of the sheet-like thermoelectric conversion element, a solar power generation sheet material can be easily installed on a roof or an outer wall of a building exposed to sunlight, and a ceiling in a factory having a heating furnace or an incinerator. , Inner wall, screen, etc., can be installed as a radiant heat power generation sheet material. Further, in an automobile or the like, it can be installed in an engine room or the like as a waste heat power generation sheet for an engine or an exhaust system. Alternatively, it can be applied to a wide variety of uses, such as being installed as a solar power generation sheet material also as a window in a building or as a shade in a parked car.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 温度勾配のある熱電変換材料の高温側と
低温側の電極材料に異なる金属又は合金を用いた熱電変
換素子。
1. A thermoelectric conversion element using different metals or alloys for a high-temperature side and a low-temperature side electrode material of a thermoelectric conversion material having a temperature gradient.
【請求項2】 高温側の電極材料がAg,Pt,Cu,Ti及びそれ
らの合金のうち1種、低温側の電極材料がCu,Pt,Al,Au,F
e,Mo,Zn及びそれらの合金のうち高温側と異なる1種であ
る請求項1に記載の熱電変換素子。
2. The high-temperature electrode material is one of Ag, Pt, Cu, Ti and their alloys, and the low-temperature electrode material is Cu, Pt, Al, Au, F
2. The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion element is one of e, Mo, Zn, and an alloy thereof different from the high-temperature side.
【請求項3】 熱電変換材料がシート状又は薄膜であ
り、その両主面に各電極をシート状又は薄膜にて設けた
3層構造からなる請求項1に記載の熱電変換素子。
3. The thermoelectric conversion material is in the form of a sheet or a thin film, and each electrode is provided on both main surfaces in the form of a sheet or a thin film.
2. The thermoelectric conversion element according to claim 1, which has a three-layer structure.
【請求項4】 3層構造の当該素子をシート状又は薄膜の
絶縁材を介して積み重ねた多層素子構造からなる請求項
3に記載の熱電変換素子。
4. A multi-layer element structure in which said elements having a three-layer structure are stacked via a sheet-like or thin-film insulating material.
3. The thermoelectric conversion element according to 3.
【請求項5】 基板あるいはシート平面上に3層構造の当
該素子が各々独立して多数配列されている請求項3又は
請求項4に記載の熱電変換素子。
5. The thermoelectric conversion device according to claim 3, wherein a large number of the devices each having a three-layer structure are arranged independently on a substrate or a sheet plane.
【請求項6】 熱電変換材料が、FeSi2化合物、Bi2Te3
合物、Si1-xGex(x≦0.20)のいずれかである請求項1〜請
求項5に記載の熱電変換素子。
6. The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion material is any one of a FeSi 2 compound, a Bi 2 Te 3 compound, and Si 1-x Ge x (x ≦ 0.20).
JP31630399A 1999-11-08 1999-11-08 Thermoelectric conversion element Pending JP2001135868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31630399A JP2001135868A (en) 1999-11-08 1999-11-08 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31630399A JP2001135868A (en) 1999-11-08 1999-11-08 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2001135868A true JP2001135868A (en) 2001-05-18

Family

ID=18075634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31630399A Pending JP2001135868A (en) 1999-11-08 1999-11-08 Thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2001135868A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017406A1 (en) * 2000-08-24 2002-02-28 Sumitomo Special Metals Co., Ltd. Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
WO2007013389A1 (en) * 2005-07-25 2007-02-01 Toyota Jidosha Kabushiki Kaisha Power generating apparatus
JP2007124760A (en) * 2005-10-26 2007-05-17 Shin Caterpillar Mitsubishi Ltd Engine room structure of working machine excellent in heat exchange property
CN100370635C (en) * 2003-12-22 2008-02-20 中国电子科技集团公司第十八研究所 Compression joint method for thermoelement and electrode
CN100421274C (en) * 2004-05-28 2008-09-24 中国科学院上海硅酸盐研究所 Electrode material of cobalt base antimonide pyroelectric material and preparing process thereof
CN100552999C (en) * 2007-03-02 2009-10-21 中国科学院上海硅酸盐研究所 A kind of alloy electrode and one-step process connecting technology that mates with cobalt antimonide thermoelectric component
JP2016219609A (en) * 2015-05-21 2016-12-22 秋田県 Thermoelectric transducer and power generation device
WO2018234411A3 (en) * 2017-06-23 2019-02-21 Laser Point S.R.L. Detector of electromagnetic radiation
WO2018234406A3 (en) * 2017-06-23 2019-02-21 Laser Point S.R.L. Fast detector of electromagnetic radiation
WO2020095126A1 (en) * 2019-04-26 2020-05-14 Latvijas Universitātes Cietvielu Fizikas Institūts A high‐bandwidth thermoelectric thin‐film uv, visible light and infrared radiation sensor and a method for manufacturing thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017406A1 (en) * 2000-08-24 2002-02-28 Sumitomo Special Metals Co., Ltd. Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
CN100370635C (en) * 2003-12-22 2008-02-20 中国电子科技集团公司第十八研究所 Compression joint method for thermoelement and electrode
CN100421274C (en) * 2004-05-28 2008-09-24 中国科学院上海硅酸盐研究所 Electrode material of cobalt base antimonide pyroelectric material and preparing process thereof
US8569609B2 (en) 2005-07-25 2013-10-29 Toyota Jidosha Kabushiki Kaisha Electric generation system
JPWO2007013389A1 (en) * 2005-07-25 2009-02-05 トヨタ自動車株式会社 Power generator
JP4715846B2 (en) * 2005-07-25 2011-07-06 トヨタ自動車株式会社 Power generator
WO2007013389A1 (en) * 2005-07-25 2007-02-01 Toyota Jidosha Kabushiki Kaisha Power generating apparatus
JP2007124760A (en) * 2005-10-26 2007-05-17 Shin Caterpillar Mitsubishi Ltd Engine room structure of working machine excellent in heat exchange property
CN100552999C (en) * 2007-03-02 2009-10-21 中国科学院上海硅酸盐研究所 A kind of alloy electrode and one-step process connecting technology that mates with cobalt antimonide thermoelectric component
JP2016219609A (en) * 2015-05-21 2016-12-22 秋田県 Thermoelectric transducer and power generation device
WO2018234411A3 (en) * 2017-06-23 2019-02-21 Laser Point S.R.L. Detector of electromagnetic radiation
WO2018234406A3 (en) * 2017-06-23 2019-02-21 Laser Point S.R.L. Fast detector of electromagnetic radiation
US11067434B2 (en) 2017-06-23 2021-07-20 Laser Point S.R.L. Fast detector of electromagnetic radiation
WO2020095126A1 (en) * 2019-04-26 2020-05-14 Latvijas Universitātes Cietvielu Fizikas Institūts A high‐bandwidth thermoelectric thin‐film uv, visible light and infrared radiation sensor and a method for manufacturing thereof
CN114072647A (en) * 2019-04-26 2022-02-18 拉脱维亚大学固体物理研究所 High bandwidth pyroelectric thin film UV, visible and infrared radiation sensor and method of making same
US11656127B2 (en) 2019-04-26 2023-05-23 Latvijas Universitates Cietvielu Fizikas Instituts High-bandwidth thermoelectric thin-film UV, visible light and infrared radiation sensor and a method for manufacturing thereof
CN114072647B (en) * 2019-04-26 2024-01-05 拉脱维亚大学固体物理研究所 High bandwidth pyroelectric thin film UV, visible and infrared radiation sensor and method of making same

Similar Documents

Publication Publication Date Title
Liu et al. Current progress and future challenges in thermoelectric power generation: From materials to devices
Aswal et al. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects
KR101876947B1 (en) Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same
JP5600732B2 (en) Thermoelectric material coated with protective layer
US20150162517A1 (en) Voltage generation across temperature differentials through a flexible thin film thermoelectric device
US20060118160A1 (en) Thermoelectric element and thermoelectric module
US20090173082A1 (en) Novel solid state thermovoltaic device for isothermal power generation and cooling
JP6907323B2 (en) Multilayer thin film and its preparation
US20180323358A1 (en) Method for pre-processing semiconducting thermoelectric materials for metallization, interconnection and bonding
US20120305044A1 (en) Thermal transfer and power generation systems, devices and methods of making the same
JP2001135868A (en) Thermoelectric conversion element
Sharma et al. Recent advances in thermoelectric power generation technology
CN110178234B (en) Thermoelectric module
TWI480226B (en) New compound semiconductors and their application
JP6618413B2 (en) Thermoelectric conversion material and manufacturing method thereof
CN103194722B (en) Manufacture the method for solar cell
Artini et al. Roadmap on thermoelectricity
JP6359525B2 (en) Solar power module
US11349058B2 (en) Thermoelectric half-cell and method of production
CN102760776A (en) Flexible-substrate iron silicide (beta-FeSi2) thin-film solar battery and preparation method thereof
JP2018142564A (en) Thermoelectric conversion material and manufacturing method of the same
CN101969096B (en) Nanostructured thermoelectric material and device and production method thereof
KR101093566B1 (en) Manufacturing method of multi-component oxide thin film having superlattice structure
JP2007165463A (en) Thermoelectric converting element and power generating module
CN107210354A (en) The method of manufacture sealing electrothermal module