JP2001128454A - Fly-back converter - Google Patents

Fly-back converter

Info

Publication number
JP2001128454A
JP2001128454A JP30905499A JP30905499A JP2001128454A JP 2001128454 A JP2001128454 A JP 2001128454A JP 30905499 A JP30905499 A JP 30905499A JP 30905499 A JP30905499 A JP 30905499A JP 2001128454 A JP2001128454 A JP 2001128454A
Authority
JP
Japan
Prior art keywords
circuit
mosfet
voltage
control
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30905499A
Other languages
Japanese (ja)
Inventor
Masaaki Hayashi
正明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP30905499A priority Critical patent/JP2001128454A/en
Publication of JP2001128454A publication Critical patent/JP2001128454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a switching power supply capable of reducing power consumption and noise. SOLUTION: When a DC power supply 1 and a control power supply 6 are turned on, an 'on' signal from an IC control device 18a is outputted to turn on MOSFETs8, 15 in a drive circuit and to turn off a MOSFET 12. By turning on the MOSFET15, a dropper 17 supplies a charging current to a gate input capacitor of a MOSFET12 through the MOSFET15, a high-speed diode 14 and a resistor 13, which makes the gate-source voltage of the MOSFET2 slightly higher than a threshold VTH of the MOSFET2 and turns it on. Also, by turning on the MOSFET8 at the same time, the dropper 17 supplies the charging current to the gate-source parastic capacitor of the MOSFET2 through the MOSFET8 and a constant current circuit 9 and as time elapses, the gate-source voltage of the MOSFET2 rises. As a result, it is possible to supply the gate-source voltage of the MOSFET2 proportional to its drain current, that increases with time after it is turned on.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は制御ICを使用したスイ
ッチング電源に関するもので、特に電流臨界動作型フラ
イバックコンバータと呼ばれる直流変換器のスイッチン
グ素子ドライブ回路に関するものである。
The present invention relates to a switching power supply using a control IC, and more particularly to a switching element drive circuit of a DC converter called a current critical operation type flyback converter.

【0002】[0002]

【従来技術】図4は、従来技術の回路例、図5はその動
作説明図を示すもので、図中1は直流電源、2はMOSFET
(主スイッチング素子)、18は制御回路、18aは、
IC制御部、6は制御電源、16はドライブ電圧用ドロ
ッパ、3は1次巻線、20は2次巻線、4は制御巻線、
19はトランス、21は2次出力整流ダイオード、22
は出力コンデンサ、7、10、11は抵抗、8はPch MO
SFET、12はNch MOSFETである。図5において、(a)
(b)はMOSFET2のゲートドライブ電流波形であり
(a)は抵抗10を流れる電流、(b)は抵抗11を流
れる電流である。(c)はMOSFET2のドレイン電流であ
る。
2. Description of the Related Art FIG. 4 shows an example of a circuit of the prior art, and FIG. 5 shows an operation explanatory diagram thereof. In FIG.
(Main switching element), 18 is a control circuit, 18a is
IC control unit, 6 is a control power supply, 16 is a drive voltage dropper, 3 is a primary winding, 20 is a secondary winding, 4 is a control winding,
19 is a transformer, 21 is a secondary output rectifier diode, 22
Is an output capacitor, 7, 10, and 11 are resistors, and 8 is a Pch MO
SFET, 12 is an Nch MOSFET. In FIG. 5, (a)
(B) is a gate drive current waveform of the MOSFET 2, (a) is a current flowing through the resistor 10, and (b) is a current flowing through the resistor 11. (C) is the drain current of MOSFET2.

【0003】図4において、直流電源1と制御電源6の
電圧がONするとIC制御部18aよりON信号が出力され
ドライブ回路のMOSFET8がONしMOSFET12はOFFする。M
OSFET8がONする事により、ドロッパ16より抵抗1
0、7を通してMOSFET2のゲート・ソース間寄生容量に
図5(a)の様な充電電流が供給されMOSFET2のしきい
値電圧VTH以上になるとMOSFET2はONする。これによりM
OSFET2のドレイン電流は図5(d)の様に時間ととも
に増加しトランス19にエネルギーを蓄積する。ドレイ
ン電流がある値まで増加するとIC制御部18aよりOFF
信号が出力されドライブ回路のMOSFET8がOFFしMOSFET
12がONする。
In FIG. 4, when the voltages of the DC power supply 1 and the control power supply 6 are turned on, an ON signal is output from the IC control section 18a, the MOSFET 8 of the drive circuit is turned on, and the MOSFET 12 is turned off. M
When the OSFET 8 is turned on, the resistance 1
A charging current as shown in FIG. 5A is supplied to the gate-source parasitic capacitance of the MOSFET 2 through 0 and 7, and when the charging current becomes equal to or higher than the threshold voltage VTH of the MOSFET 2, the MOSFET 2 is turned on. This gives M
The drain current of the OSFET 2 increases with time and accumulates energy in the transformer 19 as shown in FIG. When the drain current increases to a certain value, it turns off from the IC control unit 18a.
A signal is output and the MOSFET 8 of the drive circuit turns off and the MOSFET
12 turns ON.

【0004】MOSFET12がONすることにより、抵抗7、
11を通してMOSFET2のゲート・ソース間寄生容量へ充
電されていた電圧を図5(b)の様に放電し、MOSFET2
のしきい値電圧VTH以下になるとMOSFET2はOFFする。MO
SFET2がOFFするとトランス19に蓄えられたエネルギ
ーは、2次巻線20より出力整流ダイオード21を通し
出力コンデンサ22を充電する。2次巻線20よりエネ
ルギーの放出が終わると、MOSFET2のON期間に制御巻線
4に発生していた電圧は下降し始める。その電圧立下り
をIC制御部18aで検出しON信号を出力する。これによ
り再度MOSFET2はONし発振を継続する。
When the MOSFET 12 is turned on, the resistance 7,
The voltage charged to the parasitic capacitance between the gate and the source of the MOSFET 2 through the MOSFET 11 is discharged as shown in FIG.
MOSFET 2 is turned off when the threshold voltage VTH falls below the threshold voltage VTH. MO
When the SFET 2 is turned off, the energy stored in the transformer 19 is charged from the secondary winding 20 through the output rectifier diode 21 to the output capacitor 22. When the release of energy from the secondary winding 20 ends, the voltage generated in the control winding 4 during the ON period of the MOSFET 2 starts to decrease. The voltage falling is detected by the IC control section 18a and an ON signal is output. As a result, the MOSFET 2 is turned on again to continue the oscillation.

【0005】[0005]

【解決すべき課題】従来回路において、MOSFET2のスイ
ッチングスピード(ONタイム)は、MOSFET8、12のス
イッチングスピード、ドロッパ16の電圧値(MOSFET2
ゲートドライブ電圧値)と抵抗10、7の抵抗値、MOSF
ET2の寄生容量値、MOSFET2しきい値電圧VTHなどによ
り決まる。MOSFET2を遅れなくONさせる為にはMOSFET
2のしきい値電圧まで速やかにゲート・ソース間容量を
充電する必要があり、それに合わせて抵抗10,7の抵
抗値を設定する必要がある。又、MOSFET2のドレイン電
流ピーク値は出力電力値にあわせ制御IC制御部18aに
より制御される。最大出力時にMOSFET2に流れるドレイ
ン電流は最大となるが、そのドレイン電流値にあわせて
ドロッパ16の電圧値(MOSFET2ゲートドライブ電圧)
を設定する必要がある。
In the conventional circuit, the switching speed (ON time) of MOSFET 2 is determined by the switching speed of MOSFETs 8 and 12 and the voltage value of dropper 16 (MOSFET 2).
Gate drive voltage value), resistance values of resistors 10 and 7, MOSF
It is determined by the parasitic capacitance value of ET2, the threshold voltage VTH of MOSFET2, and the like. MOSFET to turn on MOSFET2 without delay
It is necessary to quickly charge the gate-source capacitance to the threshold voltage of 2, and it is necessary to set the resistance values of the resistors 10 and 7 accordingly. Further, the peak value of the drain current of the MOSFET 2 is controlled by the control IC control unit 18a in accordance with the output power value. The drain current flowing through the MOSFET 2 at the maximum output becomes the maximum, and the voltage value of the dropper 16 (the MOSFET 2 gate drive voltage) is adjusted according to the drain current value.
Need to be set.

【0006】これらの制約により抵抗7、10抵抗値及
びドロッパ16の電圧値(MOSFET2ゲートドライブ電
圧)は決定されるが、出力電力が小さくMOSFET2ドレイ
ン電流ピーク値が小さい時でも最大出力時で設定したMO
SFET2ゲートドライブ電圧(ドロッパ16の電圧)がMO
SFET2ゲートソース間容量に充電される。即ち軽負荷、
スタンバイなどの出力電力が小さい時には、MOSFET2は
過剰電圧でドライブされる事になり、その時のMOSFET2
ゲートドライブ電力損失も無視できないものとなる。
又、MOSFET2を遅れなくONさせる為に抵抗10、7の抵
抗値を大きく出来ないことにより、MOSFET2へのパルス
状のゲートチャージ電流が大きくなりノイズの要因とな
る。そこで本発明は、制御ICを使用した電流臨界動作
型フライバックコンバータにおいて、スタンバイ、軽負
荷での高効率化と、ノイズ低減を行うことを目的とす
る。
The resistance values of the resistors 7, 10 and the voltage value of the dropper 16 (gate drive voltage of the MOSFET 2) are determined by these restrictions. However, even when the output power is small and the peak value of the drain current of the MOSFET 2 is small, the maximum output is set. MO
SFET2 gate drive voltage (dropper 16 voltage) is MO
SFET2 is charged to the capacitance between the gate and the source. That is, light load,
When the output power is small, such as in the standby mode, the MOSFET 2 is driven with an excessive voltage.
Gate drive power loss is also not negligible.
Further, since the resistance values of the resistors 10 and 7 cannot be increased in order to turn on the MOSFET 2 without delay, a pulse-like gate charge current to the MOSFET 2 increases, which causes noise. SUMMARY OF THE INVENTION It is an object of the present invention to provide a current critical operation type flyback converter using a control IC, which achieves high efficiency at standby, light load, and noise reduction.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
請求項1の発明は、一次巻線、二次巻線および帰還巻線
を有するトランスと、前記一次巻線に直列接続された電
圧制御型半導体スイッチと、前記半導体スイッチをオ
ン、オフする制御回路と、前記二次巻線および帰還巻線
を有するトランスと、前記一次巻線に直列接続された電
圧制御スイッチと、前記半導体スイッチをオン、オフす
る制御回路と、前記2次巻線に接続された整流回路を備
えたフライバック型コンバータにおいて、前記制御回路
は、制御電源と、該半導体スイッチがオンし得るしきい
値電圧を少し上回る制御電圧を供給する第1のドライブ
信号回路と該半導体スイッチのスイッチング電流に対応
して該半導体スイッチをオンせしめる制御電圧を供給す
る第2のドライブ信号回路と、該半導体スイッチをオフ
せしめるオフ回路を備えた構成により電圧制御型半導体
スイッチのONタイミングが遅れることなくスタンバイ、
軽負荷での高効率化とノイズ低減を実現する。又、他励
型フライバックコンバータで負荷の軽、重により周波数
制御が容易に達成できる。
According to a first aspect of the present invention, there is provided a transformer having a primary winding, a secondary winding and a feedback winding, and a voltage controller connected in series to the primary winding. Type semiconductor switch, a control circuit for turning on and off the semiconductor switch, a transformer having the secondary winding and a feedback winding, a voltage control switch connected in series to the primary winding, and turning on the semiconductor switch. In a flyback converter comprising a control circuit for turning off and a rectifier circuit connected to the secondary winding, the control circuit slightly exceeds a control power supply and a threshold voltage at which the semiconductor switch can be turned on. A first drive signal circuit for supplying a control voltage, and a second drive signal for supplying a control voltage for turning on the semiconductor switch in response to a switching current of the semiconductor switch. Circuit and standby without the ON timing of the voltage-controlled semiconductor switch delayed by configuration with off circuit allowed to turn off the semiconductor switch,
High efficiency and light noise reduction at light load. Further, frequency control can be easily achieved by a separately excited flyback converter with a light and heavy load.

【0008】[0008]

【実施の態様】図1は本発明の第1実施例回路図、図2
はその動作説明図で、従来型と同一符号は同等機能部分
を示す。図中1は直流電源、2はMOSFET(主スイッチン
グ素子)、18は制御回路、18aはIC制御部、6は制
御電源、16、17はドライブ電圧用ドロッパ、3は1
次巻線、20は2次巻線、4は制御巻線、19はトラン
ス、21は2次出力整流ダイオード、22は出力コンデ
ンサ、11、13は抵抗、9は定電流回路、14は高速
ダイオード、8、15はPch MOSFET、12はNch MOSFET
が接続されている。尚、上記においてドロッパ17、MO
SFET15、ダイオード14及び抵抗13は制御電源6よ
り給電され主スイッチング素子2のドライブ信号発生回
路(第1)を形成し、同様にドロッパ16、MOSFET8及
び抵抗23は第2のドライブ信号発生回路を形成する。
又、MOSFET12は主スイッチング素子2の放電回路を形
成する。
FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG.
Is an explanatory diagram of the operation, and the same reference numerals as those of the conventional type denote the same functional parts. In the figure, 1 is a DC power supply, 2 is a MOSFET (main switching element), 18 is a control circuit, 18a is an IC control unit, 6 is a control power supply, 16 and 17 are drive voltage droppers, and 3 is 1
Secondary winding, 20 is a secondary winding, 4 is a control winding, 19 is a transformer, 21 is a secondary output rectifier diode, 22 is an output capacitor, 11 and 13 are resistors, 9 is a constant current circuit, and 14 is a high-speed diode. , 8, and 15 are Pch MOSFETs and 12 is an Nch MOSFET
Is connected. In the above, the dropper 17, MO
The SFET 15, the diode 14, and the resistor 13 are supplied from the control power supply 6 to form a drive signal generation circuit (first) of the main switching element 2, and similarly, the dropper 16, the MOSFET 8, and the resistor 23 form a second drive signal generation circuit. I do.
The MOSFET 12 forms a discharge circuit of the main switching element 2.

【0009】図2において(a)(b)(c)はMOSFET
2のゲートドライブ電流波形であり、(a)は抵抗13
を流れる電流、(b)は抵抗11を流れる電流、(c)
は定電流回路9を流れる電流である。(d)はMOSFET2
のゲート・ソース間電圧であり、(e)はMOSFET2のド
レイン電流波形である。
In FIG. 2, (a), (b) and (c) are MOSFETs.
2 shows the gate drive current waveform of FIG.
, (B) is the current flowing through the resistor 11, (c)
Is a current flowing through the constant current circuit 9. (D) MOSFET2
(E) is a drain current waveform of the MOSFET 2.

【0010】図1において、直流電源1と制御電源6の
電圧がONするとIC制御部18aよりON信号が出力されド
ライブ回路のMOSFET8、15がONしMOSFET12はOFFす
る。MOSFET15がONする事により、ドロッパ17よりMO
SFET15、高速ダイオード14、抵抗13を通してMOSF
ET2のゲート・ソース間容量に図2(a)の様な充電電
流が供給されMOSFET2のゲート・ソース間電圧は図2
(d)のt1区間の様にMOSFET2のしきい値電圧VTHを
若干上回る電圧に設定された(ドロッパ17電圧−高速
ダイオード14のVF電圧)となり、MOSFET2はONする。
又、それと並行してMOSFET8がONする事により、ドロッ
パ16よりMOSFET8、定電流回路9を通してMOSFET2の
ゲート・ソース間寄生容量に図2(c)の様な充電電流
が供給される事により図2(d)のt2区間の様に時間
とともにMOSFET2のゲート・ソース間電圧が上昇する。
In FIG. 1, when the voltages of the DC power supply 1 and the control power supply 6 are turned on, an ON signal is output from the IC control section 18a, and the MOSFETs 8 and 15 of the drive circuit are turned on and the MOSFET 12 is turned off. When the MOSFET 15 turns on, the dropper 17
MOSF through SFET 15, high-speed diode 14, and resistor 13
The charging current as shown in FIG. 2A is supplied to the gate-source capacitance of the ET2, and the gate-source voltage of the MOSFET 2 becomes as shown in FIG.
The voltage is set slightly higher than the threshold voltage VTH of the MOSFET 2 (the voltage of the dropper 17 -the VF voltage of the high-speed diode 14) as in the period t1 of (d), and the MOSFET 2 is turned on.
2 (c) is supplied from the dropper 16 to the parasitic capacitance between the gate and source of the MOSFET 2 through the MOSFET 8 and the constant current circuit 9 so that the charging current shown in FIG. The gate-source voltage of the MOSFET 2 rises with time as in the section t2 of (d).

【0011】これによりMOSFET2がONしてから時間とと
もに増加するMOSFET2のドレイン電流に比例したMOSFET
2のゲート・ソース間電圧が供給できる。このMOSFET2
のON区間にトランス19にエネルギーを蓄積し、ドレイ
ン電流がある値まで増加するとIC制御部よりOFF信号が
出力されドライブ回路のMOSFET8、15がOFFしMOSFET
12がONする。MOSFET12がONすることにより抵抗11
を通してMOSFET2のゲート・ソース間寄生容量へ充電さ
れていた電圧を放電しMOSFET2のしきい値電圧VTH以下
になるとMOSFET2はOFFする。MOSFET2がOFFするとトラ
ンス19に蓄えられたエネルギーは、2次巻線20より
出力整流ダイオード21を通し出力コンデンサ22を充
電する。2次巻線20よりエネルギーの放出が終わる
と、MOSFET2のON期間に制御巻線4に発生していた電圧
は下降し始める。その電圧立下りをIC制御部で検出しON
信号を出力する。これにより再度MOSFET2はONし発振を
継続する。
As a result, a MOSFET proportional to the drain current of the MOSFET 2 which increases with time after the MOSFET 2 is turned on.
2 gate-source voltages can be supplied. This MOSFET2
When the drain current is increased to a certain value during the ON period of the above, when the drain current increases to a certain value, an OFF signal is output from the IC control unit, and the MOSFETs 8 and 15 of the drive circuit are turned off and the MOSFET is turned off.
12 turns ON. When the MOSFET 12 is turned on, the resistance 11
The voltage charged in the parasitic capacitance between the gate and source of the MOSFET 2 through the MOSFET 2 is discharged. When the voltage drops below the threshold voltage VTH of the MOSFET 2, the MOSFET 2 is turned off. When the MOSFET 2 is turned off, the energy stored in the transformer 19 charges the output capacitor 22 from the secondary winding 20 through the output rectifier diode 21. When the release of energy from the secondary winding 20 ends, the voltage generated in the control winding 4 during the ON period of the MOSFET 2 starts to decrease. The voltage falling is detected by the IC controller and turned ON.
Output a signal. As a result, the MOSFET 2 is turned on again to continue the oscillation.

【0012】図3は、本発明の第二実施例回路図で、第
一実施例回路図と同一符号は同等機能部分を示す。第一
実施例回路図と異なる部分は、定電流回路9が抵抗23
に置き換わったところである。上記第一実施回路説明の
中のMOSFET2ゲート・ソース間電圧を時間とともに増加
させドレイン電流に比例した電圧を供給する手段とし
て、定電流回路の変わりに高抵抗を使用している。動作
及び効果は第一実施例と同様である。尚、本発明の電流
臨界動作型フライバックコンバータは、上記の実施形態
に限定されるものでなく、半導体スイッチング素子とし
てはMOSFETだけでなく、IGBTやその他の電圧制御スイッ
チを用いても同様の作用及び効果を奏することができ
る。又、トランスや整流素子等の回路部品の配置が上記
実施形態と異なる場合、及び電圧制御スイッチング素子
の制御端子ドライブ回路がICの外部回路である場合でも
よい。
FIG. 3 is a circuit diagram of a second embodiment of the present invention. The same reference numerals as those in the circuit diagram of the first embodiment denote equivalent functional parts. The difference from the circuit diagram of the first embodiment is that the constant current circuit 9
Has just been replaced. In the description of the first embodiment, a high resistance is used instead of the constant current circuit as means for increasing the voltage between the gate and the source of the MOSFET 2 with time and supplying a voltage proportional to the drain current. The operation and effects are the same as in the first embodiment. Note that the current critical operation type flyback converter of the present invention is not limited to the above embodiment, and the same operation can be achieved by using not only MOSFETs but also IGBTs and other voltage control switches as semiconductor switching elements. And effects can be obtained. Further, the arrangement of circuit components such as a transformer and a rectifying element may be different from that of the above-described embodiment, and the control terminal drive circuit of the voltage control switching element may be an external circuit of the IC.

【0013】[0013]

【発明の効果】本発明の電流臨界動作型フライバック電
源では、電圧制御スイッチング素子の制御端子ON電圧を
2系統のドライブ電圧、ドライブインピーダンスで駆動
することにより電圧制御スイッチング素子の制御端子電
圧をしきい値電圧まで速やかに上昇させ、それ以降は電
圧制御スイッチング素子のメイン電流に比例した制御端子
電圧を定電流回路又は、高抵抗より供給する。それによ
り過剰なドライブ電圧を制御端子に供給するのを防ぎ効
率を上げることができる。特に軽負荷、スタンバイ時の
効率を上げることが可能となる。又、電圧制御スイッチ
ング素子の制御端子を定電流ドライブ又は高抵抗ドライ
ブを行う事により電圧制御端子へのパルス状の充電電流
を抑え、ノイズ低減を行うことが可能となる。
In the current critical operation type flyback power supply according to the present invention, the control terminal ON voltage of the voltage control switching element is driven by the two drive voltages and the drive impedances to control the control terminal voltage of the voltage control switching element. The voltage is quickly increased to a threshold voltage, and thereafter, a control terminal voltage proportional to the main current of the voltage control switching element is supplied from a constant current circuit or a high resistance. As a result, it is possible to prevent an excessive drive voltage from being supplied to the control terminal and to increase the efficiency. In particular, it is possible to increase the efficiency during light load and standby. Further, by performing a constant current drive or a high resistance drive on the control terminal of the voltage control switching element, a pulse-like charging current to the voltage control terminal can be suppressed, and noise can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例回路図FIG. 1 is a circuit diagram of a first embodiment of the present invention.

【図2】本発明実施例回路図の動作説明図FIG. 2 is an operation explanatory diagram of a circuit diagram according to an embodiment of the present invention.

【図3】本発明の第二実施例回路図FIG. 3 is a circuit diagram of a second embodiment of the present invention.

【図4】従来回路図FIG. 4 is a conventional circuit diagram.

【図5】従来回路図の動作説明図FIG. 5 is an explanatory diagram of an operation of a conventional circuit diagram.

【符号の説明】[Explanation of symbols]

1:直流電源 2:MOSFET(メインスイッチング素子) 3:1次巻線 4:制御巻線 5:抵抗(制御巻線電流制限用) 6:制御電源 7:抵抗(ドライブ抵抗) 8:Pch MOSFET(ドライブ回路用) 9:定電流回路(ドライブ回路用) 10:抵抗(ドライブ゛抵抗) 11:抵抗(ドライブ抵抗) 12:Nch MOSFET(ドライブ回路用) 13:抵抗(ドライブ抵抗) 14:高速ダイオード(ドライブ回路用) 15:Pch MOSFET(ドライブ回路用) 16:ドロッパ(ドライブ電圧用) 17:ドロッパ(ドライブ電圧用) 18:制御回路 19:トランス 20:2次巻線 21:2次出力整流ダイオード 22:出力コンデンサ 23:抵抗(ドライブ抵抗) 整理番号P0001813 1: DC power supply 2: MOSFET (main switching element) 3: Primary winding 4: Control winding 5: Resistance (for limiting control winding current) 6: Control power supply 7: Resistance (drive resistance) 8: Pch MOSFET ( 9: Constant current circuit (for drive circuit) 10: Resistance (drive ゛ resistance) 11: Resistance (drive resistance) 12: Nch MOSFET (for drive circuit) 13: Resistance (drive resistance) 14: High-speed diode ( 15: Pch MOSFET (for drive circuit) 16: Dropper (for drive voltage) 17: Dropper (for drive voltage) 18: Control circuit 19: Transformer 20: Secondary winding 21: Secondary output rectifier diode 22 : Output capacitor 23: Resistance (drive resistance) Reference number P00001813

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】一次巻線、二次巻線および帰還巻線を有す
るトランスと、前記一次巻線に直列接続された電圧制御
型半導体スイッチと、前記半導体スイッチをオン、オフ
する制御回路と、前記二次巻線に接続された整流回路を
備えたフライバック型コンバータにおいて、前記制御回
路は、制御電源と、該半導体スイッチがオンし得るしき
い値電圧を少し上回る制御電圧を供給する第1のドライ
ブ信号回路と、該半導体スイッチのスイッチング電流に
対応して該半導体スイッチをオンせしめる制御電圧を供
給する第2のドライブ信号回路と、該半導体スイッチを
オフせしめるオフ回路を備えたことを特徴とするフライ
バック型コンバータ。
A transformer having a primary winding, a secondary winding, and a feedback winding; a voltage-controlled semiconductor switch connected in series to the primary winding; a control circuit for turning on and off the semiconductor switch; In a flyback converter provided with a rectifier circuit connected to the secondary winding, the control circuit supplies a control power supply and a control voltage slightly higher than a threshold voltage at which the semiconductor switch can be turned on. A drive signal circuit for supplying a control voltage for turning on the semiconductor switch in accordance with the switching current of the semiconductor switch, and an off circuit for turning off the semiconductor switch. Flyback converter.
【請求項2】第2のドライブ信号回路は定電流回路を備
えたことを特徴とする請求項1のフライバック型コンバ
ータ。
2. The flyback converter according to claim 1, wherein said second drive signal circuit includes a constant current circuit.
【請求項3】第2のドライブ信号回路は半導体スイッチ
の寄生容量と抵抗の時定数回路を備えたことを特徴とす
る請求項1のフライバック型コンバータ。
3. The flyback converter according to claim 1, wherein the second drive signal circuit includes a time constant circuit of a parasitic capacitance and a resistance of the semiconductor switch.
【請求項4】オフ回路は、半導体スイッチの寄生容量に
充電された電荷を放電せしめる放電手段により構成した
ことを特徴とする請求項1、請求項2又は請求項3のフ
ライバック型コンバータ。
4. The flyback converter according to claim 1, wherein the off circuit is constituted by discharging means for discharging the electric charge charged in the parasitic capacitance of the semiconductor switch.
JP30905499A 1999-10-29 1999-10-29 Fly-back converter Pending JP2001128454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30905499A JP2001128454A (en) 1999-10-29 1999-10-29 Fly-back converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30905499A JP2001128454A (en) 1999-10-29 1999-10-29 Fly-back converter

Publications (1)

Publication Number Publication Date
JP2001128454A true JP2001128454A (en) 2001-05-11

Family

ID=17988330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30905499A Pending JP2001128454A (en) 1999-10-29 1999-10-29 Fly-back converter

Country Status (1)

Country Link
JP (1) JP2001128454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240114A (en) * 2008-03-28 2009-10-15 Shindengen Electric Mfg Co Ltd Switching power supply unit
US8395915B2 (en) 2007-11-29 2013-03-12 Samsung Electro-Mechanics Co., Ltd. DC/DC converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395915B2 (en) 2007-11-29 2013-03-12 Samsung Electro-Mechanics Co., Ltd. DC/DC converter
JP2009240114A (en) * 2008-03-28 2009-10-15 Shindengen Electric Mfg Co Ltd Switching power supply unit

Similar Documents

Publication Publication Date Title
US6788556B2 (en) Switching power source device
US6252781B1 (en) Active reset forward converter employing synchronous rectifiers
JP3391384B2 (en) DC-DC converter
US7778049B2 (en) Switching power supply
JP4395881B2 (en) Synchronous rectifier circuit for switching power supply
US8325502B2 (en) Self-supply circuit and method for a voltage converter
JP2004208382A (en) Switching power supply device
JP4830218B2 (en) Drive signal supply circuit
JP5910395B2 (en) Drive circuit
JP2005525069A (en) Power converter
JPH11285248A (en) Snubber circuit, switching power source using the snubber circuit, and surge voltage absorbing method
KR20060056257A (en) Switching power supply device and switching method
US6879499B2 (en) DC-DC converter
JP5040268B2 (en) Switching power supply
KR101069795B1 (en) Electric power converter
JP3492882B2 (en) Switching power supply
US6661209B2 (en) Leading edge modulator for post regulation of multiple output voltage power supplies
JP2004222429A (en) Switching power supply
JP2005006477A (en) Self-excitation type switching power supply circuit
JP4329113B2 (en) Switching power supply
JP2001128454A (en) Fly-back converter
JP2006314189A (en) Power regulation circuit and semiconductor device
JP2004015993A (en) Power saving power supply under no load
JP2003047242A (en) Switching power supply apparatus
JP2835899B2 (en) Soft-switching circuit of discontinuous switching power supply in discontinuous current mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929